
Screen-Space Subsurface Scattering

Revision 1.8 February 2021

davidmiranda.me

Model sources provided by https://ten24.info/

Works on Built-In pipeline ONLY

Index
Camera​ 5

Blur tab​ 6
Edge test​ 8
Dither​ 11
Transparency​ 12
Resources​ 15
Debug​ 16

Material​ 17
Coords Tab​ 17
Lighting Tab​ 19
Albedo Tab​ 20
Profile Tab​ 21
Occlusion Tab​ 21

http://davidmiranda.me/
http://davidmiranda.me/
http://davidmiranda.me/
https://ten24.info/

Specular Tab​ 21
Cavity Map​ 22
Bump Tab​ 22
Transparency​ 22

Water​ 23

Abstract
Commonly known as SSS, this effect performs a special type of blur of the diffuse lighting pass in screen
space to simulate how light is scattered behind the surface. The program is highly customizable to meet
performance compromises easily. Version 1.7 introduces a new module for blurred transparencies. Working
Platforms: PC & VIVE. Here you can find some demos.

Windows - Chess Demo (PC) - VR Head (VIVE - PC)

Installation instructions
1.​ Make sure your project is set to linear color space in player settings
2.​ Delete any previous folder of SSS
3.​ Import the package
4.​ For better quality of shadows set “Shadow distance” to something around 100
5.​ Install post process from package manager
6.​ Download and import the Demo content (Head, eyes and office art assets)

Gallery​
Full resolution image Gallery

Components
●​ Camera program

Add this script to the game camera to start using it.

●​ Material

Only materials using the shaders ‘SSS/Standard’, ‘SSS/Standard Deferred’ and ‘SSS/Sample’ are compatible with this
effect.

https://www.dropbox.com/s/ytvj9grd5xa6p0j/SSS%201.8%20build.rar?dl=0
https://www.dropbox.com/s/nf5xp6qr8jhlzuy/Chess.rar?dl=0
https://www.dropbox.com/s/696pmo377ocvrtp/SSS%20VR%20-%20Head%20demo.rar?dl=0
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.2/manual/Installation.html
https://www.davidmiranda.me/subsurface-scattering-for-unity/

The deferred version allows us to use post-effects that rely on GBuffers such as SSR:

The effect is not applied to the scene view:

Usage
 Camera

Blur tab
●​ Scattering Color: if profile is not enabled, the scattering value is global and controlled from this color.

●​ Profile per object: allows to control the scattering behavior (color and radius) from the material. Note that this
increases the cost

○​ In this case, a new tab will appear in each material

●​ Allow MSAA: If MSAA is enabled in this camera, perform antialiasing in the generated buffers. Note that this

increases the memory cost. Sadly, unity seems to not apply msaa in the depth buffer from a secondary camera, so
this is not 100% correct yet.

●​ Radius: blur radius
●​ Closeup Compensation: blur radius is constantly adjusted by distance from camera to pixel to preserve the

perceptual blur radius in every situation. When the object is very close to the camera, the radius increases
considerably. The problem is that this situation has a high impact on performance, so this parameter is used to allow
you to choose the amount of correction to apply. 0: no compensation (cheap), 1: max compensation (expensive)

●​ Iterations: number of iterations in the image effect blur
●​ Shader Iterations: number of iterations per pass.
●​ Downscale factor: allows to reduce the buffers size. Useful to improve performance
●​ Max distance: limit the computation of the effect by distance. Enable Debug Distance to see the range in the

scene:

●​ SSS Layer: layers that will be rendered. To receive shadows from objects that are not sss they must be included.

Example: this cube is not an sss object, but to get shadows from it on a sss surface it is included in the lighting pass
by selecting its layer. During the lighting pass it is just black and casts the shadows that we need.

Edge test
Depth & Normal test: Thresholds required to detect the edges so that blur takes edges into account to avoid blur
on them.
Depth & Normal test: Thresholds required to detect the edges so that blur takes edges into account to avoid blur
on them.

When Dither is enabled, in some situations with high contrasts we will see pixel leaks like these:

Enable Apply edge test to dither noise
Situations with high contrast will reveal leaked pixels like here:

This situation can be solved with Fix pixel leaks:

Dither
●​ Dither is the key to hide the visible seams that are inherent to this technique.

Dither can be very expensive in closeups. This is already a known hardware problem described by Jorge Jimenez.

Use ‘Postprocessing’ temporal antialiasing to remove the noise. The TAA included here also works fine

Transparency
Version 1.7 introduces a new module to allow blurred transparencies. Note that this could double the GPU work, so use
it carefully.

https://assetstore.unity.com/packages/essentials/beta-projects/legacy-cinematic-image-effects-51515

Functionality is the same as SSS. Select the layers to be rendered and adjust blur radius and iterations.
When enabled, the materials will show a new tab with specific adjustments.

This new feature makes possible to simulate semi opaque materials. Opacity is controlled by Albedo alpha and blur
radius by Profile texture. The provided glass examples don’t use SSS, only transparency. SSS blur iterations is set to 0
and albedo is black.

Ice floor is using both surface scattering and transparency blur

Resources

●​ Light pass shader: optionally, you can customize the light pass. The lighting pass can be seen here:

●​ Noise texture: noise texture used for dither

Debug
●​ View Buffer: output the chosen buffer to the screen. The prefab ‘Buffer viewer’ interacts with this

Model provided by triplegangers NOT INCLUDED

●​ Show Cameras: hide or unhide the secondary cameras
●​ Show Screen Controls: useful to test performance in final build.

Material

●​ Coords Tab
○​ Version 1.6 introduces a new set of options to render eyes properly. These are:

■​ Parallax
■​ Pupil dilation

https://www.triplegangers.com/

​
Model provided by triplegangers. All sources included in the package only for eye area.​

Triplegangers kindly donated this model to us. For obvious commercial reasons we were only allowed to share a
portion of their product. This is what you get with the package:

Depth map must be set to linear color space

https://www.triplegangers.com/

Eye dilation map masks the area where we want to scale the pupil area

●​ Lighting Tab
○​ Version 1.6 introduces a new option to modify the diffuse model (only forward version):

■​ Wrapped lighting: softens NdotL

●​ Albedo Tab
○​ Albedo (RGB): standard color texture
○​ Subsurface Albedo: renders albedo map in the lighting pass to simulate deeper features (tatoos, moles,

marble deepness...)

●​ Profile Tab
We can control scattering color (RGB) and radius (A) by texture. Download sample

●​ Transmission Tab

Using geometry math, this attempts to emulate light transmission
○​ Mask: channel R of this texture and color are used to multiply the effect.
○​ Shadows: influence of shadows
○​ Occlusion: influence of occlusion
○​ Range: angle threshold between light direction and geometry normal
○​ Dynamic Pass: intensity of the dynamic component of this effect.
○​ Base Pass: intensity of the base pass. This effect has a dynamic component (per light) and this one is based

on ambient (spherical harmonics with inverted normals)
●​ Occlusion Tab

○​ Occlusion: used to multiply color and environment reflections
●​ Specular Tab

○​ Specular: standard specular map and color as seen in Standard shader
○​ Fresnel effect: sometimes, the standard shader, even being correct, outputs too strong reflection at the

edges. With this slider we can attenuate reflection intensity at glancing angles.
○​ Smoothness: standard smoothness as seen in standard shader

https://www.dropbox.com/s/arx3lc2tvmxww5u/skin_Profile.psd?dl=0

●​ Cavity Map
Optionally, we can use a cavity map to attenuate specular and reflections as suggested by Jimenez

●​ Bump Tab
Normal Map: standard normal map

●​ Transparency
Only available when transparency is enabled in the camera script.

○​ Tint: tints the transparency buffer with texture and color

○​ Distortion: when a normal map is assigned it is possible to use it to distort the transparency buffer

http://www.iryoku.com/stare-into-the-future

Water
Version 1.8 introduces a new shader to make water or liquids of any kind.
Features:
●​ Blurred transparency
●​ Chromatic aberration
●​ Normal animation by flow map
●​ Deferred path (compatible with SSR)
●​ Edge fade

●​ Shader: SSS/Water

●​ Albedo: Surface color and opacity
●​ Profile: Blur color and radius
●​ Specular: Color and glossiness
●​ Bump: Normal map and tiling
●​ Flow

○​ Flow map: normal map and intensity (texture format must be normal map)
○​ Tiling: flow map tiling
○​ Flow speed: animation speed
○​ Pan U and V: adds a panning movement
○​ Debug: shows only the resulting normal

●​ Transparency

○​ Distortion: amount of distortion
○​ Chromatic aberration: amount of chromatic aberration
○​ Tint color: multiply transparency buffer with this color
○​ Tint fade: use depth to fade tint color(only affects tint color and the depth input is distorted)

○​ Fade distance: edge transparency, affects all colors. Depth input not distorted. Usage: blend only contact

edges

●​ Fog

○​ Color: Fog Color
○​ Density: fog opacity

Fog is computed in a separate geometry. Duplicate the water mesh and move it down in the Y axis a little. Now in the water
mesh add this script and add the fog mesh to the “Fog Mesh” field

For shader artists
If you know how to work with shader replacement and write shaders, you can customize this plugin.
You can write your own base lighting shader and replace it here:

Then, you can make your own object shader to get anything you may need. A basic sample is included:

Eye parts

Customizing
A good case that may require customization is to inject another buffer generated by another plugin. In my case with the
Chess scene, I wanted to add a screen-space global illumination pass.

The plugin used is Colorbleed. First of all was to modify it to output a natural color. The author performed a bunch of
color manipulations that in my opinion didn’t make much sense. Then, to use it correctly , the buffer must be injected
during the lighting pass, not on top of everything (as it is by default). So I had to inject it in the first pass of sss, so it gets
also blurred with the rest of light contributions (diffuse & transmission).
The setup consists of a secondary camera attached to the main one, thus sharing the transform. ColorBleed.cs + my baker
script.

https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/colorbleed-85066

RenderColorBleed.cs will store the result of ColorBleed in a new RT that is then sent to a modified version of
LightingPass.shader:

Then, in the alternative shader LightingPass it is sampled like this:
#if defined(SS_COLOR_BLEED)
​ float4 coords = 0;
​ coords = UNITY_PROJ_COORD(IN.screenPos);
​ coords.w += 1e-9f;
​ float2 screenUV = coords.xy / coords.w;
​ Emission +=tex2D(COLOR_BLEED_RT, screenUV).rgb * tex2D(_MainTex, uv * _AlbedoTile).rgb * _Color.rgb;
#endif

Changelog:

●​ 1.2
●​ 1.3
●​ 1.4
●​ 1.5
●​ 1.6
●​ 1.7
●​ 1.8

https://docs.google.com/presentation/d/1qtYl4ln_1Kske0oJIPTAGK4L0lAWpklmvjoiP35AGFU
https://docs.google.com/presentation/d/1jO_BWeOumIJv68pd8cPsaddCVGQ3wdcPQSa_n-ajFOk/edit?usp=sharing
https://docs.google.com/presentation/d/1Jx6UL-U1MX96eQyBisRKizJ78VSAssnymLiB770au0E
https://docs.google.com/presentation/d/1NJ2jvuRXbbD26xr-ZvTnx57kaKCUU2xVGOUS1l6YiPs/edit?usp=sharing
https://docs.google.com/presentation/d/1PG27KatngmcdIlB-ze0XHmlAuFRK40nrVdue_pD92EM
https://docs.google.com/presentation/d/1CT7yTw3g8twdOnEuczdsfTowQdAoaD9Hol1G1pML3G8
https://docs.google.com/presentation/d/14r-4FqfRkl6ZjVvvsSStfixGnXp_8dch4mfjUlXZ60k

	Index
	Installation instructions
	Gallery​Full resolution image Gallery
	Components
	Usage
	 Camera
	Blur tab
	Edge test
	Dither
	Transparency
	Resources
	Debug

	Material
	●​Coords Tab
	●​Lighting Tab
	●​Albedo Tab
	●​Profile Tab
	●​Occlusion Tab
	●​Specular Tab
	●​Cavity Map
	●​Bump Tab
	●​Transparency
	

	Water

	For shader artists
	Eye parts
	
	Customizing
	Changelog:
	●​1.2
	●​1.3
	●​1.4
	●​1.5
	●​1.6
	●​1.7
	●​1.8
	

