Note: student answered Problem 5 by writing the code in pencil on the paper exam, but it's
easier to show the solution typed.

Problem 5:
#include <p18f4520.h>
#include <delays.h>

void main(void) {
// Use the default oscillator speed as done in Lab 3 (which btw is 1MHZz).
// In lab 3 it said Delayl@KTCYx(50); was 2 seconds, so

// 10,000*50 = 500,000 instructions = 2 seconds
// Therefore...
// 3 seconds = 750,000 instructions

// 1.5 seconds

375,000 instructions

ADCON1 = 0b0@001111; // Sets all the pins to digital
TRISC = 0boo0O; // Sets all the digital PORTC pins to outputs

while (1) {

//State 1 - Only LEDs RCO and RC2 are on for 1.5 seconds

PORTC = 0bo101;

Delayl10KTCYx(37); // Delay for 1.5 seconds (25 = 1, 12 = 0.5)

// or DelaylOKTCYx(38); is also correct

// Note: Technically it is not allowed to use floats:

// DelaylOKTCYx(37.5); be we didn’t count that wrong

// So to be “perfectly” correct you should actually use:

// Delayl@KTCYx(37); then add this...

DelaylKTCYx(5);
/* To be fair to students we counted Delayl@KTCYx(37); Delayl@KTCYx(38); or
DelaylOKTCYx(37.5); correct without needing the DelaylKTCYx(5); command since
in Lab 3 it was only a simple integer change to the argument and students
didn’t know the details about using delays yet before Exam 1. In the future
though know that in delay functions the argument must be an integer number
(unsigned char) between 1 and 255. */

//State 2 - Only LEDs RC1 and RC3 are on for 3 seconds
PORTC = 0b1010; //
Delayl1OKTCYx(75); // Delay for 3 seconds (50 = 2, 25 = 1)



Note that with code there are MANY solutions. Here is one solution:

Problem 6a:

#include <stdio.h>

char primes[] = {2, 3, 5, 7, 11, 13};
void printPrimes(char value);

void main(void) {
char value;
for (value = 1; value <= 24; value++) {
printf("\nThe prime factors of %d are:
printPrimes(value);

, value);

}
while (1);

void printPrimes(char value) {
char primeIndex;
for (primeIndex = 0; primeIndex < sizeof(primes); primeIndex++) {
char prime = primes[primelIndex];
if (value % prime == 0) {
printf("%d ", prime);



Problem 6b:

#include <stdio.h>
char primes[] = {2, 3, 5, 7, 11, 13};
void printPrimes(char value);

void main(void) {
char value;
for (value = 1; value <= 24; value++) {
printf("\nThe prime factors of %d are:
printPrimes(value);

, value);

}
while (1);

void printPrimes(char value) {
char primeIndex;
for (primeIndex = 0; primeIndex < sizeof(primes); primeIndex++) {
char prime = primes[primelIndex];
if (value % prime == 0) {
printf("%d ", prime);
printPrimes(value / prime);
break;

Yes, we are aware that 6b is a hard problem. It was worth fewer points and
is intended to be a challenge. The solution above is one of many possible
solutions. Neat that it only adds 2 lines of code. It calls the function
again to get a fresh start and ends the current loop (note the break;
statement could instead be a return; statement). The solution to 6b that
almost all students used was to make a while loop where I have the yellow
highlights above that looks for repeat primes, prints them, and then makes
the value smaller as it does so until value % prime is not @. Code that
might look something like this:



void printPrimes(char value) {
char primeIndex;
for (primeIndex = 0; primeIndex < sizeof(primes); primeIndex++) {
char prime = primes[primelIndex];
while (value % prime == @) {
printf("%d ", prime);
value = value / prime;



Output

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime

prime

factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors
factors

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

O J o U b w DN

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

are:
are:
are:
are:
are:
are:
are:
are:

are:

are:
are:
are:
are:
are:
are:
are:
are:
are:
are:
are:
are:
are:
are:

are:

w N 9NN oD w N



