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Unity Netcode for Entities 101 
 
In this document, we’ll first explain the fundamental concepts and workflows of Netcode for 
Entities, and then we’ll walk through a very simple sample project which demonstrates the 
related parts of the API. 
 
See also the video intro to netcode and walkthrough of the Kickball sample. 
 
The topics covered include (loosely in this order): 
 

●​ The roles of the server and clients 
●​ Player input 
●​ Ghost entities 
●​ Client-side prediction 
●​ RPCs (Remote Procedure Calls) 
●​ Netcode bootstrapping and connections 

 
In the sample project: 
 

●​ A player character is spawned when a client connects to the server 
●​ Players can control their characters’ movements 
●​ Players can spawn balls 
●​ Players can kick balls 

 

The role of the server 
 
“Netcode” is about synchronizing multiplayer game state between players’ machines. Other 
networked multiplayer concerns, such as matchmaking, player authentication, or player data 
persistence, are outside the scope of netcode. 
 
In Netcode for Entities, each player runs a client that connects to an authoritative server, which 
runs the actual game simulation: 
 

●​ the server runs the full, authoritative simulation of the game 
●​ the server does not render anything 
●​ the server receives player input from the clients 
●​ the server sends updates of the game state to the clients 

 

https://youtu.be/f-4NR30ieWg


Note: For a published game, servers are usually run in data centers on headless 
machines (machines which aren’t directly attached to displays or input devices), though 
games may also support “player hosting”, where a game session’s server is run on the 
machine of a participating player. During development, servers are often also run directly 
on a developer’s machine for testing purposes. 

 
In terms of game simulation logic, really the only difference between an authoritative 
server-based game compared to a standalone, non-networked game is that the game logic in 
an authoritative server-based game must always run at a fixed update rate. Each update of the 
game simulation on the server is called a tick, and each tick is known by an integer (numbered 
starting from 1 for the first tick). 
 

Note: Allowing variable time intervals between game simulation updates in an 
authoritative-server based game wouldn’t be impossible, but it would make data 
synchronization much more complicated to no real benefit. 

 
By default, the ticks are run at a rate of 60 per second, but this rate can be set in the API. The 
higher the tick rate, generally the higher the accuracy and responsiveness of the game action at 
the cost of more CPU resources (and therefore higher server hosting bills). Games with fast, 
twitch-sensitive action, such as a first-person shooter, typically should run at a rate of 20 to 30 
ticks per second minimum, though some shooter games run at a rate of 120 ticks per second or 
even higher. Games with slow action might do fine running at a rate of 10 ticks per second or 
even lower. 
 

Note: On the server, the ticks do not necessarily correspond to frames of the Unity 
gameloop. To regulate the tick rate on the server, Netcode for Entities will run 0 or more 
ticks in a frame of the Unity gameloop, much like the fixed update logic of physics. 

 
So a portion of the timeline on a server might look something like this: 
 

 
 
In the timeline above, the spacing between ticks is uneven to reflect the fact that the actual time 
interval between ticks may vary. This can happen because some ticks might take more than the 
allotted time to process (1 / ticks_per_second seconds). Logically, however, the interval 
between ticks is supposed to be uniform, so the delta time value used in your logic should 
always be 1 / ticks_per_second.  
 
If a player’s input for a given tick does not reach the server in time for whatever reason, such as 
a network interruption or the player’s machine crashing, the server will not wait: the server 
simply proceeds using the last received input from that client. So for example, if the player was 

https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html


holding the gamepad stick to move forward in the input last received from that player’s client, 
then the server will assume the player is still holding the stick forward until a new input is 
received. This, of course, is not ideal for the affected player, but it’s better than slowing down or 
pausing the whole game for everyone. 
 

Note: When a tick finishes processing with time to spare, Netcode will wait out the 
remaining time before starting the next tick. When a “slow tick” occurs (a tick that 
exceeds its allotted time to process), time in the game effectively slows down. Some 
occasional slow downs aren’t usually a problem, but players may start to notice if they 
happen too frequently, and slow ticks can lead to a “death spiral” (where the server can’t 
process the game logic fast enough but needs to do more and more work to catch up). 
To counteract this, Netcode has a feature enabled by default called “tick batching”, 
where the server may execute multiple ticks in one pass by using a multiplied delta time 
value. For example, executing a tick with delta time multiplied by 3 effectively advances 
the game state by 3 ticks. Of course, this sacrifices accuracy of the simulation, but it is 
generally better than noticeable slow downs and death spirals. 
 
Also note that the possibility of slow ticks makes tick numbers and delta time values an 
inaccurate way to track real world time. When your game needs to accurately track real 
world time, you should use timestamps from the actual system clock. 

 

The role of a client 
 
Each player’s machine runs a client that connects to the server. Usually the server is on a 
separate machine, but in development or in a “player hosting” scenario, the client and server 
may be running on the same machine. 
 
In Netcode for Entities: 
 

●​ a client renders 
●​ a client sends player input to the server 
●​ a client receives game state from the server 
●​ a client may apply interpolation or “prediction” on some game state before rendering 

 
The framerate on the client is independent from the ticks of the server, so the intervals between 
frames don’t have to be uniform, and the framerate can be completely different from the server’s 
tick rate. For example, the timelines of the server and client might line up like so: 
 



 
 
Two things to note above: 
 

●​ A frame on a client may correspond to a “partial tick” (a fractional tick number). 
●​ The client actually runs several ticks ahead of the server, as if the client is living in the 

future! Though unintuitive, this arrangement is necessary so that player input sent from 
the client can reach the server in time. For example, when the client sends player input 
for tick 57 to the server, thanks to this lead time, the input can reach the server before 
the server itself processes tick 57: 

 

 
 
How many ticks each client needs to run ahead of the server depends upon two factors:  
 

●​ the server tick rate of the game 
●​ how much time it takes for input from the client to reach the server (which differs for each 

client and may fluctuate over the lifetime of the connection) 
 
To ensure that a client is running the correct number of ticks ahead of the server, Netcode for 
Entities will automatically adjust the client’s time sync by temporarily increasing or decreasing 
the tick increment of each frame by a subtle amount. Network connection fluctuation and 
interruptions effectively trigger these readjustments. 
 

Player input command streams 
 
Player input is represented by a dynamic buffer component that implements ICommandData: 
 



●​ Each element of the buffer represents the player’s input for a single tick. The last 
element of the buffer is the latest input. 

●​ The latest inputs in the ICommandData buffer are sent by Netcode to the server every 
tick. 

●​ On the server, the received inputs are stored in ICommandData buffers corresponding to 
each client. 

●​ The ICommandData buffer is usually placed on the entity representing the player 
character (but this is not strictly required). 

●​ In each frame of the client, your code should append the player’s latest inputs to the 
ICommandData buffer. For example, in a frame on the client that renders tick 93.4, your 
code should append input data to the ICommandData buffer for tick 93. 

 
Note: Because multiple frames on the client may correspond to the same whole tick 
number, you may end up appending input data for the same tick multiple times. If, say, 
one frame corresponds to tick 93.4 and the next corresponds to tick 93.8, you should 
write the input data in the ICommandData for tick 93 both times, thus the input of the 
second frame overwrites the first. 
 
Note: When sending the input commands, Netcode also includes acknowledgements 
and time synchronization data, so each client always requires an ICommandData buffer 
even if the game has no need for sending player input. If your client neglects to append 
new input to the buffer in a frame, this other data will be sent regardless. 
  
Note: You can have more than one ICommandData buffer on a client, but only one at a 
time can be actively sending its commands. To designate which ICommandData is 
active, you set the CommandTarget of the connection entity. Dynamically switching 
ICommandData buffers can be useful in a game where the player may switch their set of 
input actions. For example, if the player character switches from running on foot to 
driving a vehicle, then you may want to switch the active ICommandData buffer. 

 
Netcode for Entities also provides IInputComponentData, which is a more convenient way to 
handle input that manages the ICommandData buffer for you. (We’ll demonstrate how to use 
IInputComponentData in the sample below.) 
 

Ghost entities 
 
In Netcode for Entities, a “ghost” is an entity on the server whose state (in whole or in part) is 
synched to a corresponding mirror ghost entity on each of the clients. Ghost entities are the 
primary means to sync game state in Netcode for Entities. 
 
Each ghost entity is an instance of a “ghost type”: 
 



●​ Ghost types are defined by prefabs baked in the build (consequently, ghost types can 
only be defined at build time). To make a prefab that defines a ghost type, simply add the 
GhostAuthoringComponent to the root GameObject of the prefab, and then make sure 
the prefab gets baked in at least one subscene. 

●​ Because we don’t necessarily want all of the data of a ghost entity synced from the 
server to the clients, only the component fields marked with the GhostField attribute will 
be included in the ghost synchronization. 

○​ Transforms are treated as a special case: properties in the 
GhostAuthoringComponent let you specify what parts of the transform (if any) 
you want included in the ghost synchronization. By default, the whole transform is 
included. 

●​ In baking, separate server and client prefab entities are created for a single ghost type 
because instances of the ghost may not need all the same components on server and 
client. For example, ghost entities on the server usually don’t need to render, so ghost 
prefabs on the server will normally not include rendering components. 

 
When a subscene that contains ghost prefab instances is loaded on both server and client, 
Netcode for Entities automatically associates the instances on the server with their 
corresponding instances on the client. These are called pre-spawned ghosts. 
 
Instantiating ghosts in code:  
 

●​ On the server, when your code instantiates a ghost prefab (using the normal 
EntityManager Instantiate method), Netcode for Entities will automatically send a signal 
to the clients telling them to each create a corresponding mirror ghost instance. 

●​ On the client, your code should generally not instantiate ghosts directly, except in the 
special case of “spawn prediction” (discussed later when we cover prediction). 

 
Destroying ghosts in code:  
 

●​ On the server, when your code destroys a ghost instance (using the normal 
EntityManager DestroyEntity method), a signal is sent to the clients telling them to 
destroy the corresponding mirror ghost instances. 

●​ On the client, your code should never destroy ghosts. Doing so will trigger ghost 
synchronization errors. 

 
 

Ghost snapshots 
 
Each tick, the server sends to the clients “snapshots” of the ghost entities, meaning 
serializations of their ghost fields. 
 

https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/ghost-spawning.html#pre-spawned-ghosts


When the snapshot of an individual ghost is sent, it is always sent in whole, i.e. there is no such 
thing as a partial snapshot of an individual ghost. However, if the total size of all ghost 
snapshots in a tick exceeds the bandwidth limit of the server, the server will send snapshots in 
that tick only for some ghosts rather than for all. Netcode for Entities calls this a “partial 
snapshot”. Effectively, depending upon bandwidth, the number of ghosts, their sizes, and a few 
other parameters, snapshots of some ghosts may be sent at lower rates and less regular 
intervals. The server tries to prioritize the ghosts for which a snapshot has been sent least 
recently, but cases may still arise where clients end up receiving less frequent and less regularly 
spaced snapshot updates for some ghosts compared to others.  
 
Consequently, in a client frame, the latest received snapshots for the various ghosts may not 
always reflect the state of the same tick. For example, the latest received snapshot for one 
character may represent the state of tick number 73 while the latest received snapshot for 
another character may represent the state of tick number 76. Generally, though, the latest 
received snapshots should all be fairly close in time, say, within several ticks of each other 
rather than thousands of ticks apart. Just keep in mind that this means the client’s copy of the 
game state not only lags behind the server by some number of ticks, but also the client’s copy 
doesn’t always fully reflect a consistent, coherent view of the game state from a single tick on 
the server. 
 

Note: In most scenarios, this lack of “consistency” on the client is hardly noticeable, 
though exceptions may arise in some games. Inconsistency can also have significant 
implications for prediction, as we’ll discuss later. 
 

Ghost optimization mode 
 
In a ghost prefab’s GhostAuthoringComponent, you can choose whether the ghost type should 
use either the “static” or “dynamic” optimization mode. 
 

●​ For a ghost with the “dynamic” optimization mode, the server sends new snapshots 
regardless whether the ghost field data has changed since sending the last snapshot. 
However, the data is delta compressed against an earlier sent snapshot, so the new 
snapshot only includes what has changed. 

●​ For a ghost with the “static” optimization mode, the server only sends new snapshots 
when any of the ghost field data has changed since sending the last snapshot. However, 
the snapshots always include the full ghost field data with no delta compression. 

 
The choice of optimization mode should not affect the end result on the client unless the change 
of bandwidth usage affects how frequently and regularly the snapshots for some ghosts are 
sent. Generally though, ghost types with ghost fields expected to change frequently should be 
made dynamic while ghost types with ghost fields expected to change only rarely should be 
made static. 



 
Note: Arguably “static” is a misnomer here because ghosts with the static optimization 
mode actually are allowed to change. 
 

Ghost interpolation and extrapolation 
 
As we’ve established above, a client’s framerate does not usually match and sync with the 
server tick rate, and a client may not always receive high-frequency and fully regular interval 
snapshots for all ghosts. Therefore, it’s often appropriate to apply interpolation or extrapolation 
for some fields of the ghosts’ components. In particular, for a moving ghost, you generally want 
to interpolate or extrapolate the transform data because, otherwise, the ghost’s movements on 
the client would likely appear low-framerate and stuttery. 
 
By default, the client will interpolate or extrapolate floating-point ghost fields (including those of 
the transform components): 
 

●​ The client keeps a history of multiple recently received snapshots for each ghost instead 
of just the single most recent.  

●​ The client also maintains a target “interpolation tick” number, which is incremented at the 
server tick rate but with a bit of offset to keep it just under a rolling average of the last 
received snapshot tick numbers. For example, if the tick numbers of the latest received 
snapshots in a frame average out to 48.3, then the interpolation tick number might be 
something like 46.7. 

 
When interpolating floating-point ghost fields, Netcode uses the two snapshots surrounding the 
interpolation tick: 
 

 
 
Above, the values of the floating-point ghost fields from tick 35 and tick 40 are interpolated to a 
value appropriate for tick 37.2, and these interpolated values are written to the ghost entity’s 
components. 
 



If the interpolation tick number is greater than the tick number of the last received snapshot, 
Netcode may use the prior two snapshots to extrapolate: 
 

 
 
Above, the float and double ghost field values from tick 32 and tick 35 are extrapolated to a 
value appropriate for tick 37.2, and these extrapolated values are written to the ghost entity’s 
components. 
 
 

Client-side prediction 
 
As we’ve already described, in the authoritative-server based model of netcode: 
  

1.​ player input is sent to the server 
2.​ the server factors the input into how it modifies the game state 
3.​ snapshot updates of the new game state are sent back to the client 
4.​ the client receives these snapshots and updates its mirror ghost entities accordingly 

(possibly with interpolation or extrapolation) 
 
Effectively, then, there is a whole roundtrip time of latency between the player’s input being sent 
and the result of the input showing up some number of frames later on the player’s screen. 
 
Depending upon the exact gameplay scenario and the player’s ping, this delay may be 
acceptable. For example, in a game where the user clicks to set waypoints to move characters, 
the latency may not feel like a big issue, even if the player has a fairly high ping (say 100-150 
milliseconds). In many other cases, though, this roundtrip delay is extremely noticeable and 
detrimental to the player’s experience. First-person shooters, especially, will often feel 
unplayable if there is even just a 30-40 millisecond delay when the player moves their character 
or fires their weapon. 
 
Fortunately, this latency can often be disguised or at least greatly mitigated with a technique 
called client-side prediction. 



 
 

 
The basic idea of client-side prediction is that a client attempts to “predict” (i.e. make an 
educated guess) what the game state will be on the server a fraction of a second into the future. 
So say, on a client that is about to render a frame for tick 65.1, the client estimates what the 
player’s state will be for tick 65.1 and then renders that estimate, even though: 
 

-​ The client only has snapshots from ticks that are at least a fraction of a second old (like 
say, in this example, from tick 57). 

-​ The client has the recorded input history of its own player, but the client does not have 
the input data of the other players. 

-​ The server itself only does whole ticks, not partial ticks, so there never will be a tick 65.1 
on the server, only tick 65 and tick 66. 

-​ The server itself at this same moment has not yet processed tick 65. (Remember that 
clients always stay logically ahead of the server by some number of ticks so that their 
input has sufficient time to reach the server.) 

 
Because the client’s predictions are made from imperfect information, they may not always fully 
match the actual state on the server. We call such discrepancies mispredictions. As long as the 
mispredictions are small under normal network conditions, prediction can still greatly improve 
the player’s experience. 
 

 
 
In each frame, prediction is executed before rendering in two steps: 
 

1.​ The state of the predicted ghosts are “rolled back” to an earlier tick: 
○​ A predicted ghost which receives a new snapshot is “rolled back” to match the 

snapshot state. For example, if a snapshot for tick 71 is received, then the ghost 
state is rolled back to match the snapshot for tick 71. 

○​ A predicted ghost which does not receive a new snapshot is rolled back to the 
last whole integer tick state that was cached in the prior frame. 

2.​ The prediction simulation logic is executed tick-by-tick starting from the oldest 
rolled-back tick up to the tick to be rendered. For example, in a frame where the client is 
about to render tick 43.4 and the tick of the oldest rolled back ghost is 38, then the 
prediction logic will iterate five times: first to advance from tick 38 to 39, then from 39 to 
40, 40 to 41, 41 to 42, and last from 42 to 43.4. (Notice that the “partial tick” is grouped 
together with the last whole tick.) This span of prediction ticks in a frame can be called 
the “prediction window”.  

 
Note: Prediction can be quite expensive for the client’s CPU, and the more ticks in the 
prediction window, the costlier it becomes. To reduce the number of ticks to execute in 
the prediction window, Netcode has options for batching prediction ticks on the client. 



 
 
In the prediction window, it is generally not appropriate to modify the state of a ghost until 
reaching the tick it was rolled back to. For example, in a frame where the prediction window runs 
from tick 160 to tick 170, a ghost rolled back to tick 165 should not be updated in the ticks of the 
prediction window earlier than 165. 
 
To help you abide by this rule, Netcode for Entities adds a Simulate tag component to every 
ghost. Netcode disables the Simulate component for every predicted ghost at the start of the 
prediction window; Netcode then enables the Simulate component for each ghost when the 
appropriate prediction tick is reached. In our example, a ghost rolled back to tick 165 will have 
its Simulate component disabled in all ticks of the prediction window prior to 165 and then 
enabled in tick 165 and all subsequent ticks. Effectively, by including the Simulate component in 
the queries of your prediction logic systems, you can make sure to only process predicted 
ghosts in the appropriate ticks of the prediction. 
 

 
 
This diagram shows the prediction window of an example frame: 
 

 
 
In the above frame: 
 

●​ The current frame to render represents tick 216.7. 
●​ Ghost A received a new snapshot and was rolled back to tick 208. 
●​ Ghost B received a new snapshot and was rolled back to tick 211. 
●​ Ghost C did not receive a new snapshot and so was rolled back to tick 215 (a state 

cached from prediction of the prior frame). 
●​ The Simulate component is first disabled for all of the ghosts and then enabled: 

○​ …for ghost A at the start of tick 208 of prediction (the first tick). 
○​ …for ghost B at the start of tick 211 of prediction. 
○​ …for ghost C at the start of tick 215 of prediction. 

●​ The prediction window runs from 208 (the oldest tick among the predicted ghosts) up to 
216.7. 



●​ Right before prediction performs the last tick, the state of A, B, and C at tick 215 will be 
cached for use in the next frame. 

 
Warning: Always remember that the latest received snapshots of the various ghosts are 
not necessarily from the same tick, so the client does not always have a consistent view 
of the game state in each tick of prediction. This is one reason why a client’s predictions 
cannot always be fully accurate. 

 
 

 
This diagram shows how the prediction windows of adjacent frames may overlap: 
 

 
 
Note above that: 
 

●​ While the tick to render always advances every frame, the starting tick of the prediction 
window may actually be older than that of the prior frame if an older tick snapshot is 
received. Above, in frame N+2, the starting tick is 217, but then in the next frame, the 
starting tick is 210. 

●​ In frames where no new predicted ghost snapshots are received, the prediction window 
may be as short as a single tick. 

  
 

 
In Netcode for Entities, you opt-in to prediction for each individual ghost type via the 
GhostAuthoringComponent’s DefaultGhostMode property, which has three options: 
 

●​ Interpolated: interpolated and extrapolated with no prediction 



●​ Predicted: the client predicts all instances 
●​ OwnerPredicted: the client only predicts the instance which it “owns” (generally 

meaning the character or vehicle controlled by the client’s local player) 
 

Note: The GhostMode of individual instances can also be set at runtime. 
 
In most games, the primary use case for prediction is a character or vehicle directly controlled 
by the player. Because the client has the recorded history of the local player’s inputs, the client’s 
prediction logic can often make very accurate predictions about the player character’s 
movements and actions by re-enacting the player’s inputs tick-by-tick. 
 
In contrast, most games do not attempt to predict the state of characters or vehicles controlled 
by the other players. Even if the server relays every player’s inputs to the other clients (an 
option supported by Netcode for Entities), it takes time to relay the data, and so a client can 
never have the other players’ inputs for the full prediction window: the latest inputs will always 
be missing. Consequently, predictions for characters or vehicles controlled by the other players 
can’t be as accurate as for the client’s own local player.  
 

Note: Depending upon the nature of the game and the player interactions, predicting 
other players might still improve the experience. In a car racing game, for example, car 
movements are generally grounded in momentum and other realistic(ish) physical 
behaviour, so player steering, acceleration, and braking only gradually change a car’s 
vector of velocity. Consequently, over a short window of ticks, the player inputs usually 
only have a minor effect on the apparent motion of the vehicle. In such cases, even if a 
client lacks the latest few ticks of input from the other players, it can still predict the car 
movements fairly well. 

 
Be clear that latency is usually only a real concern for things that move and animate: other 
things usually feel just fine with a fraction of a second of latency. While a client could try 
predicting other facets of game state, like say when an item is added into a character inventory, 
doing so may require running expensive and complicated logic on the client, to no real apparent 
benefit for the player. It’s generally much simpler and cheaper to just let a character’s inventory 
on the client reflect the latest received snapshot state verbatim. 
 
Even things that move don’t necessarily warrant prediction unless they require low-latency 
responses from player interactions. For example, in the sample that we’ll cover below, the balls 
are predicted so that they can respond immediately when the player kicks them or bumps into 
them. Whether this immediacy warrants the cost and complication of prediction is something 
you must judge on a case-by-case basis. 
 

RPCs 
 



Another feature of Netcode for Entities is RPCs (Remote Procedure Calls), which are discrete 
messages that can be sent from the server to the clients or from a client to the server. These 
messages are “reliable” in the sense that the message will be repeatedly resent until the 
message’s receiver sends back an acknowledgement.  
 

Note: “Remote Procedure Call” is arguably not the most fitting name, as there are no 
procedure calls involved here. Rather, the RPC messages are just serialized structs. 
Whatever action is performed when the message is read (if any) is left up to the receiver. 

 
In some other netcode solutions (including Netcode for GameObjects), RPCs are often used as 
an integral part of the game logic. In Netcode for Entities, however, they are usually only used 
for managing the state of the match and other concerns that don’t directly affect the game state. 
Text chat messages, for example, might be sent via RPC. 
 

Bootstrapping the client and server worlds 
 
In Entities, “bootstrapping” refers to the creation of entity worlds and adding systems to them at 
the start of runtime. The default bootstrapping code creates a “default” entity world and adds to 
the world certain standard systems (such as the transform systems). Default bootstrapping can 
be overridden with your own bootstrapping code by defining a class in your project that 
implements ICustomBootstrap. 
 
Netcode for Entities provides its own class that implements ICustomBootstrap called 
ClientServerBootstrap. This bootstrapper will create both client and server worlds or just one of 
the two, depending upon the MultiplayerPlayModePreferences (which can be set for play mode 
in the PlayMode Tools window). 
 
The separation of server and client entities and systems into separate worlds allows Netcode for 
Entities to run both server and client (or even multiple clients) within a single instance of Unity 
rather than always having to run them as separate builds or instances. 
 

Connections 
 
On a client, the connection to the server is represented as an entity. On the server, the 
connections to the clients are also represented as entities (one per client). 
 
The connection entities all have a few connection-related components, including 
NetworkStreamConnection, NetworkId (an integer which uniquely identifies the connection), 
IncomingRpcDataStreamBuffer, OutgoingRpcDataStreamBuffer, and possibly a few others. 



 
The connection entities are created by Netcode for Entities when a client connects to the server, 
but initially the connection will not send or receive input, RPCs, or ghost snapshots until you 
signal that the connection is ready by adding the NetworkStreamInGame component. Only once 
NetworkStreamInGame is present on the connection entity of both ends will Netcode send input, 
RPCs, and ghost snapshots over the connection. 
 

Additional Netcode for Entities features 
 
Features of Netcode for Entities which we won’t cover here: 
 

●​ Ghost field quantization 
●​ Ghost importance 
●​ Ghost relevancy 
●​ Ghost prediction switching 
●​ Ghost prediction smoothing 
●​ Ghost groups 
●​ Ghosts with child entities 
●​ Custom serialization 
●​ Physics integration 
●​ Ghost component variants 
●​ Client prediction tick batching 
●​ Server tick batching 
●​ Server-side lag compensation 

 
 

 
 

The Kickball sample 
 
Now let’s walk through a simple intro project in which: 
 

●​ A player character is spawned when a client connects to the server 
●​ Players can control their characters’ movements 
●​ Players can spawn balls 
●​ Players can kick balls 

 
 



 
 

Step 1: Bootstrapping and connecting 
 
First in the project, we must bootstrap the client and server worlds and perform the appropriate 
setup when a client connects to the server. The relevant files under the Assets directory are: 
 

●​ Scripts/GameBootstrap: A class extending ClientServerBootstrap that specifies the 
server port 

●​ Scripts/ConfigScriptableObject: A scriptable object that contains several configuration 
parameters of the sample, such as how fast the players move. 

●​ Authoring/ConfigAuthoring: An authoring component that adds the configuration data 
from ConfigScriptableObject to an entity. 

●​ Systems/GoInGameClientSystem: A system that adds the NetworkStreamInGame 
component to the connection entity on the client and sends an RPC from the client to the 
server. 

●​ Systems/GoInGameServerSystem: A system that listens for the RPC from the client 
and, upon receipt, adds the NetworkStreamInGame component to the connection entity 
for that client and spawns a player ghost for the client. 
 

Step 2: Obstacles 
 



Second, we want to spawn obstacles (the pillars). Because we want the server to choose how 
many obstacles to spawn and where to place them, the obstacles must then be ghosts so that 
their state can be synced to the clients. The relevant files under the Assets directory are: 
 

●​ Prefabs/Obstacle: A simple rendered pillar with a box collider. Like all ghost type 
prefabs, the root GameObject of the prefab has the GhostAuthoringComponent. 
Because the obstacles are only moved when they are initially placed, the ghost type 
uses the static optimization mode and the interpolated default ghost mode (there would 
be no reason to predict an unmoving, unchanging ghost). 

●​ Authoring/ObstacleAuthoring: An authoring component that adds an Obstacle tag 
component to the obstacle ghost entities (to allow our code to query for the obstacles). 

●​ Systems/ObstacleSpawnerSystem: A system that spawns the obstacles when the 
server starts running. 

 

Step 3: Player characters 
 
Third, we want to spawn player characters and move them with player input. The relevant files 
under the Assets directory are: 
 

●​ Prefabs/Player: A ghost type representing the players: simple rendered capsules with 
capsule colliders and kinematic rigidbodies (so that the balls will move when they collide 
with the player). In the GhostAuthoringComponent, the default ghost mode is set to 
“owner predicted”, meaning each client will only predict the instance representing their 
own local player and not the instances representing the other players. 

●​ Authoring/PlayerAuthoring: An authoring component that adds a Player tag 
component to the player ghost entities (to allow our code to query for the players). Also 
adds a Color component which determines the player’s rendered color. 

●​ Authoring/PlayerInputAuthoring: An authoring component that adds PlayerInput, an 
IInputCommandData component, to the player ghost entities. PlayerInput defines the 
input command stream data sent from the clients to the server. 

●​ Systems/PlayerInputSystem: A system that sets the PlayerInput component every 
frame with the player’s local input. (The client gathers the player’s input using the Input 
System package.) 

●​ Systems/PlayerMovementSystem: A system that moves the players in accordance 
with the players’ input. On the server, this server authoritatively sets the players’ 
positions every tick. On a client, this system predicts the movements of just that client’s 
local player. (Note that the very simplistic player movement in this sample doesn’t 
account for environment collisions, so players can walk right through the obstacles.) 
 



Step 4: Balls 
 
Lastly, we want to give player characters the ability to spawn balls and kick them. The relevant 
files under the Assets directory are: 
 

●​ Prefabs/Ball: A ghost type representing the balls: rendered spheres with sphere 
colliders and dynamic rigidbodies. In the GhostAuthoringComponent, the default ghost 
mode is set to “predicted”, so every instance is predicted on every client. 

●​ Authoring/BallAuthoring: An authoring component that adds a Ball tag component to 
the ball ghost entities (to allow our code to query for the balls). Also adds a Color 
component which determines the balls’s rendered color. 

●​ Systems/BallSpawnSystem: A system that spawns a ball above a player’s head when 
a player hits the spawn button. 

●​ Systems/BallKickingSystem: A system that applies force to the balls when a nearby 
player hits the kick button. 
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