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Overview 

We use DataFrames as ML datasets in the new ML pipeline API. Each dataset consists of typed 
columns, e.g., string, double, vector, etc. For ML purposes, knowing the column type is not 
sufficient to handle data properly. For example, a column containing country indices stored as 
integers 0, 1, 2, … cannot be used directly in a linear algorithm. Because the value 0, 1, 2, … 
are just indices, including them in some arithmetics doesn’t make sense. However, algorithms 
cannot infer this information by just looking at the values. So we want to provide ML data types 
and their associated description along with the data, referred as ML attributes. This design doc 
discusses ML attributes and the proposed API. 

Requirements 

 
●​ Support common ML data types and metadata. 
●​ Support attributes for vector-typed columns. 
●​ Convert to/from SQL’s metadata with efficient storage. 
●​ Properly handle unknown attributes. 
●​ Reference attributes. 
●​ APIs are Java friendly. 

Interfaces and design discussions 

Attribute types 

We start with ML attribute types. There are two basic types: 
1.​ numeric, e.g., 1.24, -5, 1.0, where the numeric values themselves are meaningful. 

Numeric values are comparable and could be used in arithmetic. The values could be 
discrete or continuous. 

2.​ nominal/categorical, e.g., “true”/”false”, “small”/”medium”/”large”, where the values fall 
into some predefined categories. The categories could be ordinal, e.g., “small” < 
“medium” < “large”. 

Under the two basic types, we can have sub-types: 
1.​ numeric and continuous (e.g., length: 1.23, 2.52, 5.13, …). 
2.​ numeric and discrete (e.g., hourOfDay: 0, 1, 2, 3, …, 23). 
3.​ nominal and ordinal (e.g., clothingSize: “small”, “medium”, “large”, “x-large”). 



4.​ nominal but not ordinal (e.g., zipCode: “94015”, “94305”, …). 
5.​ binary (e.g., “true”/”false”). This is a special sub-type because if there are two categories 

they can be represented by 0/1 and 0/1 could be treated as numeric values. 
 
We don’t make separate types for discrete and continuous, because most ML algorithms do not 
treat discrete values differently from continuous values. 

ML columns 

We call a column with ML attributes attached an ML column. The data in ML columns are 
stored in as Doubles. For a numeric data column, we store its values directly. For a nominal 
column, we store the encoded indices instead. For example, in an ML column containing cloth 
sizes, we save the category indices instead of the raw categories and store the raw categories 
in the metadata: 
 

 size column ML column 

metadata  [small, medium, large, x-large] 

 small 0.0 

 medium 1.0 

 small 0.0 

 large 2.0 

 
We chose using Double to store all values for simplicity. We could use boolean for binary data 
and integer for nominal data. But when we group data into vectors, they becomes Double. 
 
For a nominal but not ordinal column, we recommend indexing values by their frequency to 
enhance sparsity. For a nominal and ordinal column, we require indexing based on the order. 

Attribute group 

For a vector column, we need to store ML attributes for its inner columns. We treat them as a 
group of attributes. 

Attribute names 

An attribute can be optionally associated with a name. For a scalar ML column, the attribute 
name is the column name. For a vector column, the attribute group name is the column name. 
In an attribute group, the attribute names are optional, though recommended. 

JSON serialization 

Attributes can be serialized into JSON and loaded back from JSON. 



SQL data type conversion 

An attribute can be converted into SQL’s Metadata and stored in a StructField instance. We 
store attribute information as a subfield called “ml.attr” in the Metadata to avoid confliction with 
other metadata. Since StructField already has a name field, we don’t store attribute or attribute 
group names in the metadata. The following is the DataType’s JSON representation for an 
example scalar ML column: 
 
{ 

  “name”: “clothingSize”, 

  “type”: “double”, 

  “nullable”: false, 

  “metadata”: { 

    “ml.attr”: { 

      “type”: 1, // nominal 

      “values”: [“small”, “medium”, “large”, “x-large”], 

      “isOrdinal”: true 

    } 

  } 

} 

 
and for a vector ML column: 
 
{ 

  “name”: “user”, 

  “type”: “udt”, 

  “class”: “o.a.s.m.l.VectorUDT”, 

  “nullable”: false, 

  “metadata”: { 

    “ml.attr”: { 

      “attributes”: [ 

        {}, 

        {“name”: “age”}, 

        {“name”: “gender”, “type”: 2, “values”: [“male”, “female”]} 

      ] 

    } 

  } 

} 

Unknown attributes 

When we check the pipeline without touch any data, it may be hard to figure out the exact ML 
attributes. In this case, we should allow unknown attributes and components should be 
optimistic about unknown attributes. If an attribute info is not given, it is treated as numeric. 



 
Unknown values, e.g. names, could be represented by Scala’s Option, but it is not very Java 
friendly. So we provide a builder pattern to create attributes from the default attribute for each 
attribute type. 
 
val clickedAttr = BinaryAttribute.defaultAttr() 

  .withName("clicked") 

  .withValues("true", "false") 

 

val clothingSizeAttr = NominalAttribute.defaultAttr() 

  .withName("clothingSize") 

  .withValues("small", "medium", "large") 

  .withOrdinal() 

Attribute references 

An attribute could be referenced by name, or by index if it is in an attribute group. For simplicity, 
we don’t provide APIs to support referencing an attribute inside a group. Users can use a 
transformer VectorSlicer to slice a vector column. 
 
val slicer = new VectorSlicer() 

  .setInputCol(“user”) 

  .setSelectedNames(“country”, “gender”) 

  .setSelectedIndexes(2, 5) 

  .setOutputCol(“slicedUser”) 

 

val assember = new VectorAssembler() 

  .setInputCols(“time”, slicer.getOutputCol) 

  .setOutputCol(“features”) 

Storage 

We should care about storage to properly handle millions of features. We don’t output a key to 
JSON/Metadata if its value is the default value. For example, `{}` indicates a numeric attribute 
without a name, `{“name”: “age”}` indicates a numeric attribute with name “age”, and `{“name”: 
“gender”, “type”: 2}` means a binary attribute with name “gender” but the raw categories are not 
given. 

Summary statistics 

It would be useful to save some summary statistics of the column in ML attributes, e.g., min, 
max, std, and nnz for a numeric attribute, and histogram for a nominal attribute. 

Basic transformers as examples 

We list a few basic transformers to demonstrate how ML attributes are generated. 



LabelIndexer 

 
`LabelIndexer` turns a column of string labels into a nominal ML column. 
 

 clothingSize encodedClothingSize 

metadata  { 
  “type”: 1, 
  “values”: [“small”, “medium”, 
“large”, “x-large”] 
} 

 small 0.0 

 medium 1.0 

 small 0.0 

 large 2.0 

 
OneHotEncoder 
 
OneHotEncoder reads a nominal ML column and outputs a vector column with binary features. 
 

 encodedClothingSize clothingSizes 

metadata { 
  “type”: “nominal”, 
  “values”: [“small”, “medium”, 
“large”, “x-large”] 
} 

“attributes”: [ 
 {“name”: “is_small”, “type”: “binary”}, 
 {“name”: “is_medium”, “type”: “binary”}, 
 {“name”: “is_large”, “type”: “binary”} 
] 

 0.0 [1, 0, 0] 

 1.0 [0, 1, 0] 

 0.0 [1, 0, 0] 

 2.0 [0, 0, 1] 

 
Binarizer 
Binarizer reads a numeric vector column and turns nonzero values into 1.0. 
 

 user binUser 



metadata “attributes”: [ 
 {“name”: “a”}, 
 {“name”: “b”} 
] 

“attributes”: [ 
 {“name”: “a”, “type”: “binary”}, 
 {“name”: “b”, “type”: “binary”} 
] 

 [0.0, 1.5] [0, 1] 

 [0.0, 2.0] [0, 1] 

 [3.5, 2.0] [1, 1] 

 
VectorAssembler 
VectorAssembler merges multiple columns into a single vector column. 
 

 length user output 

metadata {} “attributes”: [ 
 {“name”: “a”}, 
 {“name”: “b”} 
] 

“attributes”: [ 
 {“name”: “length”}, 
 {“name”: “user_a”}, 
 {“name”: “user_b”} 
] 

 2.0 [0.0, 1.5] [2.0, 0.0, 1.5] 

 3.0 [0.0, 2.0] [3.0, 0.0, 2.0] 

 0.0 [3.5, 2.0] [0.0, 3.5, 2.0] 

 
The attribute naming convention is not discussed in this doc. 

Interfaces 

 
sealed trait Attribute extends Serializable { 
 
  /** Attribute type: {0: numeric, 1: nominal, 2: binary}. */ 
  def attrType: Int 
 
  /** Name of the attribute. None if it is not set. */ 
  def name: Option[String] = None 
   
  /** Copies this attribute with a new name. */ 
  def withName(name: String): Attribute = copyWithName(Some(name)) 
  def withoutName: Attribute = copyWithName(None) 
  private[ml] def copyWithName(name: Option[String]): Attribute 
 
  /** Index of the attribute. None if it is not set. */ 



  def index: Option[Int] = None 
 
  /** Copies this attribute with a new index. */ 
  def withIndex(index: Int): Attribute 
  def withoutIndex: Attribute 
  ... 
 
  def isNumeric: Boolean 
 
  def isNominal: Boolean 
 
  def isOrdinal: Boolean 
 
  /** Get the JSON representation of this attribute. */ 
  def toJson: String = compact(render(jsonValue)) 
 
  private[ml] def jsonValue: JValue 
 
  /** Converts this attribute to metadata. */ 
  def toMetadata: Metadata 
} 
 
/** Trait containing methods to create attributes from JSON/Metadata. */ 
private[ml] trait AttributeFactory { 
 
 private[ml] def fromJsonValue(json: JValue): Attribute 
 
 def fromJson(json: String): Attribute = fromJsonValue(parse(json)) 
 
 def fromMetadata(metadata: Metadata): Attribute 
} 
 
class NumericAttribute private[ml] ( 
   override val name: Option[String] = None, 
   override val index: Option[Int] = None, 
   val min: Option[Double] = None, 
   val max: Option[Double] = None, 
   val std: Option[Double] = None, 
   val sparsity: Option[Double] = None) 
 extends Attribute { 
 
 override def attrType: Int = Attribute.NUMERIC 
 
 ... 
 
 private[ml] 
 def copyWithName(name: Option[String]): Attribute = copyWith(name = name) 
  



 ... 
 
 private[ml] def copyWith( 
     name: Option[String] = name, 
     index: Option[Int] = index, 
     min: Option[Double] = min, 
     max: Option[Double] = max, 
     std: Option[Double] = std, 
     support: Option[Double] = support) = { 
   new NumericAttribute(name, index, min, max, std, support) 
 } 
} 
 
object NumericAttribute extends AttributeFactory { 
 
 /** A default numeric attribute. */ 
 val defaultAttr: NumericAttribute = new NumericAttribute 
 
 ... 
} 
 
class NominalAttribute private[ml] ( 
   override val name: Option[String] = None, 
   override val index: Option[Int] = None, 
   val numValues: Option[Int] = None, 
   val values: Option[Array[String]] = None, 
   val isOrdinal: Option[Boolean] = None) 
 extends Attribute { 
 
 override def attrType: Int = Attribute.NOMINAL 
 
 ... 
 
 /** Index of a specific value. */ 
 def indexOf(value: String): Int 
 
  ... 
} 
 
object NominalAttribute extends AttributeFactory { 
 
 val defaultAttr: NominalAttribute = new NominalAttribute() 
  
 ... 
} 
 
class BinaryAttribute private[ml] ( 
    override val name: Option[String], 



    override val index: Option[Int], 
    val values: Option[(String, String)]) 
  extends Attribute { 
  ... 
} 
 
object BinaryAttribute extends AttributeFactory { 
   
  val defaultAttr: BinaryAttribute 
 
  ... 
} 
 
class AttributeGroup(val name: String, val attributes: Array[Attribute]) { 
 
 /** Number of attributes. */ 
 def size: Int 
 
 /** Index of an attribute specified by name. */ 
 def indexOf(attrName: String): Int 
 
 /** Gets an attribute by name. */ 
 def apply(attrName: String): Attribute 
 
 private[ml] def jsonValue: JValue 
 
 def toJson: String 
 
  def toMetadata: Metadata 
} 
 
object AttributeGroup { 
 
  def fromJsonValue(json: JValue): AttributeGroup 
 
  def fromJson(json: String): AttributeGroup 
 
  def fromMetadata(metadata: Metadata): AttributeGroup 
} 

Updatability 

 
Upon any JSON/Metadata schema change, we should guarantee that previously saved data 
can be correctly loaded back. 
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