Making ACA-Py (Almost) Ledger Agnostic: DID resolution over DIDComm
(instead of HTTP) to a Universal Resolver.

Thursday 24F
Convener: Victor Martinez Jurado, Markus Sabadello, Daniel Bluhm
Notes-taker(s): N/A

Tags for the session - technology discussed/ideas considered:
ACA-Py, Agents, DIDs, DIDComm, Universal Resolver

Discussion notes, key understandings, outstanding questions, observations, and, if
appropriate to this discussion: action items, next steps:

Link to slides:
https://docs.google.com/presentation/d/1o0HOr5dZV5fUg3Prbx9VNDHulM IcDbgGablvYvVTN6Ps/edit?us
p=sharing

The Vision: Resolve as many did methods as possible during verification
® DIDs are everywhere: the number of DID methods is constantly growing, also we don’t want be

locked-in to any single DID method.
® We want to leverage in ACA-Py the addition of JSON-LD credentials (plain and BBS+)

High level architecture

Universal resolver
A T

Resolver agent

aca-py

Http Remote Client DID COMM Remote

Native resolver 1 Native resolver 2
resolver requester resolver

Did resolver interface

https://docs.google.com/presentation/d/1oHOr5dZV5fUg3Prbx9VNDHuIM_IcDbgGablvYvTN6Ps/edit?usp=sharing
https://docs.google.com/presentation/d/1oHOr5dZV5fUg3Prbx9VNDHuIM_IcDbgGablvYvTN6Ps/edit?usp=sharing

Changes made in Aries Cloud Agent - Python

Originally, we started with the following architecture

ACA-Py " Controller |
(Admin) API

DIDComm Protocols

-

| 1
| |
I |
I |
| |
| |
I - = L] I
| L |
| |
| |
I Indy Ledger I
I (Indy SDK, Indy VDR) I
| |
: Secure Data Store :
: (Indy SDK, Aries Askar) |
L . ’
And worked things into:

|) 1
1 ACA-Py Controller ‘ |
I (Admin) API | 1
I DIDComm Protocols ' 1
| - |
| |
I - = L] I
| |
I b l
I (Al
I DID Resolver

; Indy Ledger S :
| - 7

™

: Secure Data Store :
] (Indy SDK, Aries Askar) x

Creating an interface for pluggable DID resolvers in ACA-Py. Resolvers are matched to DIDs through use
of a Resolver Registry, giving priority to natively implemented resolvers over remote resolvers.

s ™
DID Resolver Interface

Resolver Registry

Method Resolvers

p oy

You can run the demo yourself by following the instructions at:
https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver/tree/demo/iiw/demo

Next Steps:

° Technical Iltems
o Tighter integration with ACA-Py?
o DID to Resolver matching via Regex (PR pending)
o Resolution metadata included in result (resolved via native vs. non-native resolver, etc.)
o Publish resolver plugins
o DID Document parsing (PyDID)
° DID Resolution Protocol Improvements (reporting failures and errors)
° DID Registration?

Resources:

° https://hackmd.io/@dbluhm/uniresolver-acapy
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/R

EADME.md

https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver

https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver/tree/demo/iiw/demo
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://hackmd.io/@dbluhm/uniresolver-acapy
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver
https://github.com/sicpa-dlab/aries-acapy-plugin-http-uniresolver

	Changes made in Aries Cloud Agent - Python
	Next Steps:
	Resources:

