
(Depth First Search)  

 

 

-> Trick of DFS :- Basically you go to each branch from the root 

node and exhaust the searching there ; come back and do the 

same process with other branches till they are done.   

 

Graph : -  

 

 

 

 

 



 

 

 

DFS ORDER : JUST MAKE BOUNDARY OF THE GRAPH/TREE 

AND YOU WILL GET THE DFS OF GRAPH.  

 

DFS is a way to travel the graph.  

 

ORDER :- [ 1 2 4 8 5 3 6 7 ]  

 

  

TO UNDERSTAND THE SPACE DIFFERENCES OF BFS VS DFS :- 

https://stackoverflow.com/questions/23477856/why-does-a-brea

dth-first-search-use-more-memory-than-depth-first  

 

C++ https://ideone.com/0Zj2S8  

Java  https://ideone.com/DovpoW  

Python https://ideone.com/5MbskC  

 

General DFS Algorithm :->  

 

You take the source node (1) ; you print it  

 

-> Then you check and exhaust all the branches connected to 

source node ; and do the DFS there as well(assuming that again 

the top node of this branch is source node and do the same thing) 

 

https://stackoverflow.com/questions/23477856/why-does-a-breadth-first-search-use-more-memory-than-depth-first
https://stackoverflow.com/questions/23477856/why-does-a-breadth-first-search-use-more-memory-than-depth-first
https://ideone.com/0Zj2S8
https://ideone.com/DovpoW
https://ideone.com/5MbskC


-> As you are repeating the same process again and again its using 

recursion.  

 

-> Recursion uses secret stack space memory jii  

 

for(auto u : G[1]){ 

 

u-> 2 | 3  

 

} 

 

Flow of DFS :- > 

 

DFS(1) 

 

DFS(2) → used[2] = 1 (it has now been visited) 

 

DFS(4) 

 

DFS (8) 

 

As node 4 is fully exhausted(searched) 

 

DFS(5) 

 

As node 2 is fully exhausted(searched) 

 



DFS(3) 

 

DFS (6) 

 

As node 6 is fully exhausted(searched) 

 

DFS(7)  

 

-> Secret Stack :->  

All nodes which we were traveling got stored in the stack and 

popped out as per need.  

 

Stack = {} 

 

Stack = {1,2} (2 is the topmost node of the stack) 

 

 

Stack = {1,2,4} 

 

Stack = {1,2,4,8} 

 

Stack = { 1,2,4} 

 

Stack = { 1,2 } 

 

Stack = {1,2,5} 

 



Stack = {1,2} 

(now it is confirmed that visited all the children of node so now u 

can successfully kick it out ; you can only kick out the node from 

stack if all its children and that node itself are visited) 

  

Stack = {1}  

 

Stack = {1 3} 

 

Stack = {1 3 6} 

 

Stack = {1 3} 

 

Stack = { 1 3 7} 

 

 

 

Stack = {1 3} 

 

You can now kick out 3 because 3 and all its children have been 

visited. 

 

Stack = {1 } 

 

Stack = {} 

 

You kick out 1 because all nodes have been visited.   



 

Time Complexity : O(Nodes + Edges) 

 

Space Complexity :- Maximum depth of the graph from the source 

node(that's how large the stack can get) 

 

Maximum depth of our graph was : - 4  

 

O(Max Depth of graph) - O(Diameter of graph) 

 

→ 1—2—3—--4—--5—---------------------------n ; depth :- N  

 

SC :-  O(N) 

 

 

 

 

 


