
This document is best viewed with this option in the menubar: View → Text Width → Wide

Unity Netcode for Entities 101

In this document, we’ll first explain the fundamental concepts and workflows of Netcode for
Entities, and then we’ll walk through a very simple sample project which demonstrates the
related parts of the API.

See also the video intro to netcode and walkthrough of the Kickball sample.

The topics covered include (loosely in this order):

●​ The roles of the server and clients
●​ Player input
●​ Ghost entities
●​ Client-side prediction
●​ RPCs (Remote Procedure Calls)
●​ Netcode bootstrapping and connections

In the sample project:

●​ A player character is spawned when a client connects to the server
●​ Players can control their characters’ movements
●​ Players can spawn balls
●​ Players can kick balls

The role of the server

“Netcode” is about synchronizing multiplayer game state between players’ machines. Other
networked multiplayer concerns, such as matchmaking, player authentication, or player data
persistence, are outside the scope of netcode.

In Netcode for Entities, each player runs a client that connects to an authoritative server, which
runs the actual game simulation:

●​ the server runs the full, authoritative simulation of the game
●​ the server does not render anything
●​ the server receives player input from the clients
●​ the server sends updates of the game state to the clients

https://youtu.be/f-4NR30ieWg

Note: For a published game, servers are usually run in data centers on headless
machines (machines which aren’t directly attached to displays or input devices), though
games may also support “player hosting”, where a game session’s server is run on the
machine of a participating player. During development, servers are often also run directly
on a developer’s machine for testing purposes.

In terms of game simulation logic, really the only difference between an authoritative
server-based game compared to a standalone, non-networked game is that the game logic in
an authoritative server-based game must always run at a fixed update rate. Each update of the
game simulation on the server is called a tick, and each tick is known by an integer (numbered
starting from 1 for the first tick).

Note: Allowing variable time intervals between game simulation updates in an
authoritative-server based game wouldn’t be impossible, but it would make data
synchronization much more complicated to no real benefit.

By default, the ticks are run at a rate of 60 per second, but this rate can be set in the API. The
higher the tick rate, generally the higher the accuracy and responsiveness of the game action at
the cost of more CPU resources (and therefore higher server hosting bills). Games with fast,
twitch-sensitive action, such as a first-person shooter, typically should run at a rate of 20 to 30
ticks per second minimum, though some shooter games run at a rate of 120 ticks per second or
even higher. Games with slow action might do fine running at a rate of 10 ticks per second or
even lower.

Note: On the server, the ticks do not necessarily correspond to frames of the Unity
gameloop. To regulate the tick rate on the server, Netcode for Entities will run 0 or more
ticks in a frame of the Unity gameloop, much like the fixed update logic of physics.

So a portion of the timeline on a server might look something like this:

In the timeline above, the spacing between ticks is uneven to reflect the fact that the actual time
interval between ticks may vary. This can happen because some ticks might take more than the
allotted time to process (1 / ticks_per_second seconds). Logically, however, the interval
between ticks is supposed to be uniform, so the delta time value used in your logic should
always be 1 / ticks_per_second.

If a player’s input for a given tick does not reach the server in time for whatever reason, such as
a network interruption or the player’s machine crashing, the server will not wait: the server
simply proceeds using the last received input from that client. So for example, if the player was

https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html

holding the gamepad stick to move forward in the input last received from that player’s client,
then the server will assume the player is still holding the stick forward until a new input is
received. This, of course, is not ideal for the affected player, but it’s better than slowing down or
pausing the whole game for everyone.

Note: When a tick finishes processing with time to spare, Netcode will wait out the
remaining time before starting the next tick. When a “slow tick” occurs (a tick that
exceeds its allotted time to process), time in the game effectively slows down. Some
occasional slow downs aren’t usually a problem, but players may start to notice if they
happen too frequently, and slow ticks can lead to a “death spiral” (where the server can’t
process the game logic fast enough but needs to do more and more work to catch up).
To counteract this, Netcode has a feature enabled by default called “tick batching”,
where the server may execute multiple ticks in one pass by using a multiplied delta time
value. For example, executing a tick with delta time multiplied by 3 effectively advances
the game state by 3 ticks. Of course, this sacrifices accuracy of the simulation, but it is
generally better than noticeable slow downs and death spirals.

Also note that the possibility of slow ticks makes tick numbers and delta time values an
inaccurate way to track real world time. When your game needs to accurately track real
world time, you should use timestamps from the actual system clock.

The role of a client

Each player’s machine runs a client that connects to the server. Usually the server is on a
separate machine, but in development or in a “player hosting” scenario, the client and server
may be running on the same machine.

In Netcode for Entities:

●​ a client renders
●​ a client sends player input to the server
●​ a client receives game state from the server
●​ a client may apply interpolation or “prediction” on some game state before rendering

The framerate on the client is independent from the ticks of the server, so the intervals between
frames don’t have to be uniform, and the framerate can be completely different from the server’s
tick rate. For example, the timelines of the server and client might line up like so:

Two things to note above:

●​ A frame on a client may correspond to a “partial tick” (a fractional tick number).
●​ The client actually runs several ticks ahead of the server, as if the client is living in the

future! Though unintuitive, this arrangement is necessary so that player input sent from
the client can reach the server in time. For example, when the client sends player input
for tick 57 to the server, thanks to this lead time, the input can reach the server before
the server itself processes tick 57:

How many ticks each client needs to run ahead of the server depends upon two factors:

●​ the server tick rate of the game
●​ how much time it takes for input from the client to reach the server (which differs for each

client and may fluctuate over the lifetime of the connection)

To ensure that a client is running the correct number of ticks ahead of the server, Netcode for
Entities will automatically adjust the client’s time sync by temporarily increasing or decreasing
the tick increment of each frame by a subtle amount. Network connection fluctuation and
interruptions effectively trigger these readjustments.

Player input command streams

Player input is represented by a dynamic buffer component that implements ICommandData:

●​ Each element of the buffer represents the player’s input for a single tick. The last
element of the buffer is the latest input.

●​ The latest inputs in the ICommandData buffer are sent by Netcode to the server every
tick.

●​ On the server, the received inputs are stored in ICommandData buffers corresponding to
each client.

●​ The ICommandData buffer is usually placed on the entity representing the player
character (but this is not strictly required).

●​ In each frame of the client, your code should append the player’s latest inputs to the
ICommandData buffer. For example, in a frame on the client that renders tick 93.4, your
code should append input data to the ICommandData buffer for tick 93.

Note: Because multiple frames on the client may correspond to the same whole tick
number, you may end up appending input data for the same tick multiple times. If, say,
one frame corresponds to tick 93.4 and the next corresponds to tick 93.8, you should
write the input data in the ICommandData for tick 93 both times, thus the input of the
second frame overwrites the first.

Note: When sending the input commands, Netcode also includes acknowledgements
and time synchronization data, so each client always requires an ICommandData buffer
even if the game has no need for sending player input. If your client neglects to append
new input to the buffer in a frame, this other data will be sent regardless.

Note: You can have more than one ICommandData buffer on a client, but only one at a
time can be actively sending its commands. To designate which ICommandData is
active, you set the CommandTarget of the connection entity. Dynamically switching
ICommandData buffers can be useful in a game where the player may switch their set of
input actions. For example, if the player character switches from running on foot to
driving a vehicle, then you may want to switch the active ICommandData buffer.

Netcode for Entities also provides IInputComponentData, which is a more convenient way to
handle input that manages the ICommandData buffer for you. (We’ll demonstrate how to use
IInputComponentData in the sample below.)

Ghost entities

In Netcode for Entities, a “ghost” is an entity on the server whose state (in whole or in part) is
synched to a corresponding mirror ghost entity on each of the clients. Ghost entities are the
primary means to sync game state in Netcode for Entities.

Each ghost entity is an instance of a “ghost type”:

●​ Ghost types are defined by prefabs baked in the build (consequently, ghost types can
only be defined at build time). To make a prefab that defines a ghost type, simply add the
GhostAuthoringComponent to the root GameObject of the prefab, and then make sure
the prefab gets baked in at least one subscene.

●​ Because we don’t necessarily want all of the data of a ghost entity synced from the
server to the clients, only the component fields marked with the GhostField attribute will
be included in the ghost synchronization.

○​ Transforms are treated as a special case: properties in the
GhostAuthoringComponent let you specify what parts of the transform (if any)
you want included in the ghost synchronization. By default, the whole transform is
included.

●​ In baking, separate server and client prefab entities are created for a single ghost type
because instances of the ghost may not need all the same components on server and
client. For example, ghost entities on the server usually don’t need to render, so ghost
prefabs on the server will normally not include rendering components.

When a subscene that contains ghost prefab instances is loaded on both server and client,
Netcode for Entities automatically associates the instances on the server with their
corresponding instances on the client. These are called pre-spawned ghosts.

Instantiating ghosts in code:

●​ On the server, when your code instantiates a ghost prefab (using the normal
EntityManager Instantiate method), Netcode for Entities will automatically send a signal
to the clients telling them to each create a corresponding mirror ghost instance.

●​ On the client, your code should generally not instantiate ghosts directly, except in the
special case of “spawn prediction” (discussed later when we cover prediction).

Destroying ghosts in code:

●​ On the server, when your code destroys a ghost instance (using the normal
EntityManager DestroyEntity method), a signal is sent to the clients telling them to
destroy the corresponding mirror ghost instances.

●​ On the client, your code should never destroy ghosts. Doing so will trigger ghost
synchronization errors.

Ghost snapshots

Each tick, the server sends to the clients “snapshots” of the ghost entities, meaning
serializations of their ghost fields.

https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/ghost-spawning.html#pre-spawned-ghosts

When the snapshot of an individual ghost is sent, it is always sent in whole, i.e. there is no such
thing as a partial snapshot of an individual ghost. However, if the total size of all ghost
snapshots in a tick exceeds the bandwidth limit of the server, the server will send snapshots in
that tick only for some ghosts rather than for all. Netcode for Entities calls this a “partial
snapshot”. Effectively, depending upon bandwidth, the number of ghosts, their sizes, and a few
other parameters, snapshots of some ghosts may be sent at lower rates and less regular
intervals. The server tries to prioritize the ghosts for which a snapshot has been sent least
recently, but cases may still arise where clients end up receiving less frequent and less regularly
spaced snapshot updates for some ghosts compared to others.

Consequently, in a client frame, the latest received snapshots for the various ghosts may not
always reflect the state of the same tick. For example, the latest received snapshot for one
character may represent the state of tick number 73 while the latest received snapshot for
another character may represent the state of tick number 76. Generally, though, the latest
received snapshots should all be fairly close in time, say, within several ticks of each other
rather than thousands of ticks apart. Just keep in mind that this means the client’s copy of the
game state not only lags behind the server by some number of ticks, but also the client’s copy
doesn’t always fully reflect a consistent, coherent view of the game state from a single tick on
the server.

Note: In most scenarios, this lack of “consistency” on the client is hardly noticeable,
though exceptions may arise in some games. Inconsistency can also have significant
implications for prediction, as we’ll discuss later.

Ghost optimization mode

In a ghost prefab’s GhostAuthoringComponent, you can choose whether the ghost type should
use either the “static” or “dynamic” optimization mode.

●​ For a ghost with the “dynamic” optimization mode, the server sends new snapshots
regardless whether the ghost field data has changed since sending the last snapshot.
However, the data is delta compressed against an earlier sent snapshot, so the new
snapshot only includes what has changed.

●​ For a ghost with the “static” optimization mode, the server only sends new snapshots
when any of the ghost field data has changed since sending the last snapshot. However,
the snapshots always include the full ghost field data with no delta compression.

The choice of optimization mode should not affect the end result on the client unless the change
of bandwidth usage affects how frequently and regularly the snapshots for some ghosts are
sent. Generally though, ghost types with ghost fields expected to change frequently should be
made dynamic while ghost types with ghost fields expected to change only rarely should be
made static.

Note: Arguably “static” is a misnomer here because ghosts with the static optimization
mode actually are allowed to change.

Ghost interpolation and extrapolation

As we’ve established above, a client’s framerate does not usually match and sync with the
server tick rate, and a client may not always receive high-frequency and fully regular interval
snapshots for all ghosts. Therefore, it’s often appropriate to apply interpolation or extrapolation
for some fields of the ghosts’ components. In particular, for a moving ghost, you generally want
to interpolate or extrapolate the transform data because, otherwise, the ghost’s movements on
the client would likely appear low-framerate and stuttery.

By default, the client will interpolate or extrapolate floating-point ghost fields (including those of
the transform components):

●​ The client keeps a history of multiple recently received snapshots for each ghost instead
of just the single most recent.

●​ The client also maintains a target “interpolation tick” number, which is incremented at the
server tick rate but with a bit of offset to keep it just under a rolling average of the last
received snapshot tick numbers. For example, if the tick numbers of the latest received
snapshots in a frame average out to 48.3, then the interpolation tick number might be
something like 46.7.

When interpolating floating-point ghost fields, Netcode uses the two snapshots surrounding the
interpolation tick:

Above, the values of the floating-point ghost fields from tick 35 and tick 40 are interpolated to a
value appropriate for tick 37.2, and these interpolated values are written to the ghost entity’s
components.

If the interpolation tick number is greater than the tick number of the last received snapshot,
Netcode may use the prior two snapshots to extrapolate:

Above, the float and double ghost field values from tick 32 and tick 35 are extrapolated to a
value appropriate for tick 37.2, and these extrapolated values are written to the ghost entity’s
components.

Client-side prediction

As we’ve already described, in the authoritative-server based model of netcode:

1.​ player input is sent to the server
2.​ the server factors the input into how it modifies the game state
3.​ snapshot updates of the new game state are sent back to the client
4.​ the client receives these snapshots and updates its mirror ghost entities accordingly

(possibly with interpolation or extrapolation)

Effectively, then, there is a whole roundtrip time of latency between the player’s input being sent
and the result of the input showing up some number of frames later on the player’s screen.

Depending upon the exact gameplay scenario and the player’s ping, this delay may be
acceptable. For example, in a game where the user clicks to set waypoints to move characters,
the latency may not feel like a big issue, even if the player has a fairly high ping (say 100-150
milliseconds). In many other cases, though, this roundtrip delay is extremely noticeable and
detrimental to the player’s experience. First-person shooters, especially, will often feel
unplayable if there is even just a 30-40 millisecond delay when the player moves their character
or fires their weapon.

Fortunately, this latency can often be disguised or at least greatly mitigated with a technique
called client-side prediction.

The basic idea of client-side prediction is that a client attempts to “predict” (i.e. make an
educated guess) what the game state will be on the server a fraction of a second into the future.
So say, on a client that is about to render a frame for tick 65.1, the client estimates what the
player’s state will be for tick 65.1 and then renders that estimate, even though:

-​ The client only has snapshots from ticks that are at least a fraction of a second old (like
say, in this example, from tick 57).

-​ The client has the recorded input history of its own player, but the client does not have
the input data of the other players.

-​ The server itself only does whole ticks, not partial ticks, so there never will be a tick 65.1
on the server, only tick 65 and tick 66.

-​ The server itself at this same moment has not yet processed tick 65. (Remember that
clients always stay logically ahead of the server by some number of ticks so that their
input has sufficient time to reach the server.)

Because the client’s predictions are made from imperfect information, they may not always fully
match the actual state on the server. We call such discrepancies mispredictions. As long as the
mispredictions are small under normal network conditions, prediction can still greatly improve
the player’s experience.

In each frame, prediction is executed before rendering in two steps:

1.​ The state of the predicted ghosts are “rolled back” to an earlier tick:
○​ A predicted ghost which receives a new snapshot is “rolled back” to match the

snapshot state. For example, if a snapshot for tick 71 is received, then the ghost
state is rolled back to match the snapshot for tick 71.

○​ A predicted ghost which does not receive a new snapshot is rolled back to the
last whole integer tick state that was cached in the prior frame.

2.​ The prediction simulation logic is executed tick-by-tick starting from the oldest
rolled-back tick up to the tick to be rendered. For example, in a frame where the client is
about to render tick 43.4 and the tick of the oldest rolled back ghost is 38, then the
prediction logic will iterate five times: first to advance from tick 38 to 39, then from 39 to
40, 40 to 41, 41 to 42, and last from 42 to 43.4. (Notice that the “partial tick” is grouped
together with the last whole tick.) This span of prediction ticks in a frame can be called
the “prediction window”.

Note: Prediction can be quite expensive for the client’s CPU, and the more ticks in the
prediction window, the costlier it becomes. To reduce the number of ticks to execute in
the prediction window, Netcode has options for batching prediction ticks on the client.

In the prediction window, it is generally not appropriate to modify the state of a ghost until
reaching the tick it was rolled back to. For example, in a frame where the prediction window runs
from tick 160 to tick 170, a ghost rolled back to tick 165 should not be updated in the ticks of the
prediction window earlier than 165.

To help you abide by this rule, Netcode for Entities adds a Simulate tag component to every
ghost. Netcode disables the Simulate component for every predicted ghost at the start of the
prediction window; Netcode then enables the Simulate component for each ghost when the
appropriate prediction tick is reached. In our example, a ghost rolled back to tick 165 will have
its Simulate component disabled in all ticks of the prediction window prior to 165 and then
enabled in tick 165 and all subsequent ticks. Effectively, by including the Simulate component in
the queries of your prediction logic systems, you can make sure to only process predicted
ghosts in the appropriate ticks of the prediction.

This diagram shows the prediction window of an example frame:

In the above frame:

●​ The current frame to render represents tick 216.7.
●​ Ghost A received a new snapshot and was rolled back to tick 208.
●​ Ghost B received a new snapshot and was rolled back to tick 211.
●​ Ghost C did not receive a new snapshot and so was rolled back to tick 215 (a state

cached from prediction of the prior frame).
●​ The Simulate component is first disabled for all of the ghosts and then enabled:

○​ …for ghost A at the start of tick 208 of prediction (the first tick).
○​ …for ghost B at the start of tick 211 of prediction.
○​ …for ghost C at the start of tick 215 of prediction.

●​ The prediction window runs from 208 (the oldest tick among the predicted ghosts) up to
216.7.

●​ Right before prediction performs the last tick, the state of A, B, and C at tick 215 will be
cached for use in the next frame.

Warning: Always remember that the latest received snapshots of the various ghosts are
not necessarily from the same tick, so the client does not always have a consistent view
of the game state in each tick of prediction. This is one reason why a client’s predictions
cannot always be fully accurate.

This diagram shows how the prediction windows of adjacent frames may overlap:

Note above that:

●​ While the tick to render always advances every frame, the starting tick of the prediction
window may actually be older than that of the prior frame if an older tick snapshot is
received. Above, in frame N+2, the starting tick is 217, but then in the next frame, the
starting tick is 210.

●​ In frames where no new predicted ghost snapshots are received, the prediction window
may be as short as a single tick.

In Netcode for Entities, you opt-in to prediction for each individual ghost type via the
GhostAuthoringComponent’s DefaultGhostMode property, which has three options:

●​ Interpolated: interpolated and extrapolated with no prediction

●​ Predicted: the client predicts all instances
●​ OwnerPredicted: the client only predicts the instance which it “owns” (generally

meaning the character or vehicle controlled by the client’s local player)

Note: The GhostMode of individual instances can also be set at runtime.

In most games, the primary use case for prediction is a character or vehicle directly controlled
by the player. Because the client has the recorded history of the local player’s inputs, the client’s
prediction logic can often make very accurate predictions about the player character’s
movements and actions by re-enacting the player’s inputs tick-by-tick.

In contrast, most games do not attempt to predict the state of characters or vehicles controlled
by the other players. Even if the server relays every player’s inputs to the other clients (an
option supported by Netcode for Entities), it takes time to relay the data, and so a client can
never have the other players’ inputs for the full prediction window: the latest inputs will always
be missing. Consequently, predictions for characters or vehicles controlled by the other players
can’t be as accurate as for the client’s own local player.

Note: Depending upon the nature of the game and the player interactions, predicting
other players might still improve the experience. In a car racing game, for example, car
movements are generally grounded in momentum and other realistic(ish) physical
behaviour, so player steering, acceleration, and braking only gradually change a car’s
vector of velocity. Consequently, over a short window of ticks, the player inputs usually
only have a minor effect on the apparent motion of the vehicle. In such cases, even if a
client lacks the latest few ticks of input from the other players, it can still predict the car
movements fairly well.

Be clear that latency is usually only a real concern for things that move and animate: other
things usually feel just fine with a fraction of a second of latency. While a client could try
predicting other facets of game state, like say when an item is added into a character inventory,
doing so may require running expensive and complicated logic on the client, to no real apparent
benefit for the player. It’s generally much simpler and cheaper to just let a character’s inventory
on the client reflect the latest received snapshot state verbatim.

Even things that move don’t necessarily warrant prediction unless they require low-latency
responses from player interactions. For example, in the sample that we’ll cover below, the balls
are predicted so that they can respond immediately when the player kicks them or bumps into
them. Whether this immediacy warrants the cost and complication of prediction is something
you must judge on a case-by-case basis.

RPCs

Another feature of Netcode for Entities is RPCs (Remote Procedure Calls), which are discrete
messages that can be sent from the server to the clients or from a client to the server. These
messages are “reliable” in the sense that the message will be repeatedly resent until the
message’s receiver sends back an acknowledgement.

Note: “Remote Procedure Call” is arguably not the most fitting name, as there are no
procedure calls involved here. Rather, the RPC messages are just serialized structs.
Whatever action is performed when the message is read (if any) is left up to the receiver.

In some other netcode solutions (including Netcode for GameObjects), RPCs are often used as
an integral part of the game logic. In Netcode for Entities, however, they are usually only used
for managing the state of the match and other concerns that don’t directly affect the game state.
Text chat messages, for example, might be sent via RPC.

Bootstrapping the client and server worlds

In Entities, “bootstrapping” refers to the creation of entity worlds and adding systems to them at
the start of runtime. The default bootstrapping code creates a “default” entity world and adds to
the world certain standard systems (such as the transform systems). Default bootstrapping can
be overridden with your own bootstrapping code by defining a class in your project that
implements ICustomBootstrap.

Netcode for Entities provides its own class that implements ICustomBootstrap called
ClientServerBootstrap. This bootstrapper will create both client and server worlds or just one of
the two, depending upon the MultiplayerPlayModePreferences (which can be set for play mode
in the PlayMode Tools window).

The separation of server and client entities and systems into separate worlds allows Netcode for
Entities to run both server and client (or even multiple clients) within a single instance of Unity
rather than always having to run them as separate builds or instances.

Connections

On a client, the connection to the server is represented as an entity. On the server, the
connections to the clients are also represented as entities (one per client).

The connection entities all have a few connection-related components, including
NetworkStreamConnection, NetworkId (an integer which uniquely identifies the connection),
IncomingRpcDataStreamBuffer, OutgoingRpcDataStreamBuffer, and possibly a few others.

The connection entities are created by Netcode for Entities when a client connects to the server,
but initially the connection will not send or receive input, RPCs, or ghost snapshots until you
signal that the connection is ready by adding the NetworkStreamInGame component. Only once
NetworkStreamInGame is present on the connection entity of both ends will Netcode send input,
RPCs, and ghost snapshots over the connection.

Additional Netcode for Entities features

Features of Netcode for Entities which we won’t cover here:

●​ Ghost field quantization
●​ Ghost importance
●​ Ghost relevancy
●​ Ghost prediction switching
●​ Ghost prediction smoothing
●​ Ghost groups
●​ Ghosts with child entities
●​ Custom serialization
●​ Physics integration
●​ Ghost component variants
●​ Client prediction tick batching
●​ Server tick batching
●​ Server-side lag compensation

The Kickball sample

Now let’s walk through a simple intro project in which:

●​ A player character is spawned when a client connects to the server
●​ Players can control their characters’ movements
●​ Players can spawn balls
●​ Players can kick balls

Step 1: Bootstrapping and connecting

First in the project, we must bootstrap the client and server worlds and perform the appropriate
setup when a client connects to the server. The relevant files under the Assets directory are:

●​ Scripts/GameBootstrap: A class extending ClientServerBootstrap that specifies the
server port

●​ Scripts/ConfigScriptableObject: A scriptable object that contains several configuration
parameters of the sample, such as how fast the players move.

●​ Authoring/ConfigAuthoring: An authoring component that adds the configuration data
from ConfigScriptableObject to an entity.

●​ Systems/GoInGameClientSystem: A system that adds the NetworkStreamInGame
component to the connection entity on the client and sends an RPC from the client to the
server.

●​ Systems/GoInGameServerSystem: A system that listens for the RPC from the client
and, upon receipt, adds the NetworkStreamInGame component to the connection entity
for that client and spawns a player ghost for the client.

Step 2: Obstacles

Second, we want to spawn obstacles (the pillars). Because we want the server to choose how
many obstacles to spawn and where to place them, the obstacles must then be ghosts so that
their state can be synced to the clients. The relevant files under the Assets directory are:

●​ Prefabs/Obstacle: A simple rendered pillar with a box collider. Like all ghost type
prefabs, the root GameObject of the prefab has the GhostAuthoringComponent.
Because the obstacles are only moved when they are initially placed, the ghost type
uses the static optimization mode and the interpolated default ghost mode (there would
be no reason to predict an unmoving, unchanging ghost).

●​ Authoring/ObstacleAuthoring: An authoring component that adds an Obstacle tag
component to the obstacle ghost entities (to allow our code to query for the obstacles).

●​ Systems/ObstacleSpawnerSystem: A system that spawns the obstacles when the
server starts running.

Step 3: Player characters

Third, we want to spawn player characters and move them with player input. The relevant files
under the Assets directory are:

●​ Prefabs/Player: A ghost type representing the players: simple rendered capsules with
capsule colliders and kinematic rigidbodies (so that the balls will move when they collide
with the player). In the GhostAuthoringComponent, the default ghost mode is set to
“owner predicted”, meaning each client will only predict the instance representing their
own local player and not the instances representing the other players.

●​ Authoring/PlayerAuthoring: An authoring component that adds a Player tag
component to the player ghost entities (to allow our code to query for the players). Also
adds a Color component which determines the player’s rendered color.

●​ Authoring/PlayerInputAuthoring: An authoring component that adds PlayerInput, an
IInputCommandData component, to the player ghost entities. PlayerInput defines the
input command stream data sent from the clients to the server.

●​ Systems/PlayerInputSystem: A system that sets the PlayerInput component every
frame with the player’s local input. (The client gathers the player’s input using the Input
System package.)

●​ Systems/PlayerMovementSystem: A system that moves the players in accordance
with the players’ input. On the server, this server authoritatively sets the players’
positions every tick. On a client, this system predicts the movements of just that client’s
local player. (Note that the very simplistic player movement in this sample doesn’t
account for environment collisions, so players can walk right through the obstacles.)

Step 4: Balls

Lastly, we want to give player characters the ability to spawn balls and kick them. The relevant
files under the Assets directory are:

●​ Prefabs/Ball: A ghost type representing the balls: rendered spheres with sphere
colliders and dynamic rigidbodies. In the GhostAuthoringComponent, the default ghost
mode is set to “predicted”, so every instance is predicted on every client.

●​ Authoring/BallAuthoring: An authoring component that adds a Ball tag component to
the ball ghost entities (to allow our code to query for the balls). Also adds a Color
component which determines the balls’s rendered color.

●​ Systems/BallSpawnSystem: A system that spawns a ball above a player’s head when
a player hits the spawn button.

●​ Systems/BallKickingSystem: A system that applies force to the balls when a nearby
player hits the kick button.

	Unity Netcode for Entities 101
	The role of the server
	The role of a client
	Player input command streams
	Ghost entities
	Ghost snapshots
	Ghost optimization mode
	Ghost interpolation and extrapolation

	Client-side prediction
	RPCs
	Bootstrapping the client and server worlds
	Connections
	Additional Netcode for Entities features
	The Kickball sample
	Step 1: Bootstrapping and connecting
	Step 2: Obstacles
	Step 3: Player characters
	Step 4: Balls

