
Crow 
by Isaac Halvorson 

2016-12-02 — Version 1 

Scope Document Objectives 
The purpose of this document is to provide detailed documentation that clearly defines the work 
that Isaac Halvorson will perform and the deliverables of the project. Any requirement which 
falls outside the specifications in this document will be considered "Out of Scope" and may 
require reprioritization or removal of other features to implement. 

Application Overview 

Twitter’s simplicity is one of its greatest assets, but being so simple, it is also easy to write 
things without care. Crow is a place to contemplate and craft your tweets before posting them. 
A user can log in using their Twitter account, create drafts of tweets to come back to later, and 
then post those tweets directly to Twitter from within the app. 

Application Features 
Crow will be targeted to the iPhone to start. It will be responsive to current iPhone display sizes 
using Skeleton — a CSS library. It will work on an iPad as well, but may not look very good. It 
will act as a “web app”, needing to be installed onto the phone via Safari’s “Add to Home 
Screen” option. This will allow the app to run in full-screen, simulating a native app experience. 

 

http://getskeleton.com


Log In / Onboarding 
 

 
 



 

Drafts Page 
 

 

 



 

New Tweet / Edit Draft Page 
 

 

 



 

Posts Page 
 

 

 



 

View Post Page 
 

 

 



 

Settings Page 

 

 



Project Milestones and Schedule 
 
The schedule begins with building the app, and leaving the Twitter API piece for later on. This 
will allow me to focus on the function and structure of the app before adding the complexity of 
the API. 
 

Milestone / Feature Estimated Completion 

Build database structure and fill with test data (one test user, and 
multiple test drafts) 

12/06 

Build static page layout, including title bar and menu bar 12/06 

Build basic Onboarding page with Twitter login button 12/07 

Build Settings page (mainly to have a ‘Log Out’ button to use in 
testing) 

12/07 

Connect Log In button to Firebase 12/07 

Connect Log Out button to Firebase 12/07 

Build New Tweet page 12/08 

Enable tweeting from New Tweet page 12/09 

Build Drafts layout 12/12 

Display existing drafts from the database on the Drafts page 12/12 

Enable Tweet page to display draft text if a draft is selected 12/12 

Build Posts page, using the Drafts page as a template 12/13 

Build Individual Post page, using the New Tweet page as a 
template 

12/13 

Enable Individual Post page to display post text if a post is 
selected 

12/13 

Styling and layout of app 12/14 

Deploy to Heroku 12/15 

Tie up loose ends and work on stretch goals 12/16–01/02 

 



Browsers 

Application will fully support browsers listed below. All browsers or versions not listed below are 
considered out of scope. 
 

Browser Name Version 

Mobile Safari 10.1 

Chrome for Android (Stretch Goal) 54 

Safari for macOS (Stretch Goal) 10.0.1 

Assumptions 

While completing this estimate the following assumptions were made: 
 

●​ I am able to learn to use Twitter’s API. 
●​ Twitter’s API will not change. 
●​ Twitter’s API allows for retrieving current statistics about a tweet (hearts and retweets). 

Technologies Used 
●​ Node.js 
●​ Express 
●​ Gulp (possibly) 
●​ Sass (probably) 
●​ Angular JS 
●​ MongoDB 
●​ Heroku 
●​ Twitter API 
●​ Fastclick - a JavaScript library for speeding up tap interactions on mobile devices 
●​ Firebase for Twitter authentication 
●​ Skeleton (possibly) 

 

https://github.com/ftlabs/fastclick
http://getskeleton.com


Database Structure 
This is the planned structure for my database. 
 

Data Data Type 

Username Text 

Tweet Contents Text 

Date Posted Date 

Posted Status Boolean 

Related Tweet Text 

Tweet ID Text 

 

 



Stretch Goals 
Features and functionality I would like to add to the application if time allows (in no particular 
order): 
 

●​ Allow the user to schedule the posting of a tweet at a time of their choosing. 
●​ Shorten links using Twitter’s link shortening service. 
●​ Allow the user to “reply” to a tweet that was posted, thereby creating a thread of tweets 

that relate to each other. This is the feature that would require a relational database as 
mentioned in the Technologies Used section. 

●​ Allow the user to “reply” to a draft, and post any tweets in that thread at the same time. 
This would allow for creating a linked thread of tweets before actually posting any of 
them. 

●​ Allow a user to export their drafts by emailing a copy of all drafts to a user-specified 
email address. 

●​ Allow a user to delete a tweet from Twitter, but move it back into Crow’s drafts. 
●​ When saved to the home screen, the app will be saved to the device using the “app 

cache feature of Mobile Safari, allowing the app to function in a limited capacity without 
an internet connection. 

●​ Turn the number in text box red when it has surpassed the 140 character limit. 
●​ Turn any text red that has surpassed Twitter's mandated 140 character limit. This will 

visually represent to the user when they have exceeded the allowable tweet length. 
●​ Display a pop up of the user’s followers when the @ symbol is typed. 

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/OfflineApplicationCache.html
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/OfflineApplicationCache.html

	Crow 
	Scope Document Objectives 
	Application Overview 
	Application Features 
	Log In / Onboarding 
	Onboarding (Notes).png 
	Drafts Page 
	New Tweet / Edit Draft Page 
	Posts Page 
	View Post Page 
	Settings Page 
	 

	 
	Project Milestones and Schedule 
	Browsers 
	Assumptions 
	Technologies Used 
	Database Structure 
	 
	 
	Stretch Goals 

