Project Title: Java OO Program Visualizer

Team Members:

Darian Dean ddean2022@my.fit.edu
Ashley McKim amckim2022@my.fit.edu
Simon Gardling sgardling2023@my.fit.edu

Josh Kalinsky jkalinsky2022@my.fit.edu

Faculty advisor: Dr. David Luginbuhl dluginbuhl@fit.edu

Client: David Luginbuhl, Professor at Florida Institute of Technology

Dates of Meetings:

1. September 26, 2025 @ 4:30 P.M.

2.
Task Completion | Darian Ashley Simon Josh
%
1. Requirement 100% 30% 70%
Document
2. Test Plan Document 75% 5% 85% 5% 5%
3. Design Document 70% 30% 70%
4. Investigate Tools 100% 25% 25% 25% 25%
5. Collaboration Tools 100% 25% 25% 25% 25%
6. Hello World Demos 100% Graphvi | Tree-sitter Rust/WAS
z M/Javascri
pt
3. Progress of current Milestone:

o Task 1: Requirement Documentation
We drafted a comprehensive requirement document that defined
functional, performance, and security requirements of the system. This
was a major accomplishment because it provided a clear foundation for
later test planning and development. One challenge was ensuring

requirements were specific and measurable.

o Task 2: Test Plan Design
We created a draft Test Plan that mapped requirements to specific test
cases. The document established the overall test strategy, including



mailto:sgardling2023@my.fit.edu
mailto:jkalinsky2022@my.fit.edu
mailto:dluginbuhl@fit.edu
mailto:ddean2022@my.fit.edu
mailto:amckim2022@my.fit.edu
mailto:sgardling2023@my.fit.edu
mailto:jkalinsky2022@my.fit.edu
mailto:dluginbuhl@fit.edu

o

o Task4:

o

o

responsibilities, test requirements, and test case design. The key
accomplishment was drafting concrete test cases for memory diagram
generation, step-by-step execution, and user-drawn diagram comparison,
which serve as the foundation for more detailed system and performance
testing in later milestones.

Task 3: Design Document

The team produced the design document, which established the system
architecture and outlined interactions between the backend, frontend, and
visualization engine.

Technical Tool Selection

We finalized our selection of technical tools for Java code parsing,
backend programming language, and the frontend framework. After
comparing options, we chose Tree-sitter for parsing Java code due to its
incremental parsing capabilities. Rust for the backend to leverage
performance and safety benefits, and Typescript with a modern frontend
framework.

While GraphViz was initially selected as our visualization engine due to its
simplicity and strong support for generating structured diagrams from
graph descriptions, we have encountered a significant limitation:
GraphViz only produces static images. This is problematic for our use
case, since one of the core objectives of the Java Object-Oriented
Visualizer is to provide dynamic, interactive memory diagrams that
change as the code executes line by line.

Task 5: Select Collaboration Tools

Alongside technical development, we compared and selected
collaboration tools for project management. For version control and
software development, we chose Github; for documents and
presentations, Google Workspace; for communication, Discord; and for
scheduling, Google Calendar. These selected tools allow us to align our
workflows effectively.

Task 6: Demos

To confirm our tool selections, we developed “hello world”
demonstrations. Using Tree-sitter, we successfully parsed a simple Java
snippet and visualized its parse tree. With Graphviz, we created a basic
diagram to represent a variable reference in memory. These demos gave
us confidence in the feasibility of our approach.

4. Discussion of contribution of each team member to the current Milestone:

Darian: Contributed to investigating tools and approaches. Worked on the
definitions, assumptions, dependencies, and performance requirements in the
Requirement document. Also worked on the overview (purpose and scope),
system architecture (components and data flow), and contributed to the modules
in the Design document.

Ashley: Worked on requirement document and test document, as well as
milestone 1 report. Also worked on the “hello world” for Graphviz.

o

o



o Simon: Worked on investigating overall tools and approach. | also created a
tree-sitter parser demo in order to demonstrate tree-sitter functionality in parsing
Java code.

o Josh: Created demo connecting Rust and JavaScript by compiling to WASM.
Helped with determining tools and features.

5. Plan for the next Milestone (task matrix)
Task Darian Ashley Simon Josh
Finalize 25% 25% 25% 25%
Visualization
engine
(Graphviz vs
dynamic

alternative)

2. Implement, 20% 10% 10% 60%
test & demo

diagram

generation

3. Implement, 10% 10% 70% 10%

test & demo the
parsing pipeline
for a constrained
Java subset

4. Implement, 20% 50% 15% 15%
test & demo
diagram

equivalency

5. Implement, 60% 20% 10% 10%
test & demo
execution trace

6. Update 25% 25% 25% 25%
Requirement,
Design, and Test
documents

6. Discussion of each planned task for the next Milestone
o Task 1: Graphviz, while mature, may have issues integrating into a WASM
environment due to FFI restrictions with Rust (i.e emscripten).
o Task 2: Generation of dot language syntax from Java code, which is fed into
Graphviz.



10.

Task 3: Give feedback and error handling for unsupported Java features for the
user.

Task 4: Compare two diagrams (start with comparing two “dot” language graphs).
Task 5: Step-by-step creation of the diagram in order to show the process of
creating the diagram.

Task 6: Update documents given the experience in implementing them and
changes we realized we need to make.

Date(s) of meeting(s) with Client during the current milestone:

9/26/2026 (4:30 pm)

Client feedback on the current milestone

o

Discussed an alternative to students uploading hand-drawn documents.
i. Proposed using a technique to draw diagrams directly on our platform.

Faculty Advisor feedback on each task for the current Milestone

o

O O O O

o

Task 1:
Task 2:
Task 3:
Task 4:
Task 5:
Task 6:

Faculty Advisor Signature: Date:




