

UNIT – 2

A program’s control flow is the order in which the program’s code executes.

The control flow of a Python program is regulated by conditional statements, loops, and function

calls.

Python has three types of control structures:

●​ Sequential - default mode

●​ Selection - used for decisions and branching

●​ Repetition - used for looping, i.e., repeating a piece of code multiple times.

1. Sequential

Sequential statements are a set of statements whose execution process happens in a sequence.

The problem with sequential statements is that if the logic has broken in any one of the lines, then

the complete source code execution will break.

This is a Sequential statement

 a=20

b=10

c=a-b

print("Subtraction is : ",c)

Example of sequential statement

2. Selection/Decision control statements

In Python, the selection statements are also known as Decision control statements or branching

statements.

Decision Making:

Decision making is anticipation of conditions occurring while execution of the

program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce True or False as

outcome. You need to determine which action to take and which statements to execute if

outcome is True or False otherwise.

Following is the general form of a typical decision making structure found in most of

the programming languages:

Python programming language assumes any non-zero and non-null values as True,

and if it is either zero or null, then it is assumed as False value.

Statement Description

if statements if statement consists of a boolean expression followed by one or more

statements.

if...else statements if statement can be followed by an optional else statement, which

executes when the boolean expression is FALSE.

nested if statements You can use one if or else if statement inside another if or else if

statement(s).

The selection statement allows a program to test several conditions and execute instructions based

on which condition is true.

Some decision control statements are:

●​ if

●​ if-else

●​ nested if

●​ if-elif-else

The if Statement
It is similar to that of other languages. The if statement contains a logical expression

using which data is compared and a decision is made based on the result of the comparison.

if – It help us to run a particular code, but only when a certain condition is met or satisfied.

A if only has one condition to check.

Syntax:

First, the condition is tested. If the condition is True, then the statements given after

colon (:) are executed. We can write one or more statements after colon (:).

Example:

Output:

B is big

B value is 15

The if ... else statement
An else statement can be combined with an if statement. An else statement contains

the block of code that executes if the conditional expression in the if statement resolves to 0

or a FALSE value.

The else statement is an optional statement and there could be at most only one else

statement following if.

if-else – The if-else statement evaluates the condition and will execute the body of if if the test

condition is True, but if the condition is False, then the body of else is executed.

Syntax:

Example:

Output:

A is big

A value is 48

END

Nested if: Nested if statements are an if statement inside another if statement.

Depiction of nested if statement

In the following code example, we can see first if condition checks a is greater than b. If yes, then

we've another if condition that checks a is also greater than c. If yes, then if body will be

executed.

a = 20

b = 10

c = 15

if a > b:

 if a > c:

 print("a value is big")

 else:

 print("c value is big")

elif b > c:

 print("b value is big")

else:

 print("c is big")

The elif Statement
The elif statement allows you to check multiple expressions for True and execute a

block of code as soon as one of the conditions evaluates to True.

if-elif-else: The if-elif-else statement is used to conditionally execute a statement or a block

of statements.

Similar to the else, the elif statement is optional. However, unlike else, for which

there can be at most one statement, there can be an arbitrary number of elif statements

following an if.

Syntax:

Example:

Output:

c is big

 3. Repetition

A repetition statement is used to repeat a group(block) of programming instructions.

In Python, we generally have two loops/repetitive statements:

●​ for loop

●​ while loop

In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you need to

execute a block of code several number of times.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times. The following diagram illustrates a loop statement:

Python programming language provides following types of loops to handle looping

requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given condition is

TRUE. It tests the condition before executing the loop body.

for loop Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

nested loops You can use one or more loop inside any another while, for loop.

The while Loop
A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is True.

Syntax

The syntax of a while loop in Python programming language is:

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true. When the condition becomes false, program control

passes to the line immediately following the loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

Example-1:​ Example-2:

​

Output-1:​ Output-2:

Q) Write a program to display factorial of a given number.

Program:

Output:

Enter the number: 5

Factorial is 120

The for loop:
The for loop is useful to iterate over the elements of a sequence. It means, the for loop

can be used to execute a group of statements repeatedly depending upon the number of

elements in the sequence. The for loop can work with sequence like string, list, tuple, range

etc.

The syntax of the for loop is given below:

The first element of the sequence is assigned to the variable written after „for‟ and

then the statements are executed. Next, the second element of the sequence is assigned to the

variable and then the statements are executed second time. In this way, for each element of

the sequence, the statements are executed once. So, the for loop is executed as many times as

there are number of elements in the sequence.

Example-1:​ Example-2:

​

Output-1:​ Output-2:

Example-3:​ Example-4:

Output-3:​ Output-4:

​

Q) Write a program to display the factorial of given number.

Program:

Output:

Enter the number: 5

Factorial is 120

Nested Loop:

It is possible to write one loop inside another loop. For example, we can write a for

loop inside a while loop or a for loop inside another for loop. Such loops are called “nested

loops”.

Example-1:

Example-2:

Example-3:

Example-4:

Example-5:

Example-6:

​

Example-7:

​

Example-8:

​

Example-9:

Example-10:

Example-11:

1)​ Write a program for print given number is prime number or not using for

loop. Program:

Output:

2)​Write a program print Fibonacci series and sum the even numbers. Fibonacci series

is 1,2,3,5,8,13,21,34,55

Output:

Enter n value 10

1 2 3 5 8 13 21 34 55 89

The sum of even fibonacci numbers is 44

3)​Write a program to print n prime numbers and display the sum of prime numbers.

Program:

Output:

Enter the range: 21

1 2 3 5 7 11 13 17 19

Sum of prime numbers is 78

4)​ Using a for loop, write a program that prints out the decimal equivalents of

1/2, 1/3, 1/4, . . . ,1/10

Program:

for i in range(1,11):

print "Decimal Equivalent of 1/",i,"is",1/float(i)

Output:

Decimal Equivalent of 1/ 1 is 1.0

Decimal Equivalent of 1/ 2 is 0.5

Decimal Equivalent of 1/ 3 is 0.333333333333

Decimal Equivalent of 1/ 4 is 0.25

Decimal Equivalent of 1/ 5 is 0.2

Decimal Equivalent of 1/ 6 is

0.166666666667 Decimal Equivalent of 1/ 7

is 0.142857142857 Decimal Equivalent of 1/

8 is 0.125

Decimal Equivalent of 1/ 9 is 0.111111111111

Decimal Equivalent of 1/ 10 is 0.1

5)​ Write a program that takes input from the user until the user enters -1. After

display the sum of numbers.

Program:

Output:

Enter the number: 1

Enter the number: 5

Enter the number: 6

Enter the number: 7

Enter the number: 8

Enter the number: 1

Enter the number: 5

Enter the number: -1

The sum is 33

6)​Write a program to display the following sequence.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Program:

7)​ Write a program to display the

following sequence. A

A B

A B C

A B C D

A B C D

E

Program:

8)​ Write a program to display the

following sequence. A

B C

D E

F

G H I J

K L M N O

Program:

9)​ Write a program that takes input string user and display that string if string

contains at least one Uppercase character, one Lowercase character and one digit.

Program:

Output-1:

Enter the password:"Mothi556"

******Mothi556******

Output-2:

Enter the password:"mothilal"

Invalid Password

10)​ Write a program to print sum of

digits. Program:

Output:

Enter the number: 123456789

sum is 45

11)​ Write a program to print given number is Armstrong or

not. Program:

Output:

Enter the number: 153

ARMSTRONG

12)​ Write a program to take input string from the user and print that string after

removing ovals.

Program:

Output:

Enter the string:"Welcome to you"

Wlcm t y

Arrays:
An array is an object that stores a group of elements of same datatype.

�​ Arrays can store only one type of data. It means, we can store only integer type elements

or only float type elements into an array. But we cannot store one integer, one float and

one character type element into the same array.

�​ Arrays can increase or decrease their size dynamically. It means, we need not declare the

size of the array. When the elements are added, it will increase its size and when the

elements are removed, it will automatically decrease its size in memory.

Advantages:

�​ Arrays are similar to lists. The main difference is that arrays can store only one type of

elements; whereas, lists can store different types of elements. When dealing with a huge

number of elements, arrays use less memory than lists and they offer faster execution than

lists.

�​ The size of the array is not fixed in python. Hence, we need not specify how many

elements we are going to store into an array in the beginning.

�​ Arrays can grow or shrink in memory dynamically (during runtime).

�​ Arrays are useful to handle a collection of elements like a group of numbers or characters.

�​ Methods that are useful to process the elements of any array are available in „array‟

module.

Creating an array:

Syntax:

arrayname = array(type code, [elements])

The type code „i‟ represents integer type array where we can store integer numbers. If

the type code is „f‟ then it represents float type array where we can store numbers with

decimal point.

Type code Description Minimum size in bytes

„b‟ Signed integer 1

„B

‟

Unsigned integer 1

„i‟ Signed integer 2

„I‟ Unsigned integer 2

„l‟ Signed integer 4

„L

‟

Unsigned integer 4

„f‟ Floating point 4

„d‟ Double precision floating point 8

„u‟ Unicode character 2

Example:

The type code character should be written in single quotes. After that the elements

should be written in inside the square braces [] as

a = array („i‟, [4,8,-7,1,2,5,9])

Importing the Array Module:

There are two ways to import the array module into our program.

The first way is to import the entire array module using import statement as,

import array
when we import the array module, we are able to get the „array‟ class of that module that

helps us to create an array.

a = array.array(‘i’, [4,8,-7,1,2,5,9])
Here the first „array‟ represents the module name and the next „array‟ represents the class

name for which the object is created. We should understand that we are creating our array as

an object of array class.

The next way of importing the array module is to write:

from array import *
Observe the „*‟ symbol that represents „all‟. The meaning of this statement is this: import all

(classes, objects, variables, etc) from the array module into our program. That means

significantly importing the „array‟ class of „array‟ module. So, there is no need to mention

the module name before our array name while creating it. We can create array as:

a = array(‘i’, [4,8,-7,1,2,5,9])
Example:

from array import *

arr = array(„i‟, [4,8,-7,1,2,5,9])

for i in arr:

print i,

Output:

4 8 -7 1 2 5 9

Indexing and slicing of arrays:

An index represents the position number of an element in an array. For example, when

we creating following integer type array:

a = array(‘i’, [10,20,30,40,50])
Python interpreter allocates 5 blocks of memory, each of 2 bytes size and stores the

elements 10, 20, 30, 40 and 50 in these blocks.

10 20 30 40 50

a[0]​ a[1]​ a[2]​ a[3]​ a[4]

Example:

from array import *

a=array('i', [10,20,30,40,50,60,70])

print "length is",len(a)

print " 1st position character", a[1]

print "Characters from 2 to 4", a[2:5]

print "Characters from 2 to end", a[2:]

print "Characters from start to 4", a[:5]

print "Characters from start to end", a[:]

a[3]=45

a[4]=55

print "Characters from start to end after modifications ",a[:]

Output:

length is 7

1st position character 20

Characters from 2 to 4 array('i', [30, 40, 50])

Characters from 2 to end array('i', [30, 40, 50, 60, 70])

Characters from start to 4 array('i', [10, 20, 30, 40, 50])

Characters from start to end array('i', [10, 20, 30, 40, 50, 60, 70])

Characters from start to end after modifications array('i', [10, 20, 30, 45, 55, 60, 70])

Array Methods:

Method Description
a.append(x) Adds an element x at the end of the existing array a.

a.count(x) Returns the number of occurrences of x in the array a.

a.extend(x) Appends x at the end of the array a. „x‟ can be another array or

iterable object.

a.fromfile(f,n) Reads n items from from the file object f and appends at the end of

the array a.

a.fromlist(l) Appends items from the l to the end of the array. l can be any list or

iterable object.

a.fromstring(s) Appends items from string s to end of the array a.

a.index(x) Returns the position number of the first occurrence of x in the array.

Raises „ValueError‟ if not found.

a.pop(x) Removes the item x from the array a and returns it.

a.pop() Removes last item from the array a

a.remove(x) Removes the first occurrence of x in the array. Raises „ValueError‟

if not found.

a.reverse() Reverses the order of elements in the array a.

a.tofile(f) Writes all elements to the file f.

a.tolist() Converts array „a‟ into a list.

a.tostring() Converts the array into a string.

1)​Write a program to perform stack operations using array.

Program:

Output:

1.​PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 15

Inserted

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 18

Inserted

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 3

The Elements in Stack is 15 18

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 2

Deleted element is 18

2)​ Write a program to perform queue operations using

array. Program:

Output:

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 12

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 13

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 3

The Elements in Queue is 12 13 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 2

Deleted element is 12

Python break and continue

Python break Statement

The break statement is used to terminate the loop immediately when it is encountered.

The syntax of the break statement is:

break

Working of Python break Statement

Working of the break statement

The working of break statement in for loop and while loop is shown above.

Python break Statement with for Loop

We can use the break statement with the for loop to terminate the loop when a certain condition is

met. For example,

for i in range(5):

 if i == 3:

 break

 print(i)

Run Code

Output

0

1

2

In the above example, we have used the for loop to print the value of i. Notice the use of the

break statement,

if i == 3:

 break

Here, when i is equal to 3, the break statement terminates the loop. Hence, the output doesn't

include values after 2.

Python break Statement with while Loop

We can also terminate the while loop using the break statement. For example,

program to find first 5 multiples of 6

i = 1

while i <= 10:

 print('6 * ',(i), '=',6 * i)

 if i >= 5:

 break

 i = i + 1

Run Code

Output

6 * 1 = 6

6 * 2 = 12

6 * 3 = 18

6 * 4 = 24

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/while-loop

6 * 5 = 30

In the above example, we have used the while loop to find the first 5 multiples of 6. Here notice

the line,

if i >= 5:

 break

This means when i is greater than or equal to 5, the while loop is terminated.

Python continue Statement

The continue statement is used to skip the current iteration of the loop and the control flow of

the program goes to the next iteration.

The syntax of the continue statement is:

Continue

Working of Python continue Statement

How continue statement works in python

The working of the continue statement in for and while loop is shown above.

Python continue Statement with for Loop

We can use the continue statement with the for loop to skip the current iteration of the loop. Then

the control of the program jumps to the next iteration. For example,

for i in range(5):

 if i == 3:

 continue

 print(i)

Run Code

Output

0

1

2

4

In the above example, we have used the for loop to print the value of i. Notice the use of

the continue statement,

if i == 3:

 continue

Here, when i is equal to 3, the continue statement is executed. Hence, the value 3 is not printed to

the output.

Python continue Statement with while Loop

In Python, we can also skip the current iteration of the while loop using the continue statement.

For example,

program to print odd numbers from 1 to 10

num = 0

while num < 10:

 num += 1

 if (num % 2) == 0:

 continue

 print(num)

Run Code

Output

1

3

5

7

9

In the above example, we have used the while loop to print the odd numbers between 1 to 10.

Notice the line,

if (num % 2) == 0:

 continue

Here, when the number is even, the continue statement skips the current iteration and starts the

next iteration.

Try and Except in Python

The try except statement can handle exceptions. Exceptions may happen when you run a program.

Exceptions are errors that happen during execution of the program. Python won’t tell you about

errors like syntax errors (grammar faults), instead it will abruptly stop.

An abrupt exit is bad for both the end user and developer.

Instead of an emergency halt, you can use a try except statement to properly deal with the

problem. An emergency halt will happen if you do not properly handle exceptions.

Related course: Complete Python Programming Course & Exercises

What are exceptions in Python?

Python has built-in exceptions which can output an error. If an error occurs while running the

program, it’s called an exception.

https://gum.co/dcsp

If an exception occurs, the type of exception is shown. Exceptions needs to be dealt with or the

program will crash. To handle exceptions, the try-catch block is used.

Some exceptions you may have seen before

are FileNotFoundError, ZeroDivisionError or ImportError but there are many more.

All exceptions in Python inherit from the class BaseException. If you open the Python interactive

shell and type the following statement it will list all built-in exceptions:

 >>> dir(builtins)

The idea of the try-except clause is to handle exceptions (errors at runtime). The syntax of the

try-except block is:

try:​

 <do something>​

except Exception:​

 <handle the error>

The idea of the try-except block is this:

●​ try: the code with the exception(s) to catch. If an exception is raised, it jumps straight into

the except block.

●​ except: this code is only executed if an exception occured in the try block. The except

block is required with a try block, even if it contains only the pass statement.

It may be combined with the else and finally keywords.

●​ else: Code in the else block is only executed if no exceptions were raised in the try block.

●​ finally: The code in the finally block is always executed, regardless of if a an exception

was raised or not.

Catching Exceptions in Python

The try-except block can handle exceptions. This prevents abrupt exits of the program on error. In

the example below we purposely raise an exception.

try: ​

 1 / 0​

except ZeroDivisionError: ​

 print('Divided by zero')​

​

print('Should reach here')

After the except block, the program continues. Without a try-except block, the last line wouldn’t

be reached as the program would crash.

 $ python3 example.py​

​

Divided by zero​

Should reach here

In the above example we catch the specific exception ZeroDivisionError. You can handle any

exception like this:

try: ​

 open("fantasy.txt")​

except: ​

 print('Something went wrong')​

​

print('Should reach here')

You can write different logic for each type of exception that happens:

try: ​

 # your code here​

except FileNotFoundError: ​

 # handle exception ​

except IsADirectoryError:​

 # handle exception​

except:​

 # all other types of exceptions​

​

print('Should reach here')

Related course: Complete Python Programming Course & Exercises

try-except

Lets take do a real world example of the try-except block.

The program asks for numeric user input. Instead the user types characters in the input box. The

program normally would crash. But with a try-except block it can be handled properly.

The try except statement prevents the program from crashing and properly deals with it.

https://gum.co/dcsp

try:​

 x = input("Enter number: ")​

 x = x + 1​

 print(x)​

except:​

 print("Invalid input")

Entering invalid input, makes the program continue normally:

The try except statement can be extended with the finally keyword, this will be executed if no

exception is thrown:

finally:​

 print("Valid input.")

The program continues execution if no exception has been thrown.

There are different kinds of exceptions: ZeroDivisionError, NameError, TypeError and so on.

Sometimes modules define their own exceptions.

The try-except block works for function calls too:

def fail():​

 1 / 0​

​

try:​

 fail()​

except:​

 print('Exception occured')​

​

print('Program continues')

This outputs:

 $ python3 example.py​

​

Exception occured​

Program continues

If you are a beginner, then I highly recommend this book.

try finally

A try-except block can have the finally clause (optionally). The finally clause is always executed.​

So the general idea is:

try:​

 <do something>​

except Exception:​

 <handle the error>​

finally:​

 <cleanup>

For instance: if you open a file you’ll want to close it, you can do so in the finally clause.

try: ​

 f = open("test.txt")​

except: ​

 print('Could not open file')​

finally:​

 f.close()​

​

print('Program continue')

try else

The else clause is executed if and only if no exception is raised. This is different from the finally

clause that’s always executed.

https://gum.co/dcsp

try:​

 x = 1​

except:​

 print('Failed to set x')​

else:​

 print('No exception occured')​

finally:​

 print('We always do this')

Output:

 No exception occured​

 We always do this

You can catch many types of exceptions this way, where the else clause is executed only if no

exception happens.

try:​

 lunch()​

except SyntaxError:​

 print('Fix your syntax')​

except TypeError:​

 print('Oh no! A TypeError has occured')​

except ValueError:​

 print('A ValueError occured!')​

except ZeroDivisionError:​

 print('Did by zero?')​

else:​

 print('No exception')​

finally:​

 print('Ok then')

Raise Exception

Exceptions are raised when an error occurs. But in Python you can also force an exception to

occur with the keyword raise.

Any type of exception can be raised:

>>> raise MemoryError("Out of memory")​

Traceback (most recent call last):​

 File "<stdin>", line 1, in <module>​

MemoryError: Out of memory

>>> raise ValueError("Wrong value")​

Traceback (most recent call last):​

 File "<stdin>", line 1, in <module>​

ValueError: Wrong value​

>>>

Related course: Complete Python Programming Course & Exercises

Built-in exceptions

A list of Python's Built-in Exceptions is shown below. This list shows the Exception and why it is

thrown (raised).​

Exception Cause of Error

AssertionError if assert statement fails.

AttributeError if attribute assignment or reference fails.

EOFError if the input() functions hits end-of-file condition.

FloatingPointError if a floating point operation fails.

GeneratorExit Raise if a generator's close() method is called.

ImportError if the imported module is not found.

IndexError if index of a sequence is out of range.

KeyError if a key is not found in a dictionary.

https://gum.co/dcsp

KeyboardInterrupt if the user hits interrupt key (Ctrl+c or delete).

MemoryError if an operation runs out of memory.

NameError if a variable is not found in local or global scope.

NotImplementedError by abstract methods.

OSError if system operation causes system related error.

OverflowError if result of an arithmetic operation is too large to be represented.

ReferenceError
if a weak reference proxy is used to access a garbage collected

referent.

RuntimeError if an error does not fall under any other category.

StopIteration
by next() function to indicate that there is no further item to be

returned by iterator.

SyntaxError by parser if syntax error is encountered.

IndentationError if there is incorrect indentation.

TabError if indentation consists of inconsistent tabs and spaces.

SystemError if interpreter detects internal error.

SystemExit by sys.exit() function.

TypeError if a function or operation is applied to an object of incorrect type.

UnboundLocalError
if a reference is made to a local variable in a function or method,

but no value has been bound to that variable.

UnicodeError if a Unicode-related encoding or decoding error occurs.

UnicodeEncodeError if a Unicode-related error occurs during encoding.

UnicodeDecodeError if a Unicode-related error occurs during decoding.

UnicodeTranslateError if a Unicode-related error occurs during translating.

ValueError if a function gets argument of correct type but improper value.

ZeroDivisionError if second operand of division or modulo operation is zero.

User-defined Exceptions

Python has many standard types of exceptions, but they may not always serve your purpose.​

Your program can have your own type of exceptions.

To create a user-defined exception, you have to create a class that inherits from Exception.

class LunchError(Exception):​

 pass​

​

raise LunchError("Programmer went to lunch")

You made a user-defined exception named LunchError in the above code. You can raise this new

exception if an error occurs.

Outputs your custom error:

 $ python3 example.py​

Traceback (most recent call last):​

 File “example.py”, line 5, in ​

 raise LunchError(“Programmer went to lunch”)​

main.LunchError: Programmer went to lunch

Your program can have many user-defined exceptions. The program below throws exceptions

based on a new projects money:

class NoMoneyException(Exception):​

 pass​

​

class OutOfBudget(Exception):​

 pass​

​

balance = int(input("Enter a balance: "))​

if balance < 1000:​

 raise NoMoneyException​

elif balance > 10000:​

 raise OutOfBudget

Python String

A String is a data structure in Python that represents a sequence of characters. It is an immutable

data type, meaning that once you have created a string, you cannot change it. Strings are used

widely in many different applications, such as storing and manipulating text data, representing

names, addresses, and other types of data that can be represented as text.

What is a String in Python?

Python does not have a character data type, a single character is simply a string with a length of 1.

Example:

"Geeksforgeeks" or 'Geeksforgeeks' or "a"

●​ Python3

print("A Computer Science portal for geeks")

print('A')

Output:

A Computer Science portal for geeks​

A

Creating a String in Python

Strings in Python can be created using single quotes or double quotes or even triple quotes. Let

us see how we can define a string in Python.

Example:

In this example, we will demonstrate different ways to create a Python String. We will create a

string using single quotes (‘ ‘), double quotes (” “), and triple double quotes (“”” “””). The triple

quotes can be used to declare multiline strings in Python.

https://www.geeksforgeeks.org/python-programming-language/

●​ Python3

Python Program for

Creation of String

Creating a String

with single Quotes

String1 = 'Welcome to the Geeks World'

print("String with the use of Single Quotes: ")

print(String1)

Creating a String

with double Quotes

String1 = "I'm a Geek"

print("\nString with the use of Double Quotes: ")

print(String1)

Creating a String

with triple Quotes

String1 = '''I'm a Geek and I live in a world of "Geeks"'''

print("\nString with the use of Triple Quotes: ")

print(String1)

Creating String with triple

Quotes allows multiple lines

String1 = '''Geeks

 For

 Life'''

print("\nCreating a multiline String: ")

print(String1)

Output:

String with the use of Single Quotes: ​

Welcome to the Geeks World​

String with the use of Double Quotes: ​

I'm a Geek​

String with the use of Triple Quotes: ​

I'm a Geek and I live in a world of "Geeks"​

Creating a multiline String: ​

Geeks​

 For​

 Life

Accessing characters in Python String

In Python, individual characters of a String can be accessed by using the method of Indexing.

Indexing allows negative address references to access characters from the back of the String, e.g.

-1 refers to the last character, -2 refers to the second last character, and so on.

While accessing an index out of the range will cause an IndexError. Only Integers are allowed to

be passed as an index, float or other types that will cause a TypeError.

Python String indexing

Example:

In this example, we will define a string in Python and access its characters using positive and

negative indexing. The 0th element will be the first character of the string whereas the -1th

element is the last character of the string.

●​ Python3

Python Program to Access

characters of String

String1 = "GeeksForGeeks"

print("Initial String: ")

print(String1)

Printing First character

print("\nFirst character of String is: ")

print(String1[0])

Printing Last character

print("\nLast character of String is: ")

print(String1[-1])

Output:

Initial String: ​

GeeksForGeeks​

First character of String is: ​

G​

Last cha racter of String is: ​

s

String Slicing

In Python, the String Slicing method is used to access a range of characters in the String. Slicing

in a String is done by using a Slicing operator, i.e., a colon (:). One thing to keep in mind while

using this method is that the string returned after slicing includes the character at the start index

but not the character at the last index.

Example:

In this example, we will use the string-slicing method to extract a substring of the original string.

The [3:12] indicates that the string slicing will start from the 3rd index of the string to the 12th

index, (12th character not including). We can also use negative indexing in string slicing.

●​ Python3

Python Program to

demonstrate String slicing

Creating a String

String1 = "GeeksForGeeks"

https://www.geeksforgeeks.org/string-slicing-in-python/

print("Initial String: ")

print(String1)

Printing 3rd to 12th character

print("\nSlicing characters from 3-12: ")

print(String1[3:12])

Printing characters between

3rd and 2nd last character

print("\nSlicing characters between " +

 "3rd and 2nd last character: ")

print(String1[3:-2])

Output:

Initial String: ​

GeeksForGeeks​

Slicing characters from 3-12: ​

ksForGeek​

Slicing characters between 3rd and 2nd last character: ​

ksForGee

Reversing a Python String

By accessing characters from a string, we can also reverse strings in Python. We can Reverse a

string by using String slicing method.

Example:

In this example, we will reverse a string by accessing the index. We did not specify the first two

parts of the slice indicating that we are considering the whole string, from the start index to the

last index.

●​ Python3

#Program to reverse a string

gfg = "geeksforgeeks"

print(gfg[::-1])

Output:

skeegrofskeeg

https://www.geeksforgeeks.org/reverse-string-python-5-different-ways/

Example:

We can also reverse a string by using built-in join and reversed functions, and passing the string as

the parameter to the reversed() function.

●​ Python3

Program to reverse a string

gfg = "geeksforgeeks"

Reverse the string using reversed and join function

gfg = "".join(reversed(gfg))

print(gfg)

Output:

skeegrofskeeg

Deleting/Updating from a String

In Python, the Updation or deletion of characters from a String is not allowed. This will cause an

error because item assignment or item deletion from a String is not supported. Although deletion

of the entire String is possible with the use of a built-in del keyword. This is because Strings are

immutable, hence elements of a String cannot be changed once assigned. Only new strings can be

reassigned to the same name.

Updating a character

A character of a string can be updated in Python by first converting the string into a Python

List and then updating the element in the list. As lists are mutable in nature, we can update the

character and then convert the list back into the String.

Another method is using the string slicing method. Slice the string before the character you want

to update, then add the new character and finally add the other part of the string again by string

slicing.

Example:

In this example, we are using both the list and the string slicing method to update a character. We

converted the String1 to a list, changes its value at a particular element, and then converted it back

to a string using the Python string join() method.

In the string-slicing method, we sliced the string up to the character we want to update,

concatenated the new character, and finally concatenate the remaining part of the string.

https://www.geeksforgeeks.org/python-string-join-method/
https://www.geeksforgeeks.org/python-reversed-function/
https://www.geeksforgeeks.org/python-lists/
https://www.geeksforgeeks.org/python-lists/
https://www.geeksforgeeks.org/python-string-join-method/

●​ Python3

Python Program to Update

character of a String

String1 = "Hello, I'm a Geek"

print("Initial String: ")

print(String1)

Updating a character of the String

As python strings are immutable, they don't support item updation directly

there are following two ways

#1

list1 = list(String1)

list1[2] = 'p'

String2 = ''.join(list1)

print("\nUpdating character at 2nd Index: ")

print(String2)

#2

String3 = String1[0:2] + 'p' + String1[3:]

print(String3)

Output:

Initial String: ​

Hello, I'm a Geek​

Updating character at 2nd Index: ​

Heplo, I'm a Geek​

Heplo, I'm a Geek

Updating Entire String

As Python strings are immutable in nature, we cannot update the existing string. We can only

assign a completely new value to the variable with the same name.

Example:

In this example, we first assign a value to ‘String1’ and then updated it by assigning a completely

different value to it. We simply changed its reference.

●​ Python3

Python Program to Update

entire String

String1 = "Hello, I'm a Geek"

print("Initial String: ")

print(String1)

Updating a String

String1 = "Welcome to the Geek World"

print("\nUpdated String: ")

print(String1)

Output:

Initial String: ​

Hello, I'm a Geek​

Updated String: ​

Welcome to the Geek World

Deleting a character

Python strings are immutable, that means we cannot delete a character from it. When we try to

delete thecharacter using the del keyword, it will generate an error.

●​ Python3

Python Program to delete

character of a String

String1 = "Hello, I'm a Geek"

print("Initial String: ")

print(String1)

print("Deleting character at 2nd Index: ")

del String1[2]

print(String1)

Output:

Initial String: ​

Hello, I'm a Geek​

Deleting character at 2nd Index: ​

Traceback (most recent call last):​

 File "e:\GFG\Python codes\Codes\demo.py", line 9, in <module>​

 del String1[2]​

TypeError: 'str' object doesn't support item deletion

But using slicing we can remove the character from the original string and store the result in a new

string.

Example:

In this example, we will first slice the string up to the character that we want to delete and then

concatenate the remaining string next from the deleted character.

●​ Python3

Python Program to Delete

characters from a String

String1 = "Hello, I'm a Geek"

print("Initial String: ")

print(String1)

Deleting a character

of the String

String2 = String1[0:2] + String1[3:]

print("\nDeleting character at 2nd Index: ")

print(String2)

Output:

Initial String: ​

Hello, I'm a Geek​

Deleting character at 2nd Index: ​

Helo, I'm a Geek

Deleting Entire String

Deletion of the entire string is possible with the use of del keyword. Further, if we try to print the

string, this will produce an error because the String is deleted and is unavailable to be printed.

●​ Python3

Python Program to Delete

entire String

String1 = "Hello, I'm a Geek"

print("Initial String: ")

print(String1)

Deleting a String

with the use of del

del String1

print("\nDeleting entire String: ")

print(String1)

Error:

Traceback (most recent call last): ​

File "/home/e4b8f2170f140da99d2fe57d9d8c6a94.py", line 12, in ​

print(String1) ​

NameError: name 'String1' is not defined

Escape Sequencing in Python

While printing Strings with single and double quotes in it causes SyntaxError because String

already contains Single and Double Quotes and hence cannot be printed with the use of either of

these. Hence, to print such a String either Triple Quotes are used or Escape sequences are used to

print Strings.

Escape sequences start with a backslash and can be interpreted differently. If single quotes are

used to represent a string, then all the single quotes present in the string must be escaped and the

same is done for Double Quotes.

Example:

●​ Python3

Python Program for

Escape Sequencing

of String

Initial String

String1 = '''I'm a "Geek"'''

print("Initial String with use of Triple Quotes: ")

print(String1)

Escaping Single Quote

String1 = 'I\'m a "Geek"'

print("\nEscaping Single Quote: ")

print(String1)

Escaping Double Quotes

String1 = "I'm a \"Geek\""

print("\nEscaping Double Quotes: ")

print(String1)

 # Printing Paths with the

use of Escape Sequences

String1 = "C:\\Python\\Geeks\\"

print("\nEscaping Backslashes: ")

print(String1)

 # Printing Paths with the

use of Tab

String1 = "Hi\tGeeks"

print("\nTab: ")

print(String1)

 # Printing Paths with the

use of New Line

String1 = "Python\nGeeks"

print("\nNew Line: ")

print(String1)

Output:

Initial String with use of Triple Quotes: ​

I'm a "Geek"​

Escaping Single Quote: ​

I'm a "Geek"​

Escaping Double Quotes: ​

I'm a "Geek"​

Escaping Backslashes: ​

C:\Python\Geeks\​

Tab: ​

Hi Geeks​

New Line: ​

Python​

Geeks

Example:

To ignore the escape sequences in a String, r or R is used, this implies that the string is a raw

string and escape sequences inside it are to be ignored.

●​ Python3

Printing hello in octal

String1 = "\110\145\154\154\157"

print("\nPrinting in Octal with the use of Escape Sequences: ")

print(String1)

Using raw String to

ignore Escape Sequences

String1 = r"This is \110\145\154\154\157"

print("\nPrinting Raw String in Octal Format: ")

print(String1)

Printing Geeks in HEX

String1 = "This is \x47\x65\x65\x6b\x73 in \x48\x45\x58"

print("\nPrinting in HEX with the use of Escape Sequences: ")

print(String1)

Using raw String to

ignore Escape Sequences

String1 = r"This is \x47\x65\x65\x6b\x73 in \x48\x45\x58"

print("\nPrinting Raw String in HEX Format: ")

print(String1)

Output:

Printing in Octal with the use of Escape Sequences: ​

Hello​

Printing Raw String in Octal Format: ​

This is \110\145\154\154\157​

Printing in HEX with the use of Escape Sequences: ​

This is Geeks in HEX​

Printing Raw String in HEX Format: ​

This is \x47\x65\x65\x6b\x73 in \x48\x45\x58

Formatting of Strings

Strings in Python can be formatted with the use of format() method which is a very versatile and

powerful tool for formatting Strings. Format method in String contains curly braces {} as

placeholders which can hold arguments according to position or keyword to specify the order.

Example 1:

In this example, we will declare a string which contains the curly braces {} that acts as a

placeholders and provide them values to see how string declaration position matters.

●​ Python3

Python Program for

Formatting of Strings

Default order

String1 = "{} {} {}".format('Geeks', 'For', 'Life')

print("Print String in default order: ")

print(String1)

https://www.geeksforgeeks.org/python-string-format-method/

Positional Formatting

String1 = "{1} {0} {2}".format('Geeks', 'For', 'Life')

print("\nPrint String in Positional order: ")

print(String1)

Keyword Formatting

String1 = "{l} {f} {g}".format(g='Geeks', f='For', l='Life')

print("\nPrint String in order of Keywords: ")

print(String1)

Output:

Print String in default order: ​

Geeks For Life​

Print String in Positional order: ​

For Geeks Life​

Print String in order of Keywords: ​

Life For Geeks

Example 2:

Integers such as Binary, hexadecimal, etc., and floats can be rounded or displayed in the exponent

form with the use of format specifiers.

●​ Python3

Formatting of Integers

String1 = "{0:b}".format(16)

print("\nBinary representation of 16 is ")

print(String1)

Formatting of Floats

String1 = "{0:e}".format(165.6458)

print("\nExponent representation of 165.6458 is ")

print(String1)

Rounding off Integers

String1 = "{0:.2f}".format(1/6)

print("\none-sixth is : ")

print(String1)

Output:

Binary representation of 16 is ​

10000​

Exponent representation of 165.6458 is ​

1.656458e+02​

one-sixth is : ​

0.17

Example 3:

A string can be left, right, or center aligned with the use of format specifiers, separated by a

colon(:). The (<) indicates that the string should be aligned to the left, (>) indicates that the string

should be aligned to the right and (^) indicates that the string should be aligned to the center. We

can also specify the length in which it should be aligned. For example, (<10) means that the string

should be aligned to the left within a field of width of 10 characters.

●​ Python3

String alignment

String1 = "|{:<10}|{:^10}|{:>10}|".format('Geeks',

 'for',

 'Geeks')

print("\nLeft, center and right alignment with Formatting: ")

print(String1)

To demonstrate aligning of spaces

String1 = "\n{0:^16} was founded in {1:<4}!".format("GeeksforGeeks",

 2009)

print(String1)

Output:

Left, center and right alignment with Formatting: ​

|Geeks | for | Geeks|​

 GeeksforGeeks was founded in 2009 !

Example 4:

Old-style formatting was done without the use of the format method by using the % operator

●​ Python3

Python Program for

Old Style Formatting

of Integers

Integer1 = 12.3456789

print("Formatting in 3.2f format: ")

print('The value of Integer1 is %3.2f' % Integer1)

print("\nFormatting in 3.4f format: ")

print('The value of Integer1 is %3.4f' % Integer1)

Output:

Formatting in 3.2f format: ​

The value of Integer1 is 12.35​

Formatting in 3.4f format: ​

The value of Integer1 is 12.3457

Python String constants

Built-In Function Description

string.ascii_letters Concatenation of the ascii_lowercase and ascii_uppercase constants.

string.ascii_lowercase Concatenation of lowercase letters

string.ascii_uppercase Concatenation of uppercase letters

string.digits Digit in strings

string.hexdigits Hexadigit in strings

https://www.geeksforgeeks.org/python-string-ascii_letters/
https://www.geeksforgeeks.org/python-string-ascii_lowercase/
https://www.geeksforgeeks.org/python-string-ascii_uppercase/
https://www.geeksforgeeks.org/python-string-digits/
https://www.geeksforgeeks.org/python-string-hexdigits/

Built-In Function Description

string.letters concatenation of the strings lowercase and uppercase

string.lowercase A string must contain lowercase letters.

string.octdigits Octadigit in a string

string.punctuation ASCII characters having punctuation characters.

string.printable String of characters which are printable

String.endswith()
Returns True if a string ends with the given suffix otherwise returns

False

String.startswith()
Returns True if a string starts with the given prefix otherwise returns

False

String.isdigit()
Returns “True” if all characters in the string are digits, Otherwise, It

returns “False”.

String.isalpha()
Returns “True” if all characters in the string are alphabets, Otherwise, It

returns “False”.

string.isdecimal() Returns true if all characters in a string are decimal.

str.format()
one of the string formatting methods in Python3, which allows multiple

substitutions and value formatting.

String.index Returns the position of the first occurrence of substring in a string

string.uppercase A string must contain uppercase letters.

https://www.geeksforgeeks.org/string-endswith-python/
https://www.geeksforgeeks.org/python-string-startswith/
https://www.geeksforgeeks.org/python-string-isdigit-application/
https://www.geeksforgeeks.org/python-string-isalpha-method/
https://www.geeksforgeeks.org/python-string-isdecimal/
https://www.geeksforgeeks.org/python-format-function/
https://www.geeksforgeeks.org/python-string-index-applications/

Built-In Function Description

string.whitespace A string containing all characters that are considered whitespace.

string.swapcase()
Method converts all uppercase characters to lowercase and vice versa of

the given string, and returns it

replace()
returns a copy of the string where all occurrences of a substring is

replaced with another substring.

Deprecated string functions

Built-In Function Description

string.Isdecimal Returns true if all characters in a string are decimal

String.Isalnum Returns true if all the characters in a given string are alphanumeric.

string.Istitle Returns True if the string is a title cased string

String.partition splits the string at the first occurrence of the separator and returns a tuple.

String.Isidentifie

r
Check whether a string is a valid identifier or not.

String.len Returns the length of the string.

String.rindex
Returns the highest index of the substring inside the string if substring is

found.

String.Max Returns the highest alphabetical character in a string.

String.min Returns the minimum alphabetical character in a string.

https://www.geeksforgeeks.org/python-string-isspace-application/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/python-string-replace/
https://www.geeksforgeeks.org/python-string-isdecimal/
https://www.geeksforgeeks.org/python-string-isalnum/
https://www.geeksforgeeks.org/python-string-istitle/
https://www.geeksforgeeks.org/string-partition-python/
https://www.geeksforgeeks.org/python-string-isidentifier/
https://www.geeksforgeeks.org/python-string-isidentifier/
https://www.geeksforgeeks.org/python-string-length-len/
https://www.geeksforgeeks.org/string-rindex-python/
https://www.geeksforgeeks.org/python-string-max/
https://www.geeksforgeeks.org/python-string-min/

Built-In Function Description

String.splitlines Returns a list of lines in the string.

string.capitalize Return a word with its first character capitalized.

string.expandtabs Expand tabs in a string replacing them by one or more spaces

string.find Return the lowest indexing a sub string.

string.rfind find the highest index.

string.count
Return the number of (non-overlapping) occurrences of substring sub in

string

string.lower Return a copy of s, but with upper case, letters converted to lower case.

string.split
Return a list of the words of the string, If the optional second argument sep

is absent or None

string.rsplit() Return a list of the words of the string s, scanning s from the end.

rpartition() Method splits the given string into three parts

string.splitfields Return a list of the words of the string when only used with two arguments.

string.join Concatenate a list or tuple of words with intervening occurrences of sep.

string.strip()
It returns a copy of the string with both leading and trailing white spaces

removed

string.lstrip Return a copy of the string with leading white spaces removed.

https://www.geeksforgeeks.org/python-string-splitlines/
https://www.geeksforgeeks.org/string-capitalize-python/
https://www.geeksforgeeks.org/python-expandtabs-method/
https://www.geeksforgeeks.org/string-find-python/
https://www.geeksforgeeks.org/python-string-rfind/
https://www.geeksforgeeks.org/python-string-count/
https://www.geeksforgeeks.org/python-string-lower/
https://www.geeksforgeeks.org/python-string-split/
https://write.geeksforgeeks.org/improve/find-the-smallest-binary-digit-multiple-of-given-number-2/
https://www.geeksforgeeks.org/python-string-rpartition/
https://www.geeksforgeeks.org/join-function-python/
https://www.geeksforgeeks.org/python-string-strip/
https://www.geeksforgeeks.org/python-string-strip/

Built-In Function Description

string.rstrip Return a copy of the string with trailing white spaces removed.

string.swapcase Converts lower case letters to upper case and vice versa.

string.translate Translate the characters using table

string.upper lower case letters converted to upper case.

string.ljust left-justify in a field of given width.

string.rjust Right-justify in a field of given width.

string.center() Center-justify in a field of given width.

string-zfill
Pad a numeric string on the left with zero digits until the given width is

reached.

string.replace
Return a copy of string s with all occurrences of substring old replaced by

new.

string.casefold() Returns the string in lowercase which can be used for caseless comparisons.

string.encode
Encodes the string into any encoding supported by Python. The default

encoding is utf-8.

string.maketrans Returns a translation table usable for str.translate()

Advantages of String in Python:

●​ Strings are used at a larger scale i.e. for a wide areas of operations such as storing and

manipulating text data, representing names, addresses, and other types of data that can be

represented as text.

https://www.geeksforgeeks.org/python-string-rstrip/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/python-string-translate/
https://www.geeksforgeeks.org/python-string-upper/
https://www.geeksforgeeks.org/string-rjust-ljust-python/
https://www.geeksforgeeks.org/string-rjust-ljust-python/
https://www.geeksforgeeks.org/string-center-python/
https://www.geeksforgeeks.org/python-string-zfill/
https://www.geeksforgeeks.org/replace-in-python-to-replace-a-substring/
https://www.geeksforgeeks.org/casefold-string-python/
https://www.geeksforgeeks.org/python-strings-encode-method/
https://www.geeksforgeeks.org/python-maketrans-translate-functions/

●​ Python has a rich set of string methods that allow you to manipulate and work with strings in a

variety of ways. These methods make it easy to perform common tasks such as converting

strings to uppercase or lowercase, replacing substrings, and splitting strings into lists.

●​ Strings are immutable, meaning that once you have created a string, you cannot change it. This

can be beneficial in certain situations because it means that you can be confident that the value

of a string will not change unexpectedly.

●​ Python has built-in support for strings, which means that you do not need to import any

additional libraries or modules to work with strings. This makes it easy to get started with

strings and reduces the complexity of your code.

●​ Python has a concise syntax for creating and manipulating strings, which makes it easy to

write and read code that works with strings.

	1. Sequential
	2. Selection/Decision control statements
	Decision Making:
	The if Statement
	Syntax:
	Example:
	Example:
	Syntax:
	Output:
	Syntax
	Example-1:​Example-2:
	Output-1:​Output-2:
	Output:
	Example-1:​Example-2:
	Output-1:​Output-2:
	Output-3:​Output-4:
	Q) Write a program to display the factorial of given number. Program:
	
	Nested Loop:
	Example-1:
	Example-3:
	Example-5:
	Example-7:
	Example-8:
	Example-9:
	Example-11:
	Output:
	is 1,2,3,5,8,13,21,34,55
	3)​Write a program to print n prime numbers and display the sum of prime numbers. Program:
	4)​Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . . . ,1/10
	Output:
	5)​Write a program that takes input from the user until the user enters -1. After display the sum of numbers.
	Output:
	6)​Write a program to display the following sequence.
	Program:
	A B
	A B C D A B C D E
	8)​Write a program to display the following sequence. A
	G H I J
	Program:
	Program:
	Output-2:
	10)​Write a program to print sum of digits. Program:
	11)​Write a program to print given number is Armstrong or not. Program:
	12)​Write a program to take input string from the user and print that string after removing ovals.
	Output:
	Advantages:
	Creating an array:
	Example:
	Importing the Array Module:
	import array
	a = array.array(‘i’, [4,8,-7,1,2,5,9])
	from array import *
	a = array(‘i’, [4,8,-7,1,2,5,9])
	Output:
	Indexing and slicing of arrays:
	a = array(‘i’, [10,20,30,40,50])
	Example:
	Output:
	Array Methods:
	Output:
	2)​Write a program to perform queue operations using array. Program:

	Python break and continue
	Python break Statement
	Working of Python break Statement
	Python break Statement with for Loop
	for i in range(5):
	 if i == 3:
	 break
	 print(i)
	Run Code
	Output
	0
	1
	2
	In the above example, we have used the for loop to print the value of i. Notice the use of the break statement,
	if i == 3:
	 break
	Here, when i is equal to 3, the break statement terminates the loop. Hence, the output doesn't include values after 2.
	Python break Statement with while Loop
	We can also terminate the while loop using the break statement. For example,
	# program to find first 5 multiples of 6
	i = 1
	while i <= 10:
	 print('6 * ',(i), '=',6 * i)
	 if i >= 5:
	 break
	 i = i + 1
	Run Code
	Output
	6 * 1 = 6
	6 * 2 = 12
	6 * 3 = 18
	6 * 4 = 24
	6 * 5 = 30
	In the above example, we have used the while loop to find the first 5 multiples of 6. Here notice the line,
	if i >= 5:
	 break
	This means when i is greater than or equal to 5, the while loop is terminated.
	Python continue Statement
	The continue statement is used to skip the current iteration of the loop and the control flow of the program goes to the next iteration.
	The syntax of the continue statement is:
	Continue
	Working of Python continue Statement
	Python continue Statement with for Loop
	Python continue Statement with while Loop

	Try and Except in Python
	What are exceptions in Python?
	Catching Exceptions in Python
	try-except
	try finally
	try else
	Raise Exception
	Built-in exceptions

	User-defined Exceptions
	Python String
	What is a String in Python?
	Creating a String in Python
	Accessing characters in Python String
	String Slicing
	Reversing a Python String
	Deleting/Updating from a String
	Updating a character
	Updating Entire String
	Deleting a character
	Deleting Entire String

	Escape Sequencing in Python
	Formatting of Strings
	
	Python String constants
	Deprecated string functions
	Advantages of String in Python:

