Molarity, Creating Solutions and Dilution

Name	
------	--

- 1. Describe the procedure a student should use to prepare 250. mL of 0.125 M CuSO₄(aq) using appropriate equipment selected from the list below. Assume that the student uses appropriate safety equipment.
- 250 mL beaker
- 250 mL graduated cylinder
- 250 mL volumetric flask
- Electronic Balance

- 500 mL wash bottle of distilled water
- CuSO_{4 (s)}

- 2. A student dilutes 100. mL of 2.00 M CaCl₂(aq) to a final volume of 400. mL with distilled water. Note: The CaCl₂ dissociated into one Ca^{+2} and two Cl^{-1} !
 - i. How many moles of chloride ion are in the 100. mL solution?
 - ii. How many moles of chloride ion are in the 400. mL solution?

- iii. What is the molarity of chloride ion in the 100. mL solution?
- iv. What is the molarity of chloride ion in the 400. mL solution?

3. A 100. mL sample of 0.500 M NaNO₃(aq) solution is mixed with 100. mL of 0.500 M Ca(NO₃)₂(aq) solution. What is the final concentration of the NO₃⁻ ion?

4. a. Describe and show calculations for how you would create 2.0L of a 6.0M HCl solution from pure HCl and water.

b. How many moles of HCl is needed to react 1.0g of Mg, according to the equation below? $Mg_{(s)} + 2HCl_{(aq)} \square MgCl_{2(aq)} + H_{2(g)}$

c. What volume (in mL) of the 6.0M HCl solution from *a* would you need to react completely with the Mg from #2?