PYTHON PROGRAMMING UNIT - 2

UNIT -2
A program’s control flow is the order in which the program’s code executes.
The control flow of a Python program is regulated by conditional statements, loops, and function
calls.
Python has three types of control structures:
e Sequential - default mode
e Selection - used for decisions and branching
e Repetition - used for looping, i.e., repeating a piece of code multiple times.
1. Sequential
Sequential statements are a set of statements whose execution process happens in a sequence.
The problem with sequential statements is that if the logic has broken in any one of the lines, then
the complete source code execution will break.
This is a Sequential statement
a=20
b=10
c=a-b
print("Subtraction is : ",c)
Example of sequential statement
2. Selection/Decision control statements
In Python, the selection statements are also known as Decision control statements or branching
Statements.
Decision Making:

Decision making is anticipation of conditions occurring while execution of the
program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce True or False as
outcome. You need to determine which action to take and which statements to execute if
outcome is True or False otherwise.

Following is the general form of a typical decision making structure found in most of

the programming languages:

PYTHON PROGRAMMING UNIT - 2

If condition
is false

If condition
is true

conditional
code

Python programming language assumes any non-zero and non-null values as True,

and if it is either zero or null, then it is assumed as False value.

Statement Description

if statements if statement consists of a boolean expression followed by one or more

statements.

if...else statements if statement can be followed by an optional else statement, which

executes when the boolean expression is FALSE.

nested if statements | You can use one if or else if statement inside another if or else if

statement(s).

The selection statement allows a program to test several conditions and execute instructions based

on which condition is true.

Some decision control statements are:

if
if-else
nested if

if-elif-else

The if Statement

It is similar to that of other languages. The if statement contains a logical expression

using which data is compared and a decision is made based on the result of the comparison.

if — It help us to run a particular code, but only when a certain condition is met or satisfied.

A if only has one condition to check.

PYTHON PROGRAMMING UNIT - 2

If condition
is true

If condition

is false conditional code

=
é
Syntax:
if condition:
{atements

First, the condition is tested. If the condition is True, then the statements given after

colon (:) are executed. We can write one or more statements after colon (:).

Example:

=110

b=15

ifa<h:

print “B is big™ print
“B value 15".b

Output:
B is big

B value is 15

PYTHON PROGRAMMING UNIT - 2

The if ... else statement
An else statement can be combined with an if statement. An else statement contains
the block of code that executes if the conditional expression in the if statement resolves to 0
or a FALSE value.
The else statement is an optional statement and there could be at most only one else
statement following if.
if-else — The if-else statement evaluates the condition and will execute the body of if if the test

condition is True, but if the condition is False, then the body of else is executed.

Syntax:
if condition:
statement(s)
else:
statement(s)
If condition
is true
condition
If condition
is false
else code
Example:
=45
b=34
ifa<h:
print “B is big"” print
“B value 157, b
else:
print *A is big” print
“Avaluei1s”, a
rint “END™

PYTHON PROGRAMMING UNIT - 2

Output:
A is big
A value is 48
END
Nested if: Nested if statements are an if statement inside another if statement.
Depiction of nested if statement
In the following code example, we can see first if condition checks a is greater than b. If yes, then
we've another if condition that checks a is also greater than c. If yes, then if body will be
executed.
a=20
b=10
c=15
ifa>b:
ifa>c:
print("a value is big")
else:
print("c value is big")
elifb>c:
print("b value is big")
else:

print("c is big")

PYTHON PROGRAMMING UNIT - 2

The elif Statement

The elif statement allows you to check multiple expressions for True and execute a

block of code as soon as one of the conditions evaluates to True.

if-elif-else: The if-elif-else statement is used to conditionally execute a statement or a block
of statements.

Similar to the else, the elif statement is optional. However, unlike else, for which

there can be at most one statement, there can be an arbitrary number of elif statements

following an ¥ - dition1:

Syntax: statement(s)
elif condition2;

statement(s)
else:
statement(s)

Example:
a=21()
b=10
c=30
ifa==banda>==c:
print "a is big"
elif b >= a and b >= ¢:
print "b 1s big"
else:
print "¢ is hig"
Output:

c is big
3. Repetition
A repetition statement is used to repeat a group(block) of programming instructions.

In Python, we generally have two loops/repetitive statements:

e for loop

PYTHON PROGRAMMING UNIT - 2

e while loop
In general, statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on. There may be a situation when you need to
execute a block of code several number of times.
Programming languages provide various control structures that allow for more
complicated execution paths.
A loop statement allows us to execute a statement or group of statements multiple

times. The following diagram illustrates a loop statement:
)

A

Conditional Code

If condition
is true

If condition
is false

Python programming language provides following types of loops to handle looping

requirements.

Loop Type | Description

while loop | Repeats a statement or group of statements while a given condition is

TRUE. It tests the condition before executing the loop body.

for loop Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

nested loops | You can use one or more loop inside any another while, for loop.

The while Loop

A while loop statement in Python programming language repeatedly executes a target
statement as long as a given condition is True.
Syntax

The syntax of a while loop in Python programming language is:

while expression:
statement(s)

PYTHON PROGRAMMING UNIT - 2

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop
iterates while the condition is true. When the condition becomes false, program control
passes to the line immediately following the loop.

In Python, all the statements indented by the same number of character spaces after a
programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

while expression :
statement(s

If condition
is true

conditional

code If condition
is false

Example-1: Example-2:

=1 i=1

while 1 < 4: while 1 < 4:

print i i+=1 print i i+=1

print “END” print “END™
Output-1: Output-2:

1 1

END D

2 5

END END

3

END

PYTHON PROGRAMMING UNIT - 2

Q) Write a program to display factorial of a given number.

Program:

n=input{"Enter the number:
") =1

while peeh:

et E "Eoninmial st £
pr—ractoras—F

Output:
Enter the number: 5

Factorial is 120

The for loop:

The for loop is useful to iterate over the elements of a sequence. It means, the for loop
can be used to execute a group of statements repeatedly depending upon the number of
elements in the sequence. The for loop can work with sequence like string, list, tuple, range
etc.

The syntax of the for loop is given below:

for var in

SCOUeTICS:
staterment (5]

The first element of the sequence is assigned to the variable written after ,,for* and
then the statements are executed. Next, the second element of the sequence is assigned to the
variable and then the statements are executed second time. In this way, for each element of
the sequence, the statements are executed once. So, the for loop is executed as many times as

there are number of elements in the sequence.

Example-1: Example-2:

for 1 range(1.5):
pri

nt i primt
prinI “ENDT CEND™

for 1 range(1,5):
print i

PYTHON PROGRAMMING UNIT - 2

I 1
END 2
2 3
END END
3
Output-1: Output-2:
Example-3: Example-4:
mame= "python" for x in range(10,0,-1):
for letter in name: print x,
PETTEN i lattae
Output-3: Output-4:
p
:..'
t
h
0 ID9BT6H5432

i | I

PYTHON PROGRAMMING UNIT - 2

Q) Write a program to display the factorial of given number.

Program:

n=input{"Enter the number: ")

=1

1E'—L|-'t"angc{ [.n+1):

Wl
'r_'|r1n]l: HF.‘H‘“\I‘IHI 1ﬁ“1'r

Output:
Enter the number: 5

Factorial is 120

Nested Loop:
It is possible to write one loop inside another loop. For example, we can write a for

loop inside a while loop or a for loop inside another for loop. Such loops are called “nested

loops™.
Example-1:
for 1 1n ransel | 60

for i i 123 45

ar) in
12345
range(1,6) 12345
L print i, 12345
print " 12345

Example-2:

* * k * *
for i in rangei 1.67: * * * * %
for j in * K* Kk Kk *
range(1,6) ok ok ok %
'Ij‘l._i.ﬂ'l L * * % * %
Example-3: print ™

or1in range(l 6)-

tor j in range(1.6): * ok * ox %
if i==1 or j==1 or i==5 or * *
j==5: print "*", * *
else: -+ *
. pont k k * k *

r\!"i‘f\!

PYTHON PROGRAMMING UNIT - 2

Example-4:

fior i]rll rnn el 1.67: + * * * *
for j in
range(1,6): i * % *
i—i:
['H"inT -l:ir'lll * * *
cli!‘i Im:_i I or i==5 or * * *
J==3: print "*",
clse: * * * % *
E‘ll'1l"‘|1‘
", print
Example-5:
for i in range(1.6):
for jin $ * * * *
range(1,6): il
range(10): * S *
i==j:
print "§", * $ *
elifi==1 or j==1 or i==5 or
j==5: print "*", * $ *
olse: * * k * §
DITTIL
"M print
Example-6: "
for i in rangei 1.6):
for j in range(1.4): * * K
if i==1 or j==1 or %
1==2; print "*",
else: *
print +
- * * *

Example-7:

for i in ranes 1.63:
for j in
rarge 145 il

I==2 and
==

*
*
*

print ",

clif i==4 and

*

i A: print

IE L1l
elif =1 or 1==3 or * * *
I = TI-TirII tha
clsc:
print *

::"". print * *

*

PYTHON PROGRAMMING UNIT - 2

PYTHON PROGRAMMING

UNIT -2

Example-8:

for i in ranee(1.6):

for j in range(1.4):
ifi=—
i==5; print "*",

else:

print

or j==1 or i==3 or

ST
—ET

Example-9:

Example-10:

for ¢ i
rangelinl:
print "7,

fior j in

ranged 1.0+17

for i in ange(l 6}

Cprmt e,

print

for) in

range(1.i+1):
print j,

print

Example-11:

a=1
for j in
rangel 1.+ 17z
primt a,

A8

o |
print

]l i N

* 4 A A A
*
*

HERRRR

3
5 6
8 9 10

1) Write a program for print given number is prime number or not using for

loop. Program:

n=input{"Enter the n
value") count=0
or i in range(2.n):
if n%ui==0:
count=count
+1 break

if count==10:
print "Prime
Number" else:

s g i T 4 TN i i LT]
PITL IS FTTS [NTUToeT

PYTHON PROGRAMMING

UNIT -2

Output:

Enter n value: 17

Prime Number

PYTHON PROGRAMMING

UNIT -2

2) Write a program print Fibonacci series and sum the even numbers. Fibonacci series

is 1,2,3,5,8,13,21,34,55

n=input("Enter n value ")
0=1
f1=2
sum=f1
print 0,1,
for i in range(1,n-1):
2=0+f1
print £2,
f0=f1
f1=12
if 2% 2==0:.
sum-+=f2

Output:
Enter n value 10
123581321345589

The sum of even fibonacci numbers is 44

3) Write a program to print n prime numbers and display the sum of prime numbers.

Program:

n=input("Enter the range: ")

sum={}
for aum in T'?Iﬂgd""f] = I
for i in

range(2.num): if
(mum %o 1) == 0;
break
else:

nrint
|

15", suUF num
Output:
Enter the range: 21
1235711131719

Sum of prime numbers is 78

4) Using a for loop, write a program that prints out the decimal equivalents of

1/2,1/3,1/4,...,1/10

PYTHON PROGRAMMING

UNIT -2

Program:

for i in range(1,11):

print "Decimal Equivalent of 1/",1,"1s",1/float(i)

Output:

)

Decimal Equivalent of 1/ 1 1s 1.0

Decimal Equivalent of 1/ 2 is 0.5

Decimal Equivalent of 1/ 3 is 0.333333333333
Decimal Equivalent of 1/ 4 is 0.25

Decimal Equivalent of 1/ 515 0.2

Decimal Equivalent of 1/ 6 is
0.166666666667 Decimal Equivalent of 1/ 7
is 0.142857142857 Decimal Equivalent of 1/
81s 0.125

Decimal Equivalent of 1/ 9 is 0.111111111111
Decimal Equivalent of 1/ 10 is 0.1

Write a program that takes input from the user until the user enters -1. After

display the sum of numbers.

Program:

sum=_0
‘hale True:
n=input{"Enter the

number; ") if n==-1.
br
cak

glep:

print e stim is™,sum

Output:

Enter the number: 1
Enter the number: 5
Enter the number: 6
Enter the number: 7
Enter the number: 8
Enter the number: 1

Enter the number: 5

1
—

Enter the number:

The sum is 33

PYTHON PROGRAMMING

UNIT -2

6) Write a program to display the following sequence.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Program:
ch="A"
for j in

ramge(1 275

print ch,
ch=chriordich)
=10

7) Write a program to display the
following sequence. A
AB
ABC
ABCD
ABCD
E

PYTHON PROGRAMMING UNIT - 2

Program:

fior i in
ange 1 67

- Ay

range(1.i+1):

print ch,

+1)

prnt
8) Write a program to display the
following sequence. A
BC
DE
F
GHIJ
KLMNO
Program:
ch="A"
for j in
range(1,417
print ch,
ch=chriord{ch]
1)
primt ""

9) Write a program that takes input string user and display that string if string
contains at least one Uppercase character, one Lowercase character and one digit.

Program:

PYTHON PROGRAMMING

UNIT -2

prevd=input{”Enter the
password:") u=False
I=Fal

sE

:
F
E
=

vl u=True
elif

pracd[i].islowen|
e =True
elif

e[isdiging
ifu=£l‘i‘ﬁ!'&h“‘d I==True and

d==True: print

pwid.center 20,"*"™)
else:

print "Invalid Password”
Output-1:
Enter the password:"Mothi556"
Output-2:
Enter the password:"mothilal"
Invalid Password
10) Write a program to print sum of

digits. Program:

n=input{"Enter the number: ")
sum=i)

Output:':r g
Enter the number: 123456789

‘sum is", sum

sum is 45

11) Write a program to print given number is Armstrong or

not. Program:

PYTHON PROGRAMMING UNIT - 2

n=input{"Enter the number: "}
SLIm
=0

t—#

T !

sum-+=r*

-

*r

n=n/110

if sum==t:
print
"TAREMETREONG™ else:
print "NOT ARMSTROMNG"

Output:
Enter the number: 153
ARMSTRONG
12) Write a program to take input string from the user and print that string after
removing ovals.

Program:

st=input("Enter the
string:") st2=""

.
fpeidn st

if 1 not in
"aciouAEIOU"M:

Output:
Enter the string:"Welcome to you"

Wlecmty

PYTHON PROGRAMMING UNIT - 2

Arrays:

An array is an object that stores a group of elements of same datatype.
Arrays can store only one type of data. It means, we can store only integer type elements
or only float type elements into an array. But we cannot store one integer, one float and
one character type element into the same array.
Arrays can increase or decrease their size dynamically. It means, we need not declare the
size of the array. When the elements are added, it will increase its size and when the

elements are removed, it will automatically decrease its size in memory.

Advantages:

[]

Arrays are similar to lists. The main difference is that arrays can store only one type of
elements; whereas, lists can store different types of elements. When dealing with a huge
number of elements, arrays use less memory than lists and they offer faster execution than
lists.

The size of the array is not fixed in python. Hence, we need not specify how many
elements we are going to store into an array in the beginning.

Arrays can grow or shrink in memory dynamically (during runtime).

Arrays are useful to handle a collection of elements like a group of numbers or characters.
Methods that are useful to process the elements of any array are available in ,array"

module.

Creating an array:

Syntax:
arrayname = array(type code, [elements])

The type code ,,i* represents integer type array where we can store integer numbers. If

the type code is ,,f* then it represents float type array where we can store numbers with

decimal point.

»b Signed integer 1
»B Unsigned integer 1
ol Signed integer 2
51 Unsigned integer 2
ol Signed integer 4

PYTHON PROGRAMMING UNIT - 2

»wLi Unsigned integer 4
ee

. Floating point 4

5 d Double precision floating point 8

HU Unicode character 2
Example:

The type code character should be written in single quotes. After that the elements
should be written in inside the square braces [] as

a=array (,,1", [4,8,-7,1,2,5,9])

PYTHON PROGRAMMING UNIT - 2

Importing the Array Module:

There are two ways to import the array module into our program.
The first way is to import the entire array module using import statement as,

import array
when we import the array module, we are able to get the ,,array” class of that module that
helps us to create an array.

a = array.array(‘i’, [4,8,-7,1,2,5,9])
Here the first ,,array* represents the module name and the next ,,array* represents the class
name for which the object is created. We should understand that we are creating our array as
an object of array class.
The next way of importing the array module is to write:

from array import *
Observe the ,,** symbol that represents ,,all“. The meaning of this statement is this: import all
(classes, objects, variables, etc) from the array module into our program. That means
significantly importing the ,,array* class of ,,array” module. So, there is no need to mention
the module name before our array name while creating it. We can create array as:

a = array(‘i’, [4,8,-7,1,2,5,9])
Example:

from array import *

arr = array(,,1", [4,8,-7,1,2,5,9])

for i in arr:

print i,

Output:

48-71259
Indexing and slicing of arrays:

An index represents the position number of an element in an array. For example, when
we creating following integer type array:

a = array(‘i’, [10,20,30,40,50])

Python interpreter allocates 5 blocks of memory, each of 2 bytes size and stores the
elements 10, 20, 30, 40 and 50 in these blocks.
10 20 30 40 50

a[0] a[l] a[2] a[3] a[4]

PYTHON PROGRAMMING UNIT - 2

Example:

from array import *

a=array('i', [10,20,30,40,50,60,70])

print "length is",len(a)

print " 1st position character", a[1]

print "Characters from 2 to 4", a[2:5]

print "Characters from 2 to end", a[2:]

print "Characters from start to 4", a[:5]

print "Characters from start to end", a[:]

a[3]=45

a[4]=55

print "Characters from start to end after modifications ",a[:]
Output:

length is 7

Ist position character 20

Characters from 2 to 4 array('i', [30, 40, 50])

Characters from 2 to end array('i', [30, 40, 50, 60, 70])

Characters from start to 4 array('i', [10, 20, 30, 40, 50])

Characters from start to end array('i', [10, 20, 30, 40, 50, 60, 70])

Characters from start to end after modifications array('i', [10, 20, 30, 45, 55, 60, 70])

Array Methods:
Method Description
a.append(x) Adds an element x at the end of the existing array a.
a.count(x) Returns the number of occurrences of x in the array a.
a.extend(x) Appends x at the end of the array a. ,,x“ can be another array or

iterable object.

a.fromfile(f,n) | Reads n items from from the file object f and appends at the end of

the array a.

a.fromlist(/) Appends items from the / to the end of the array. / can be any list or

iterable object.

a.fromstring(s) | Appends items from string s to end of the array a.

PYTHON PROGRAMMING

UNIT -2

a.index(x) Returns the position number of the first occurrence of x in the array.
Raises ,,ValueError® if not found.

a.pop(x) Removes the item x from the array a and returns it.

a.pop() Removes last item from the array a

a.remove(X)

if not found.

Removes the first occurrence of x in the array. Raises ,,ValueError*

a.reverse()

Reverses the order of elements in the array a.

a.tofile(f)

Writes all elements to the file f.

a.tolist()

Converts array ,,a” into a list.

a.tostring()

Converts the array into a string.

1) Write a program to perform stack operations using array.

Program:

impaort sys
from array
import *

—arrav'1' 11y
A

 ring ipl PUSH 2.POP 3 DISPLAY 4.EXIT"

ch=input{"Enter Your Choice:
"y if ch==1:

ele=input("Enter

element: ") a.append(ele)

print
"Inserted” elif
ch==2;
if len{a)==0:
print "t STACK 15
EMPTY" else:

print "Deleted element is",
a.popi) ehif ch==3:
if len{a)==0:
print "t STACK IS5
EMPTY™" else:
print "tThe Elements in Stack
18", for1in a:
prin
ti, ehif

ch 1

Output:

EVE.£X
it() else:
print "tINVALID CHOICE"

PYTHON PROGRAMMING UNIT - 2

1.PUSH 2.POP 3.DISPLAY 4.EXIT
Enter Your Choice: 1
Enter element: 15
Inserted
1.PUSH 2.POP 3.DISPLAY 4.EXIT
Enter Your Choice: 1
Enter element: 18
Inserted
1.PUSH 2.POP 3.DISPLAY 4.EXIT
Enter Your Choice: 3

The Elements in Stack is 15 18
1.PUSH 2.POP 3.DISPLAY 4.EXIT
Enter Your Choice: 2

Deleted element is 18

Ll T B L
[o oL W Dl L B B

=z
b

2) Write a program to perform queue operations using

array. Program:

import sys
from array
import *
=arravi{i"[1)

ch=input{"Enter Your Choice:
") if ch==1:
ele=input("Enter
element: ") a.appendiele)
ehif ch==2:
if len(a)==0:
print "\t QUEUE IS
EMPTY" else:
print "Deleted element is™,
a[0] a.remove(a[0])
elif ch==3:
if len(a)==0:
print "'t QUEUE IS
EMPTY™" clse:
print "'tThe Elements in Queue
is", foriin a:
prin
ti, elif
ch==4:

SYS.eX

whttarred ANSERT 2.DELETE 3.DISPLAY 4 EXIT"

i) else:
print "tINVALID CHOICE"

Output:
1.INSERT 2.DELETE 3.DISPLAY 4.EXIT
Enter Your Choice: 1

Ll T B L
[o oL W Dl L B B

-

M2

Enter element: 12

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 13

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 3

The Elements in Queue is 12 13 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 2

Deleted element is 12

Python break and continue

Python break Statement
The break statement is used to terminate the loop immediately when it is encountered.
The syntax of the break statement is:

break
Working of Python break Statement

for val in sequence:
code
if condition:
break

I_> # code

while condition:
code
if condition:
break

L # code

Working of the break statement

Ll T B L
[o oL W Dl L B B

-
M2
m

The working of break statement in for loop and while loop is shown above.
Python break Statement with for Loop
We can use the break statement with the for loop to terminate the loop when a certain condition is
met. For example,
for 1 in range(5):
ifi==3:
break
print(i)
Run Code
Output
0
1
2
In the above example, we have used the for loop to print the value of i. Notice the use of the
break statement,
ifi==3:
break
Here, when 1 is equal to 3, the break statement terminates the loop. Hence, the output doesn't
include values after 2.
Python break Statement with while Loop
We can also terminate the while loop using the break statement. For example,
program to find first 5 multiples of 6
i=1
while i <= 10:
print('6 * ',(i), '=',6 * 1)
ifi>=>5:
break
1=1+1
Run Code
Output
6% 1=6
6*2=12
6* 3=18
6* 4=24

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/while-loop

Ll T B L L |
[o oL W Dl L B B =2

6* 5=30
In the above example, we have used the while loop to find the first 5 multiples of 6. Here notice
the line,
ifi>=>5:
break
This means when i is greater than or equal to 5, the while loop is terminated.
Python continue Statement
The continue statement is used to skip the current iteration of the loop and the control flow of
the program goes to the next iteration.
The syntax of the continue statement is:

Continue

Ll T B L
[o oL W Dl L B B

-

Working of Python continue Statement

r*for val in sequence:
code
if condition:
continue

code

while condition:
code
if condition:
continue

code
How continue statement works in python

The working of the continue statement in for and while loop is shown above.

Python continue Statement with for Loop
We can use the continue statement with the for loop to skip the current iteration of the loop. Then
the control of the program jumps to the next iteration. For example,
for 1 in range(5):

ifi==3:

continue

print(i)
Run Code
Output
0
1
2
4
In the above example, we have used the for loop to print the value of i. Notice the use of
the continue statement,
ifi==3:

continue
Here, when 1 is equal to 3, the continue statement is executed. Hence, the value 3 is not printed to
the output.

Python continue Statement with while Loop

Ll T B L L |
[o oL W Dl L B B =2

In Python, we can also skip the current iteration of the while loop using the continue statement.
For example,
program to print odd numbers from 1 to 10
num =0
while num < 10:

num += 1

if (num % 2) == 0:

continue

print(num)
Run Code
Output

O© I W W =

In the above example, we have used the while loop to print the odd numbers between 1 to 10.
Notice the line,
if (num % 2) == 0:

continue
Here, when the number is even, the continue statement skips the current iteration and starts the
next iteration.

Try and Except in Python
The try except statement can handle exceptions. Exceptions may happen when you run a program.
Exceptions are errors that happen during execution of the program. Python won'’t tell you about
errors like syntax errors (grammar faults), instead it will abruptly stop.
An abrupt exit is bad for both the end user and developer.
Instead of an emergency halt, you can use a try except statement to properly deal with the
problem. An emergency halt will happen if you do not properly handle exceptions.

Related course: Complete Python Programming Course & Exercises

What are exceptions in Python?

Python has built-in exceptions which can output an error. If an error occurs while running the

program, it’s called an exception.

https://gum.co/dcsp

Ll T B L L |
[o oL W Dl L B B =2

If an exception occurs, the type of exception is shown. Exceptions needs to be dealt with or the
program will crash. To handle exceptions, the try-catch block is used.

Some exceptions you may have seen before

are FileNotFoundError, ZeroDivisionError or ImportError but there are many more.

All exceptions in Python inherit from the class BaseException. If you open the Python interactive
shell and type the following statement it will list all built-in exceptions:

>>> dir(builtins)

The idea of the try-except clause is to handle exceptions (errors at runtime). The syntax of the

try-except block is:

try:
<do something>
except Exception:

<handle the error>

The idea of the try-except block is this:
e try: the code with the exception(s) to catch. If an exception is raised, it jumps straight into
the except block.
e except: this code is only executed if an exception occured in the try block. The except
block is required with a try block, even if it contains only the pass statement.
It may be combined with the else and finally keywords.
e else: Code in the else block is only executed if no exceptions were raised in the try block.
e finally: The code in the finally block is always executed, regardless of if a an exception
was raised or not.

Catching Exceptions in Python

The try-except block can handle exceptions. This prevents abrupt exits of the program on error. In

the example below we purposely raise an exception.

try:
1/0
except ZeroDivisionError:

print('Divided by zero")

print('Should reach here')

Ll T B L L |
[o oL W Dl L B B =2

After the except block, the program continues. Without a try-except block, the last line wouldn’t
be reached as the program would crash.

$ python3 example.py

Divided by zero
Should reach here
In the above example we catch the specific exception ZeroDivisionError. You can handle any

exception like this:

try:
open("fantasy.txt")
except:

print('Something went wrong')

print('Should reach here')

You can write different logic for each type of exception that happens:

try:
your code here
except FileNotFoundError:
handle exception
except IsADirectoryError:
handle exception
except:

all other types of exceptions

print('Should reach here')

Related course: Complete Python Programming Course & Exercises
try-except

Lets take do a real world example of the try-except block.
The program asks for numeric user input. Instead the user types characters in the input box. The
program normally would crash. But with a try-except block it can be handled properly.

The try except statement prevents the program from crashing and properly deals with it.

https://gum.co/dcsp

Ll T B L
[o oL W Dl L B B

-
M2
m

try:
x = input("Enter number: ")
x=x+1
print(x)

except:

print("Invalid input")
Entering invalid input, makes the program continue normally:

user@debian: ~
File Edit View Search Terminal Help

user@debian:~% python test.py
Enter |'|I.||:n|:-+|' Ioone
Invalid input

user@debian:~% |

The try except statement can be extended with the finally keyword, this will be executed if no

exception is thrown:

finally:
print("Valid input.")

The program continues execution if no exception has been thrown.
There are different kinds of exceptions: ZeroDivisionError, NameError, TypeError and so on.
Sometimes modules define their own exceptions.

The try-except block works for function calls too:

def fail():
1/0

try:
fail()
except:

print('"Exception occured')

Ll T B L
[o oL W Dl L B B

-
M2
m

print('"Program continues')

This outputs:
$ python3 example.py

Exception occured
Program continues

If you are a beginner, then I highly recommend this book.
try finally

A try-except block can have the finally clause (optionally). The finally clause is always executed.

So the general idea is:

try:
<do something>
except Exception:
<handle the error>
finally:

<cleanup>

For instance: if you open a file you’ll want to close it, you can do so in the finally clause.

try:

f = open("test.txt")
except:

print('Could not open file")
finally:

f.close()

print('"Program continue')

try else

The else clause is executed if and only if no exception is raised. This is different from the finally

clause that’s always executed.

https://gum.co/dcsp

Ll T B L
[o oL W Dl L B B

-
M2
m

x=1
except:

print('Failed to set x")
else:

print('"No exception occured')
finally:

print("We always do this')

Output:

No exception occured

We always do this

You can catch many types of exceptions this way, where the else clause is executed only if no

exception happens.

try:
lunch()
except SyntaxError:
print('Fix your syntax')
except TypeError:
print("Oh no! A TypeError has occured')
except ValueError:
print('A ValueError occured!")
except ZeroDivisionError:
print('Did by zero?')
else:
print('No exception')
finally:
print('Ok then')

Raise Exception

Exceptions are raised when an error occurs. But in Python you can also force an exception to
occur with the keyword raise.

Any type of exception can be raised:

Ll T B L
[o oL W Dl L B B

-
M2
m

>>>raise MemoryError("Out of memory")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

MemoryError: Out of memory

>>> raise ValueError("Wrong value")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Wrong value

>>>
Related course: Complete Python Programming Course & Exercises
Built-in exceptions

A list of Python's Built-in Exceptions is shown below. This list shows the Exception and why it is

thrown (raised).

Exception Cause of Error
AssertionError if assert statement fails.
AttributeError if attribute assignment or reference fails.
EOFError if the input() functions hits end-of-file condition.
FloatingPointError if a floating point operation fails.
GeneratorExit Raise if a generator's close() method is called.
ImportError if the imported module is not found.
IndexError if index of a sequence is out of range.

KeyError if a key is not found in a dictionary.

https://gum.co/dcsp

Ll T B L

[o oL W Dl L B B

KeyboardInterrupt

MemoryError

NameError

NotImplementedError

OSError

OverflowError

ReferenceError

RuntimeError

Stoplteration

SyntaxError

IndentationError

TabError

SystemError

SystemExit

TypeError

UnboundLocalError

if the user hits interrupt key (Ctrl+c or delete).

if an operation runs out of memory.

if a variable is not found in local or global scope.

by abstract methods.

if system operation causes system related error.

if result of an arithmetic operation is too large to be represented.

if a weak reference proxy is used to access a garbage collected

referent.

if an error does not fall under any other category.

by next() function to indicate that there is no further item to be

returned by iterator.

by parser if syntax error is encountered.

if there is incorrect indentation.

if indentation consists of inconsistent tabs and spaces.

if interpreter detects internal error.

by sys.exit() function.

if a function or operation is applied to an object of incorrect type.

if a reference is made to a local variable in a function or method,

but no value has been bound to that variable.

Ll T B L L |
[o oL W Dl L B B =2

UnicodeError if a Unicode-related encoding or decoding error occurs.
UnicodeEncodeError if a Unicode-related error occurs during encoding.
UnicodeDecodeError if a Unicode-related error occurs during decoding.
UnicodeTranslateError if a Unicode-related error occurs during translating.
ValueError if a function gets argument of correct type but improper value.
ZeroDivisionError if second operand of division or modulo operation is zero.

User-defined Exceptions
Python has many standard types of exceptions, but they may not always serve your purpose.
Your program can have your own type of exceptions.

To create a user-defined exception, you have to create a class that inherits from Exception.

class LunchError(Exception):

pass

raise LunchError("Programmer went to lunch")

You made a user-defined exception named LunchError in the above code. You can raise this new
exception if an error occurs.
Outputs your custom error:

$ python3 example.py
Traceback (most recent call last):

File “example.py”, line 5, in

raise LunchError(“Programmer went to lunch”)

main.LunchError: Programmer went to lunch
Your program can have many user-defined exceptions. The program below throws exceptions

based on a new projects money:

class NoMoneyException(Exception):

pass

Ll T B L
[o oL W Dl L B B

-
M2
m

class OutOfBudget(Exception):

pass

balance = int(input("Enter a balance: "))
if balance < 1000:

raise NoMoneyException
elif balance > 10000:

raise OutOfBudget

Python String

A String is a data structure in Python that represents a sequence of characters. It is an immutable
data type, meaning that once you have created a string, you cannot change it. Strings are used
widely in many different applications, such as storing and manipulating text data, representing
names, addresses, and other types of data that can be represented as text.

What is a String in Python?
Python does not have a character data type, a single character is simply a string with a length of 1.
Example:

"Geeksforgeeks" or 'Geeksforgeeks' or "a

Python3

print("A Computer Science portal for geeks")
print('A")

Output:
A Computer Science portal for geeks
A
Creating a String in Python
Strings in Python can be created using single quotes or double quotes or even triple quotes. Let
us see how we can define a string in Python.
Example:
In this example, we will demonstrate different ways to create a Python String. We will create a

29 ¢c

string using single quotes (‘ ¢), double quotes (”), and triple double quotes (“” “”’). The triple

quotes can be used to declare multiline strings in Python.

https://www.geeksforgeeks.org/python-programming-language/

Ll T B L
[o oL W Dl L B B

-
M2

e Python3

Python Program for
Creation of String

Creating a String

with single Quotes

String1 = "Welcome to the Geeks World'
print("String with the use of Single Quotes: ")
print(String1)

Creating a String

with double Quotes

Stringl ="I'm a Geek"

print("\nString with the use of Double Quotes: ")
print(String1)

Creating a String

with triple Quotes

String]l = "I'm a Geek and I live in a world of "Geeks""'
print("\nString with the use of Triple Quotes: ")
print(String1)

Creating String with triple
Quotes allows multiple lines
String1 = "'Geeks
For
Life"
print("\nCreating a multiline String: ")

print(String1)

Output:

String with the use of Single Quotes:
Welcome to the Geeks World

String with the use of Double Quotes:

Ll T B L
[o oL W Dl L B B

-

I'm a Geek
String with the use of Triple Quotes:
I'm a Geek and I live in a world of "Geeks"
Creating a multiline String:
Geeks
For
Life
Accessing characters in Python String
In Python, individual characters of a String can be accessed by using the method of Indexing.
Indexing allows negative address references to access characters from the back of the String, e.g.
-1 refers to the last character, -2 refers to the second last character, and so on.
While accessing an index out of the range will cause an IndexError. Only Integers are allowed to

be passed as an index, float or other types that will cause a TypeError.

GEEKSFDRG;EEKS“

01 2 3 4 56 7 8 9 1011 12
13121109 8 -7 6 54 -3 -2 -1

Python String indexing
Example:
In this example, we will define a string in Python and access its characters using positive and
negative indexing. The Oth element will be the first character of the string whereas the -1th

element is the last character of the string.

Python3

Python Program to Access

characters of String

Stringl = "GeeksForGeeks"
print("Initial String: ")

Ll T B L
[o oL W Dl L B B

-
M2
m

print(String1)

Printing First character
print("\nFirst character of String is: ")

print(String1[0])

Printing Last character
print("\nLast character of String is: ")

print(String1[-1])

Output:
Initial String:
GeeksForGeeks
First character of String is:
G
Last cha racter of String is:
S
String Slicing
In Python, the String Slicing method is used to access a range of characters in the String. Slicing
in a String is done by using a Slicing operator, i.e., a colon (:). One thing to keep in mind while
using this method is that the string returned after slicing includes the character at the start index
but not the character at the last index.
Example:
In this example, we will use the string-slicing method to extract a substring of the original string.
The [3:12] indicates that the string slicing will start from the 3rd index of the string to the 12th

index, (12th character not including). We can also use negative indexing in string slicing.

Python3

Python Program to

demonstrate String slicing

Creating a String
String1 = "GeeksForGeeks"

https://www.geeksforgeeks.org/string-slicing-in-python/

Ll T B L
[o oL W Dl L B B

-
M2
m

print("Initial String: ")
print(String1)

Printing 3rd to 12th character

print("\nSlicing characters from 3-12: ")

print(String1[3:12])

Printing characters between

3rd and 2nd last character

print("\nSlicing characters between " +
"3rd and 2nd last character: ")

print(String1[3:-2])

Output:
Initial String:
GeeksForGeeks
Slicing characters from 3-12:
ksForGeek
Slicing characters between 3rd and 2nd last character:
ksForGee
Reversing a Python String
By accessing characters from a string, we can also reverse strings in Python. We can Reverse a
string by using String slicing method.
Example:
In this example, we will reverse a string by accessing the index. We did not specify the first two
parts of the slice indicating that we are considering the whole string, from the start index to the

last index.

Python3

#Program to reverse a string

gfg = "geeksforgeeks"
print(gfg[::-1])

Output:
skeegrofskeeg

https://www.geeksforgeeks.org/reverse-string-python-5-different-ways/

Ll T B L
[o oL W Dl L B B

-
M2
m

Example:

We can also reverse a string by using built-in join and reversed functions, and passing the string as

the parameter to the reversed() function.

Python3

Program to reverse a string

gfg = "geeksforgeeks"

Reverse the string using reversed and join function

gfg ="".join(reversed(gfg))

print(gfg)

Output:
skeegrofskeeg

Deleting/Updating from a String
In Python, the Updation or deletion of characters from a String is not allowed. This will cause an
error because item assignment or item deletion from a String is not supported. Although deletion
of the entire String is possible with the use of a built-in del keyword. This is because Strings are
immutable, hence elements of a String cannot be changed once assigned. Only new strings can be
reassigned to the same name.

Updating a character
A character of a string can be updated in Python by first converting the string into a Python
List and then updating the element in the list. As lists are mutable in nature, we can update the
character and then convert the list back into the String.
Another method is using the string slicing method. Slice the string before the character you want
to update, then add the new character and finally add the other part of the string again by string
slicing.
Example:
In this example, we are using both the list and the string slicing method to update a character. We
converted the Stringl to a list, changes its value at a particular element, and then converted it back
to a string using the Python string join() method.
In the string-slicing method, we sliced the string up to the character we want to update,

concatenated the new character, and finally concatenate the remaining part of the string.

https://www.geeksforgeeks.org/python-string-join-method/
https://www.geeksforgeeks.org/python-reversed-function/
https://www.geeksforgeeks.org/python-lists/
https://www.geeksforgeeks.org/python-lists/
https://www.geeksforgeeks.org/python-string-join-method/

Ll T B L
[o oL W Dl L B B

-
M2
m

e Python3

Python Program to Update

character of a String

String1 = "Hello, I'm a Geek"
print("Initial String: ")
print(String1)

Updating a character of the String
As python strings are immutable, they don't support item updation directly

there are following two ways

#1
listl = list(Stringl)
list1[2] ="p'

String2 =" join(list1)
print("\nUpdating character at 2nd Index: ")
print(String2)

#2
String3 = String1[0:2] + 'p' + String1[3:]
print(String3)

Output:
Initial String:
Hello, I'm a Geek
Updating character at 2nd Index:
Heplo, I'm a Geek
Heplo, I'm a Geek
Updating Entire String
As Python strings are immutable in nature, we cannot update the existing string. We can only
assign a completely new value to the variable with the same name.
Example:
In this example, we first assign a value to ‘Stringl’ and then updated it by assigning a completely

different value to it. We simply changed its reference.

Ll T B L
[o oL W Dl L B B

-
M2
m

e Python3

Python Program to Update

entire String

String1 = "Hello, I'm a Geek"
print("Initial String: ")
print(String1)

Updating a String

String1 = "Welcome to the Geek World"
print("\nUpdated String: ")
print(String1)

Output:
Initial String:
Hello, I'm a Geek
Updated String:
Welcome to the Geek World
Deleting a character
Python strings are immutable, that means we cannot delete a character from it. When we try to

delete thecharacter using the del keyword, it will generate an error.

e Python3

Python Program to delete

character of a String

Stringl = "Hello, I'm a Geek"
print("Initial String: ")
print(String1)

print("Deleting character at 2nd Index: ")
del String1[2]
print(String1)

Ll T B L
[o oL W Dl L B B

-
M2
m

Output:
Initial String:
Hello, I'm a Geek
Deleting character at 2nd Index:
Traceback (most recent call last):

File "e:\GFG\Python codes\Codes\demo.py", line 9, in <module>

del String1[2]

TypeError: 'str' object doesn't support item deletion
But using slicing we can remove the character from the original string and store the result in a new
string.
Example:
In this example, we will first slice the string up to the character that we want to delete and then

concatenate the remaining string next from the deleted character.

Python3

Python Program to Delete

characters from a String

Stringl = "Hello, I'm a Geek"
print("Initial String: ")
print(String1)

Deleting a character

of the String

String2 = String1[0:2] + String1[3:]
print("\nDeleting character at 2nd Index: ")
print(String?2)

Output:
Initial String:
Hello, I'm a Geek
Deleting character at 2nd Index:
Helo, I'm a Geek
Deleting Entire String

Ll T B L L |
[o oL W Dl L B B =2

Deletion of the entire string is possible with the use of del keyword. Further, if we try to print the

string, this will produce an error because the String is deleted and is unavailable to be printed.

Python3

Python Program to Delete

entire String

String1 = "Hello, I'm a Geek"
print("Initial String: ")
print(String1)

Deleting a String

with the use of del

del Stringl

print("\nDeleting entire String: ")
print(String1)

Error:
Traceback (most recent call last):
File "/home/e4b812170f140da99d2fe57d9d8c6a94.py", line 12, in
print(String1)
NameError: name 'String1' is not defined

Escape Sequencing in Python
While printing Strings with single and double quotes in it causes SyntaxError because String
already contains Single and Double Quotes and hence cannot be printed with the use of either of
these. Hence, to print such a String either Triple Quotes are used or Escape sequences are used to
print Strings.
Escape sequences start with a backslash and can be interpreted differently. If single quotes are
used to represent a string, then all the single quotes present in the string must be escaped and the
same is done for Double Quotes.

Example:

Python3

Python Program for

Ll T B L
[o oL W Dl L B B

-
M2

Escape Sequencing

of String

Initial String
Stringl ="I'm a "Geek""

print("Initial String with use of Triple Quotes: ")

print(String1)

Escaping Single Quote

String]l = 'T\'m a "Geek"'
print("\nEscaping Single Quote: ")
print(String1)

Escaping Double Quotes
Stringl = "I'm a \"Geek\""
print("\nEscaping Double Quotes: ")
print(String1)

Printing Paths with the
use of Escape Sequences
String1 = "C:\\Python\\Geeks\\"
print("\nEscaping Backslashes: ")
print(String1)

Printing Paths with the
use of Tab
String1 = "Hi\tGeeks"
print("\nTab: ")
print(String1)

Printing Paths with the
use of New Line
String1 = "Python\nGeeks"
print("\nNew Line: ")
print(String1)

Output:

Ll T B L
[o oL W Dl L B B

-
M2

Initial String with use of Triple Quotes:
I'm a "Geek"

Escaping Single Quote:

I'm a "Geek"

Escaping Double Quotes:

I'm a "Geek"

Escaping Backslashes:
C:\Python\Geeks\

Tab:

Hi Geeks

New Line:

Python

Geeks

Example:

To ignore the escape sequences in a String, r or R is used, this implies that the string is a raw

string and escape sequences inside it are to be ignored.

Python3

Printing hello in octal
Stringl = "\110\145\154\154\157"
print("\nPrinting in Octal with the use of Escape Sequences: ")

print(String1)

Using raw String to

ignore Escape Sequences

String1 = r"This is \110\145\154\154\157"
print("\nPrinting Raw String in Octal Format: ")
print(String1)

Printing Geeks in HEX

String1 = "This is \x47\x65\x65\x6b\x73 in \x48\x45\x58"
print("\nPrinting in HEX with the use of Escape Sequences: ")
print(String1)

Ll T B L
[o oL W Dl L B B

-
M2

Using raw String to

ignore Escape Sequences

String1 = r"This is \x47\x65\x65\x6b\x73 in \x48\x45\x58"
print("\nPrinting Raw String in HEX Format: ")
print(String1)

Output:

Printing in Octal with the use of Escape Sequences:
Hello

Printing Raw String in Octal Format:

This is \110\145\154\154\157

Printing in HEX with the use of Escape Sequences:
This is Geeks in HEX

Printing Raw String in HEX Format:

This is \x47\x65\x65\x6b\x73 in \x48\x45\x58

Formatting of Strings

Strings in Python can be formatted with the use of format() method which is a very versatile and
powerful tool for formatting Strings. Format method in String contains curly braces {} as

placeholders which can hold arguments according to position or keyword to specify the order.

Example 1:

In this example, we will declare a string which contains the curly braces {} that acts as a

placeholders and provide them values to see how string declaration position matters.

Python3

Python Program for
Formatting of Strings

Default order

Stringl ="{} {} {}".format('Geeks', 'For', 'Life")
print("Print String in default order: ")
print(String1)

https://www.geeksforgeeks.org/python-string-format-method/

Ll T B L
[o oL W Dl L B B

-
M2
m

Positional Formatting
Stringl ="{1} {0} {2}".format('Geeks', 'For', 'Life")
print("\nPrint String in Positional order: ")

print(String1)

Keyword Formatting

Stringl = "{l} {f} {g}".format(g='Geeks', f='For', I='Life")
print("\nPrint String in order of Keywords: ")
print(String1)

Output:

Print String in default order:

Geeks For Life

Print String in Positional order:

For Geeks Life

Print String in order of Keywords:

Life For Geeks

Example 2:

Integers such as Binary, hexadecimal, etc., and floats can be rounded or displayed in the exponent

form with the use of format specifiers.

Python3

Formatting of Integers
Stringl ="{0:b}".format(16)
print("\nBinary representation of 16 is ")

print(String1)

Formatting of Floats

String1 ="{0:e}".format(165.6458)
print("\nExponent representation of 165.6458 is ")
print(String1)

Rounding off Integers

Ll T B L
[o oL W Dl L B B

-
M2
m

Stringl = "{0:.2f}".format(1/6)
print("\none-sixth is : ")

print(String1)

Output:

Binary representation of 16 is

10000

Exponent representation of 165.6458 is

1.656458e+02

one-sixth is :

0.17

Example 3:

A string can be left, right, or center aligned with the use of format specifiers, separated by a
colon(:). The (<) indicates that the string should be aligned to the left, (>) indicates that the string
should be aligned to the right and (*) indicates that the string should be aligned to the center. We
can also specify the length in which it should be aligned. For example, (<10) means that the string
should be aligned to the left within a field of width of 10 characters.

Python3

String alignment
Stringl ="|{:<10}|{:*10}|{:>10}|".format('Geeks',
'for',
'Geeks')
print("\nLeft, center and right alignment with Formatting: ")

print(String1)

To demonstrate aligning of spaces

Stringl = "\n{0:*16} was founded in {1:<4}!".format("GeeksforGeeks",
2009)

print(String1)

Output:

Left, center and right alignment with Formatting:
|Geeks | for | Geeks|

GeeksforGeeks was founded in 2009 !

Ll T B L
[o oL W Dl L B B

-
M2
m

Example 4:

Old-style formatting was done without the use of the format method by using the % operator

Python3

Python Program for
Old Style Formatting
of Integers

Integerl = 12.3456789

print("Formatting in 3.2f format: ")

print('"The value of Integer1 is %3.2f' % Integerl)
print("\nFormatting in 3.4f format: ")

print("The value of Integer] is %3.4f % Integerl)

Output:

Formatting in 3.2f format:
The value of Integerl is 12.35
Formatting in 3.4f format:

The value of Integerl is 12.3457

Python String constants

Built-In Function Description
string.ascii_letters Concatenation of the ascii_lowercase and ascii_uppercase constants.
string.ascii_lowercase Concatenation of lowercase letters
string.ascii_uppercase Concatenation of uppercase letters
string.digits Digit in strings

string.hexdigits Hexadigit in strings

https://www.geeksforgeeks.org/python-string-ascii_letters/
https://www.geeksforgeeks.org/python-string-ascii_lowercase/
https://www.geeksforgeeks.org/python-string-ascii_uppercase/
https://www.geeksforgeeks.org/python-string-digits/
https://www.geeksforgeeks.org/python-string-hexdigits/

Ll T B L

[o oL W Dl L B B

Built-In Function

string.letters

string.lowercase

string.octdigits

string.punctuation

string.printable

String.endswith()

rin ith

String.isdigit

String.isalpha()

string.isdecimal()

str.format()

String.index

string.uppercase

Description

concatenation of the strings lowercase and uppercase

A string must contain lowercase letters.

Octadigit in a string

ASCII characters having punctuation characters.

String of characters which are printable

Returns True if a string ends with the given suffix otherwise returns

False

Returns True if a string starts with the given prefix otherwise returns

False

Returns “True” if all characters in the string are digits, Otherwise, It

returns “False”.

Returns “True” if all characters in the string are alphabets, Otherwise, It

returns “False”.

Returns true if all characters in a string are decimal.

one of the string formatting methods in Python3, which allows multiple

substitutions and value formatting.

Returns the position of the first occurrence of substring in a string

A string must contain uppercase letters.

https://www.geeksforgeeks.org/string-endswith-python/
https://www.geeksforgeeks.org/python-string-startswith/
https://www.geeksforgeeks.org/python-string-isdigit-application/
https://www.geeksforgeeks.org/python-string-isalpha-method/
https://www.geeksforgeeks.org/python-string-isdecimal/
https://www.geeksforgeeks.org/python-format-function/
https://www.geeksforgeeks.org/python-string-index-applications/

Ll T B L

[o oL W Dl L B B

Built-In Function

string.whitespace

string.swapcase()

replace()

Description

A string containing all characters that are considered whitespace.

Method converts all uppercase characters to lowercase and vice versa of

the given string, and returns it

returns a copy of the string where all occurrences of a substring is

replaced with another substring.

Deprecated string functions

Built-In Function

tring.l imal

String.Isalnum

string.Istitle

String.partition

String.Isidentifie

L

String.len

String.rindex

String.Max

Description

Returns true if all characters in a string are decimal

Returns true if all the characters in a given string are alphanumeric.

Returns True if the string is a title cased string

splits the string at the first occurrence of the separator and returns a tuple.

Check whether a string is a valid identifier or not.

Returns the length of the string.

Returns the highest index of the substring inside the string if substring is

found.

Returns the highest alphabetical character in a string.

Returns the minimum alphabetical character in a string.

https://www.geeksforgeeks.org/python-string-isspace-application/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/python-string-replace/
https://www.geeksforgeeks.org/python-string-isdecimal/
https://www.geeksforgeeks.org/python-string-isalnum/
https://www.geeksforgeeks.org/python-string-istitle/
https://www.geeksforgeeks.org/string-partition-python/
https://www.geeksforgeeks.org/python-string-isidentifier/
https://www.geeksforgeeks.org/python-string-isidentifier/
https://www.geeksforgeeks.org/python-string-length-len/
https://www.geeksforgeeks.org/string-rindex-python/
https://www.geeksforgeeks.org/python-string-max/
https://www.geeksforgeeks.org/python-string-min/

Ll T B L

[o oL W Dl L B B

-
M2
m

Built-In Function

String.splitlines

string.capitalize

string.expandtabs

string.find

string.rfind

string.count

string.lower

string.split

string.rsplit()

rpartition()

string.splitfields

string.join

string.strip()

string.Istrip

Description

Returns a list of lines in the string.

Return a word with its first character capitalized.
Expand tabs in a string replacing them by one or more spaces
Return the lowest indexing a sub string.
find the highest index.

Return the number of (non-overlapping) occurrences of substring sub in

string
Return a copy of s, but with upper case, letters converted to lower case.

Return a list of the words of the string, If the optional second argument sep

is absent or None
Return a list of the words of the string s, scanning s from the end.
Method splits the given string into three parts
Return a list of the words of the string when only used with two arguments.
Concatenate a list or tuple of words with intervening occurrences of sep.

It returns a copy of the string with both leading and trailing white spaces

removed

Return a copy of the string with leading white spaces removed.

https://www.geeksforgeeks.org/python-string-splitlines/
https://www.geeksforgeeks.org/string-capitalize-python/
https://www.geeksforgeeks.org/python-expandtabs-method/
https://www.geeksforgeeks.org/string-find-python/
https://www.geeksforgeeks.org/python-string-rfind/
https://www.geeksforgeeks.org/python-string-count/
https://www.geeksforgeeks.org/python-string-lower/
https://www.geeksforgeeks.org/python-string-split/
https://write.geeksforgeeks.org/improve/find-the-smallest-binary-digit-multiple-of-given-number-2/
https://www.geeksforgeeks.org/python-string-rpartition/
https://www.geeksforgeeks.org/join-function-python/
https://www.geeksforgeeks.org/python-string-strip/
https://www.geeksforgeeks.org/python-string-strip/

Ll T B L L |
[o oL W Dl L B B =2

Built-In Function Description
string.rstrip Return a copy of the string with trailing white spaces removed.
string.swapcase Converts lower case letters to upper case and vice versa.
string.translate Translate the characters using table
string.upper lower case letters converted to upper case.
string.ljust left-justify in a field of given width.
string.rjust Right-justify in a field of given width.
string.center() Center-justify in a field of given width.

Pad a numeric string on the left with zero digits until the given width is

string-zfill
reached.

Return a copy of string s with all occurrences of substring old replaced by

string.replace
new.

string.casefold() ~ Returns the string in lowercase which can be used for caseless comparisons.

Encodes the string into any encoding supported by Python. The default

string.encode o
encoding is utf-8.

string.maketrans Returns a translation table usable for str.translate()

Advantages of String in Python:
e Strings are used at a larger scale i.e. for a wide areas of operations such as storing and
manipulating text data, representing names, addresses, and other types of data that can be

represented as text.

https://www.geeksforgeeks.org/python-string-rstrip/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/python-string-translate/
https://www.geeksforgeeks.org/python-string-upper/
https://www.geeksforgeeks.org/string-rjust-ljust-python/
https://www.geeksforgeeks.org/string-rjust-ljust-python/
https://www.geeksforgeeks.org/string-center-python/
https://www.geeksforgeeks.org/python-string-zfill/
https://www.geeksforgeeks.org/replace-in-python-to-replace-a-substring/
https://www.geeksforgeeks.org/casefold-string-python/
https://www.geeksforgeeks.org/python-strings-encode-method/
https://www.geeksforgeeks.org/python-maketrans-translate-functions/

Ll T B L L |
[o oL W Dl L B B =2

Python has a rich set of string methods that allow you to manipulate and work with strings in a
variety of ways. These methods make it easy to perform common tasks such as converting
strings to uppercase or lowercase, replacing substrings, and splitting strings into lists.

Strings are immutable, meaning that once you have created a string, you cannot change it. This
can be beneficial in certain situations because it means that you can be confident that the value
of a string will not change unexpectedly.

Python has built-in support for strings, which means that you do not need to import any
additional libraries or modules to work with strings. This makes it easy to get started with
strings and reduces the complexity of your code.

Python has a concise syntax for creating and manipulating strings, which makes it easy to

write and read code that works with strings.

	1. Sequential
	2. Selection/Decision control statements
	Decision Making:
	The if Statement
	Syntax:
	Example:
	Example:
	Syntax:
	Output:
	Syntax
	Example-1:​Example-2:
	Output-1:​Output-2:
	Output:
	Example-1:​Example-2:
	Output-1:​Output-2:
	Output-3:​Output-4:
	Q) Write a program to display the factorial of given number. Program:
	
	Nested Loop:
	Example-1:
	Example-3:
	Example-5:
	Example-7:
	Example-8:
	Example-9:
	Example-11:
	Output:
	is 1,2,3,5,8,13,21,34,55
	3)​Write a program to print n prime numbers and display the sum of prime numbers. Program:
	4)​Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . . . ,1/10
	Output:
	5)​Write a program that takes input from the user until the user enters -1. After display the sum of numbers.
	Output:
	6)​Write a program to display the following sequence.
	Program:
	A B
	A B C D A B C D E
	8)​Write a program to display the following sequence. A
	G H I J
	Program:
	Program:
	Output-2:
	10)​Write a program to print sum of digits. Program:
	11)​Write a program to print given number is Armstrong or not. Program:
	12)​Write a program to take input string from the user and print that string after removing ovals.
	Output:
	Advantages:
	Creating an array:
	Example:
	Importing the Array Module:
	import array
	a = array.array(‘i’, [4,8,-7,1,2,5,9])
	from array import *
	a = array(‘i’, [4,8,-7,1,2,5,9])
	Output:
	Indexing and slicing of arrays:
	a = array(‘i’, [10,20,30,40,50])
	Example:
	Output:
	Array Methods:
	Output:
	2)​Write a program to perform queue operations using array. Program:

	Python break and continue
	Python break Statement
	Working of Python break Statement
	Python break Statement with for Loop
	for i in range(5):
	 if i == 3:
	 break
	 print(i)
	Run Code
	Output
	0
	1
	2
	In the above example, we have used the for loop to print the value of i. Notice the use of the break statement,
	if i == 3:
	 break
	Here, when i is equal to 3, the break statement terminates the loop. Hence, the output doesn't include values after 2.
	Python break Statement with while Loop
	We can also terminate the while loop using the break statement. For example,
	# program to find first 5 multiples of 6
	i = 1
	while i <= 10:
	 print('6 * ',(i), '=',6 * i)
	 if i >= 5:
	 break
	 i = i + 1
	Run Code
	Output
	6 * 1 = 6
	6 * 2 = 12
	6 * 3 = 18
	6 * 4 = 24
	6 * 5 = 30
	In the above example, we have used the while loop to find the first 5 multiples of 6. Here notice the line,
	if i >= 5:
	 break
	This means when i is greater than or equal to 5, the while loop is terminated.
	Python continue Statement
	The continue statement is used to skip the current iteration of the loop and the control flow of the program goes to the next iteration.
	The syntax of the continue statement is:
	Continue
	Working of Python continue Statement
	Python continue Statement with for Loop
	Python continue Statement with while Loop

	Try and Except in Python
	What are exceptions in Python?
	Catching Exceptions in Python
	try-except
	try finally
	try else
	Raise Exception
	Built-in exceptions

	User-defined Exceptions
	Python String
	What is a String in Python?
	Creating a String in Python
	Accessing characters in Python String
	String Slicing
	Reversing a Python String
	Deleting/Updating from a String
	Updating a character
	Updating Entire String
	Deleting a character
	Deleting Entire String

	Escape Sequencing in Python
	Formatting of Strings
	
	Python String constants
	Deprecated string functions
	Advantages of String in Python:

