Making ACA-Py (Almost) Ledger Agnostic: DID resolution over DIDComm
(instead of HTTP) to a Universal Resolver.
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The Vision: Resolve as many did methods as possible during verification
® DIDs are everywhere: the number of DID methods is constantly growing, also we don’t want be

locked-in to any single DID method.
® We want to leverage in ACA-Py the addition of JSON-LD credentials (plain and BBS+)
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Changes made in Aries Cloud Agent - Python

Originally, we started with the following architecture
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And worked things into:
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Creating an interface for pluggable DID resolvers in ACA-Py. Resolvers are matched to DIDs through use
of a Resolver Registry, giving priority to natively implemented resolvers over remote resolvers.
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You can run the demo yourself by following the instructions at:
https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver/tree/demo/iiw/demo

Next Steps:

° Technical Iltems
o Tighter integration with ACA-Py?
o DID to Resolver matching via Regex (PR pending)
o Resolution metadata included in result (resolved via native vs. non-native resolver, etc.)
o Publish resolver plugins
o DID Document parsing (PyDID)
° DID Resolution Protocol Improvements (reporting failures and errors)
° DID Registration?

Resources:

° https://hackmd.io/@dbluhm/uniresolver-acapy
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/R

EADME.md

https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver



https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver/tree/demo/iiw/demo
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://hackmd.io/@dbluhm/uniresolver-acapy
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/features/0124-did-resolution-protocol/README.md
https://github.com/sicpa-dlab/aries-acapy-plugin-didcomm-resolver
https://github.com/sicpa-dlab/aries-acapy-plugin-http-uniresolver

	Changes made in Aries Cloud Agent - Python 
	Next Steps: 
	Resources: 

