DYNAMIC INPUT SWITCHING!

UPDATE WIDGETS AUTOMATICALLY

INCLUDES SUPPORT FOR DISPLAYING
DIFFERENT GAMEPAD ICON STYLES

JUMP : E3 G JUMP: (A
MOVE : WASD R MOVE :

Press 1 to use X-In 5 Press 1 to use X-Ilnputicons
Press 2 to use PS-Style Icons | Press 2 to use PS-Style Icons
Press 3 to use JC/NSW Pro-sty Press 3 to use JC/NSW Pro-style

Dynamic Widget Switching
User Guide

Introduction

This asset is a library and player controller that allows you to automatically detect the input
method being used by the player, and display the appropriate icons in your HUD and Ul
widgets. No ticks or timers required. You can also set up multiple Gamepad Styles, so the player
can select the style of icon to display without the need to hardcode the logic into individual
Widgets.

See the asset in action here: https://www.youtube.com/watch?v=IDrssVV 4FDw

https://www.youtube.com/watch?v=lDrssV_4FDw

Updates

Update 1

Update 1 is a complete overhaul of how the library assigns the Slate Brushes. Now, each image
is controlled inside S_Gamepadlcons. Adding your own icons and Gamepad Styles is much
more straightforward.

4 Default Values

juttonBottom 3 Array elements

A

3
[FaceButtonTop 3 Array elements
[* FaceButtonleft 3 Array elements

[FaceButtonRight 3 Array elements

Integration

Integration of the asset is incredibly straightforward. First, just select “Add To Project” under
Dynamic Widget Switching, and select your project.

. - . . i . - Launch
@ FBEENLE : Librany Inmote Unreal Engine 4.25.3

DynamicCom

. Category v ¥ dynamic input

DYNAMIC Dynamic Input Switching
INPUT

Unreal Engine SWITCHING Add To Project n
o &

MOVE: 1

Now, when you open up your project, you'll see a new folder called “DynamicWidgetSwitching”.

There are several subfolders here, and you are free to poke around to get a feel of the Library
Functions and the enums.

== Content Browser

e

I AddNew» X Import [SaveAll & - | & Content »

PRIl Search Paths OIEHERGIEER S scach Assets

“ @ Content
> #m DynamicCombatSystem

' #® DynamicWidgetlcons

2 items

Next, we want to make sure the Player Controller knows what'’s up. If you aren’t using a custom
Player Controller, you only need to open up your Game Mode and change Player Controller to
“‘DW_PlayerController”. Then you can start using all the Library Functions immediately.

If you are using a custom Player Controller, don’t panic. Just open your player controller and
select “File” > “Reparent Blueprint” and select “DW_PlayerController”. You may need to search
for it.

Demollevel § |BP_CombatCharacter ¥ [GGEIContoler

Edit Asset View Debug Window Help
% A >
5 Gomp save B Find ¢ e ngs |GIESEDBIANe] Simulation Play

erited)

1 Serif

e h All nodes
Diff »
Merge o~

RICET Bl Change the parent of this Blueprint

422 EventGraph
© Event BeginPlay
© Event Tick
4Functions (19¢ bl
7 ConstructionScript Cheat Class 0+ x
Macros

Cheat Manager

- Mouse Interface
Variables

Event Dispatchers

D Feedback

dw

™ ARSharedWorldGameMode
ARSharedWorldGameState
ARSharedWorldPlayerController
® BandwidthTestActor

"" DW_PlayerController

™ MagiclLeapSharedWorldGameMode

_—
*

MagicLeapSharedWorldGameState

‘f‘ MagicLeapSharedWorldPlayerController

8 items @ View Opt

You'll know you've successfully reparented when you can see the default Gamepad Prompts in
your Class Defaults.

However, these prompts are no longer utilized in the latest version, and are only there for
Legacy integrations.

DynaKey

In the latest update, | added a new Widget Blueprint called “WB_DynaKey’. It actually handles
all the functions automatically, so if you utilize this Widget as the basis of your Input Icons, you
don’t need to worry about casting (as long as the Dynamic Widget Switching Player Controller is
either the current Controller or a parent of the current Controller).

» DynamicWidgeticons » Ul »

§o) (5| T Filters ~ [JEEETREIEN]

L — 3 l

KeyboardMouse XB SampleHUD

When you add WB_DynaKey to an existing widget, you’ll be able to select both a Gamepad
Icon and Keyboard/Mouse Icon to display. Then, in the background, it will grab the
corresponding image and set it to a Slate Brush automatically based on the included Icon
structures.

i) Details
=) W s V=rizble ¢
Search Details
4 Slot (Size Box Slot)
[Padding
tal Alignment
Vertical Alignment

4 Button Select

Gamepad Button

4 Appearance
[Color and Opacity
Color Inherit

4 Accessibility

Utilizing the Library

There are two main Functions you can utilize inside your widgets.

GetGamepadControls

This function calls the player controller and returns the value of the “isGamepad” boolean.
DW_PlayerController contains several variables related to the Gamepad and Gamepad Buttons.
It also contains several events that allow for the dynamic input detection. That’'s why reparenting
your current Player Controller is necessary.

SetGamepadlcon [DEPRECATED]

This is the fun function. The FUNction. Anyway, just call this at any point to grab a Slate Brush
of the selected Gamepad Button. All the Button Names are held in the “GamepadButtons” enum
and are based on Unreal Engine’s naming convention for easily aligning Input Actions with the
Ul.

But the real value of this function is that it will return the Slate Brush of the currently active
Gamepad Type. So using this function allows you to swap between Xbox, Playstation, and
Switch prompts dynamically in-game.

Adding Gamepad Styles

Adding your own Gamepad Styles is much more streamlined in the latest update.

First, add the name of the Gamepad Style to E_ControllerType

Then go into S_Gamepadlcons and add your new icons to each Array. Keep an eye on the
index of your new Icons. By default, Xbox is 0, PlayStation is 1, and Switch is 2. Your new icons
will likely be at Index 3 of each array.

4 Default Values

4 FaceButtonBottom

[FaceButtonRight

Next, you'll need to hop into BFL_Casting.

Enter the “SetControllerStylelcons” function. If needed, right click on “Switch on
E_ControllerType” and select “Refresh Node”. Your new Gamepad Style should be on the list (if
it wasn’t before).

Next, drag off of the Player Controller reference and find “Set Gamepad Index”.

| Get Cument Player Controller

er Object Reference

set gamepadi| x
4Variables
4Default

Type in the index of your icons, then connect that node to the proper Enum on the Switch as
well as the “SetGamepadPrompts” function. Now you’re all set to call your new Controller Type
in-game!

Sample Integration

While | included a Sample HUD and ThirdPersonCharacterBP to show how to utilize the Library
Functions, | thought it would be fun to do a sample integration.
Here we’re using the “Dynamic Combat System” as the base project.

Following the Integration tutorial, we added Dynamic Widget Switching to the project, then
reparented the player controller to DW_PlayerController. Technically, DCS doesn’t use a custom
controller so | just made one because | wanted to reparent instead of just assigning my
Controller.

The fun began when | opened the “WB_ InputHelper” widget. The first thing | did was replace the
“‘HelperKeyText” with an image that | called “HelperKeylmage”. Amazing.

4 Slot (Horizontal Box Slot)

00,00, 100,00 a

Vertical Aligy

4 Appearance

4 Brush

Then | removed the references to “HelperKeyText”, then went back to the Design panel,
selected HelperKeylmage, and added a Binding for the Brush.

From there | basically just copy/pasted the function from the Sample HUD. Except instead of
“Space Bar” | used the “E” key image.

M My Biueprint f GetHelperKeyImi @2 Event Graph

e S © - ;| 4 e
4m: EventGraph
© Event Construct
© UpdatelnputHelper
4Functions (3 overridabl
f Get_Helperkeylmage_Brush_0

i

Macros
4Variables
- Key T S Gamepadieon
= Action
= [g]

HelperActionText
HelperKeylmage

+00o0pon + +

Event Dispatchers
T Gmea o

) Details

| also copy/pasted the code from the ThirdPersonCharacter to the CombatCharacterBP. |
removed “Tab” as an Input Event since it's already being used by the project. Everything else
stayed the same.

§ |BP_CombatCharacter ¥ | DCS Controfler § ThirdPersonCharacter

w Debug Window Help

%. Components - @ —
#Add Component:= & e wm 3 4 4 >
elf) g

Sav Simulation Play

(Inherited)

Ve

h (Inherited)
eraBoom

Camera i order fse it Fail o X-inpii. instea f using the
tosee.

mpts:
ment (Inherited)

M My Blueprint

+ Add New > o~
4Graphs +
= EventGraph
4Functions (31 overridabl +
#/ ConstructionSeript

Macros +
4Variables +

My Character

® BaseTurnRate

@ BaselookUpRate

Event Dispatchers

B Compiler Resuits

Now, when you hit the Play button, you can walk over to the glowing orb of loot and instead of a
horrifying mass of text greeting you, you get a nice button image. And pressing the left shoulder
button swaps between Xbox, Playstation, and Switch prompts just like we want.

DynamicCombatSystem Preview [NetMode: Standalone] (64-bit/Windows) =t

[L] Restart Level
[K] Keybindings

i

Pickup Actor

s Pillage

==

[L] Restart Level
[K] Keybindings

DynamicCombatSystem Preview [NetMode: Standalone] (64-bit/Windows)

A Pillage

DynamicCombatSystem Preview [NetMode: Standalone] (64-bit/Windows)

» Pillage

Some notes about this:

The Input Helpers in DCS are incredibly convoluted, and all the Input events are pulled directly
from the Project settings and displayed as text. As such, since | didn’t replace any of that
functionality, it will always display the icon for “Face Button Bottom” regardless of the actual
Input key needed.

So don'’t take this as the tutorial on how to ACTUALLY integrate the asset into DCS fully. This is
just to show how easy it is to get the library working in an existing project. If there’s any interest,
| can write up an actual Integration Guide for DCS. Or really any other Asset.

Support Information

As always, if you have any questions, suggestions, rude comments, or issues, please don'’t

hesitate to email me at jmannmarketplace@gmail.com.

Document Versioning

1.0 9/28/2020

2.0 10/01/2020

2.1 8/03/2021

mailto:jmannmarketplace@gmail.com

	
	Dynamic Widget Switching
	Introduction
	
	Updates
	Update 1

	Integration
	DynaKey
	Utilizing the Library
	GetGamepadControls
	SetGamepadIcon [DEPRECATED]

	
	Adding Gamepad Styles
	Sample Integration
	Support Information
	Document Versioning

