

SCIENCE - 4 PERIODICAL TEST QUARTER 3 MATATAG CURRICULUM BASED

NAME: SCORE

Direction: Read each question carefully. Identify the letter of the correct answer.

- 1. Which of the following objects is rigid?
- A. Sponge
- B. Steel rod
- C. Pillow
- D. Rubber ball
- 2. Which of the following objects is soft?
- A. Brick
- B. Plastic cup
- C. Foam
- D. Glass bottle
- 3. A rigid object is best described as:
- A. Flexible
- B. Hard and keeps its shape
- C. Light and soft
- D. Changes shape when pressed
- 4. Which of these groups contains only rigid objects?
- A. Chair, rock, metal spoon
- B. Sponge, fabric, dough
- C. Plastic bag, balloon, clay
- D. Pillow, cushion, soft foam
- 5. Which set consists only of soft objects?
- A. Pillow, clay, sponge
- B. Glass, wood, steel
- C. Plastic, stone, metal
- D. Brick, marble, plastic ruler
- 6. A force is:
- A. A way to measure weight
- B. A push or pull on an object
- C. A kind of energy
- D. A measure of speed
- 7. What is an example of a pull?
- A. Kicking a ball
- B. Throwing a stone
- C. Lifting a bag
- D. Pushing a chair
- **8.** In a diagram showing a box being pushed to the right, the arrow representing force should point:
- A. Left

B. Down C. Up D. Right
 9. Arrows used to represent force show: A. Direction and speed B. Direction and strength C. Strength and shape D. Mass and size
10. Which activity involves a force?A. Sleeping on a bedB. Drinking waterC. Pulling a drawer openD. Reading a book
11. Which task requires applying a push?A. Lifting a boxB. Closing a doorC. Pulling a cartD. Picking up a pencil
12. What happens to a soft object when you apply force?A. It breaks into piecesB. It stays the sameC. It moves upwardD. It changes shape
13. What happens to a rigid object when a small force is applied?A. It changes shapeB. It resists the forceC. It shrinksD. It bends easily
14. Which material is magnetic?A. Iron nailB. Plastic toyC. Wooden blockD. Glass bottle
15. Which of the following is a non-magnetic material?A. Steel spoonB. Rubber bandC. Nickel coinD. Iron bar
16. What happens when the north pole of one magnet meets the south pole of another?A. They repelB. They attractC. They stay apartD. They lose their magnetism
17. What happens when two north poles of magnets are brought together?

A. They attract

B. They repel C. They break D. They lose magnetism	
18. Magnets attract materials made of:A. PlasticB. GlassC. MetalD. Wood	
19. A strong magnet can:A. Repel waterB. Hold heavy metal objectsC. Change color when heatedD. Attract plastic items	
20. Predict what will happen if a stronger force is applied to a soft object.A. It will change shape slightly.B. It will not change shape at all.C. It will change shape more.D. It will break immediately.	et.
21. When you stretch a rubber band, it:A. Changes size and shapeB. Becomes rigidC. Attracts magnetsD. Moves upward	
22. Which tool is used to measure distance?A. ThermometerB. StopwatchC. RulerD. Compass	
23. Which device helps measure time? A. Meter stick B. Stopwatch C. Protractor D. Scale	
24. Speed is calculated using: A. Distance ÷ Time B. Distance × Time C. Force × Distance D. Time ÷ Force	
25. If a car travels 100 kilometers in 2 hours, its speed is: A. 100 km/h B. 50 km/h C. 200 km/h D. 25 km/h	
26. Accurate measurements are important because they:A. Make experiments more fun	

B. Help describe motion precisely C. Always lead to faster results D. Can replace all observations 27. A mistake in measuring time can result in: A. Incorrect speed calculation B. Faster object movement C. Object stopping completely D. No effect at all 28. What does a straight line on a distance vs. time graph indicate? A. The object is speeding up. B. The object is stationary. C. The object is moving at a constant speed. D. The object is slowing down. **29.** If a line on a distance vs. time graph is horizontal, the object is: A. Moving faster B. Stationary C. Moving slower D. Accelerating 30. Energy can cause change in an object's: A. Shape B. Motion C. Both A and B

D. Neither A nor B

A. Melting ice due to heat

C. A glass bottle sitting on a table D. A shadow forming under a tree

33. What is a source of sound energy?

B. Holding a book still

A. Refrigerator B. Telephone

D. Candle flame

B. A hot pan

A. Guitar strings vibrating

A. Touch wires with wet hands

C. Pull on wires to disconnect

35. Why is it important to handle fire carefully?

B. Follow safety auidelines

C. A flashlight beam D. A melting candle

D. Use it near water

A. It is always safe.

C. Fan

31. Which is an example of energy causing change?

32. Which of the following is a source of light energy?

34. What should you do when handling a device that uses electricity?

- B. It cannot harm objects. C. It can cause burns and damage. D. It never needs supervision. A. Freeze B. Melt
- 36. Heat energy can cause ice to:
- C. Evaporate
- D. Condense
- 37. Which is an example of heat energy causing change?
- A. Cooking food in a pan
- B. Cooling water in a freezer
- C. Turning on a fan
- D. Charging a phone
- **38.** Turning off lights when not in use helps to:
- A. Increase light energy
- B. Save energy
- C. Produce sound energy
- D. Generate heat energy
- 39. Using energy-efficient appliances can:
- A. Waste more energy
- B. Reduce energy consumption
- C. Increase electric bills
- D. Lower light output
- 40. Why should we use renewable energy sources?
- A. They are unlimited and eco-friendly.
- B. They are more expensive.
- C. They run out quickly.
- D. They are difficult to find.

Answer Key:

- 1. B
- 2. C
- 3. B
- 4. A
- 5. A
- 6. B
- 7. C
- 8. D
- 9. B
- 10. C
- 11. B
- 12. D
- 13. B 14. A
- 15. B
- 16. B
- 17. B
- 18. C
- 19. B

20. C 21. A 22. C 23. B 24. A 25. B 26. B 27. A

28. C 29. B 30. C

31. A 32. D

33. A 34. B

35. C 36. B

37. A 38. B

39. B 40. A

PERIODICAL TEST

SCIENCE 4-Q3

TABLE OF SPECIFICATION

	No.			COGNITIVE PROCESS DIMENSION						
COMPETENCIES/OBJECTIVES	of	Weight	No.	R	U	AP	AN	E	С	
	Days Spent	rroigin	of Items	EA	SY	AVERAGE		DIFFICULT		
	Ороги			ITEM PLACEMENT						
 Lesson Objective 1: identify rigid and soft objects based on physical characteristics. Lesson Objective 2: classify objects as rigid and soft objects. 		12.5%	5	1,2	3	4,5				
 3. Lesson Objective 3: define force as a push or a pull exerted on an object. 4. Lesson Objective 4: describe forces using arrows in given situations. 5. Lesson Objective 5: identify forces in our daily tasks. 		12.5%	5	6,7	8,9	10				
6. Lesson Objective 6: investigate how rigid and soft objects respond to applied forces.		7.5%	3			11,12,13				
1. Lesson Objective 1: identify common magnetic materials (e.g.,		15%	6	14,15						

iron, steel, nickel) and				16,17				
non-magnetic materials.				·				
2. Lesson Objective 2: recognize								
-								
that magnets' opposite poles				18,19				
attract while like poles repel.								
3. Lesson Objective 3: identify and								
describe key properties of								
1								
magnets, such as polarity,								
strength, and the ability to attract								
certain objects.								
1: predict the amount of force					20			
needed to move an object and	2 507	1			20			
1	2.5%	ı						
change an object's shape								
2: describe what happens to an				21				
object when it is pushed, pulled,	2 507	1						
stretched, bent, twisted, and	2.5%	ı						
squeezed.								
4: familiarize oneself with simple			22.22					
-			22,23					
equipment to measure distance and	5%	2						
time, like a meter stick, ruler,	,,,	_						
measuring tape, and stopwatch								
5: calculate the speed of a moving	FOT	•			24,25			
object;	5%	2			, -			
6: recognize the importance of				26	27			
having accurate measurements in	E07	2		20	2/			
	5%							
describing motion								
Lesson Objective 1: construct a	2.5%	1			28			
simple distance vs. time graph;	2.5/0	ı						
Lesson Objective 2: identify if an				29				
object is stationary or moving at a	2.5%	1						
uniform speed using the line graph.	2.5/6	•						
			00.01					
Learning Competency 3: The learners			30,31					
identify that energy is something	5%	2						
that can cause change including light,	J/8							
sound, and heat energy.								
Learning Competency 4: The learners				32,33				
observe and identify sources and				32,33				
•	E07	2						
uses of light, sound, and heat energy	5%	2						
at school, at home and in the local								
community.								
1: Identify and distinguish between								
different forms of energy, including light,			34					
sound, and heat energy.			54					
2: Explain how sound energy can cause				35				
changes, such as producing sound in	F07	•						
musical instruments or conveying	5%	2						
information through communication.								
3: Recognize the importance of safety								
when dealing with energy sources and								
devices.								
4: Define the concept of energy sources								
and how they are harnessed to produce								
different forms of energy, such as light,								
sound, and heat.					38	40	39	
5.: Observe sources of sound energy,								
including musical instruments, electronic								
_	7.5%	3						
devices, and natural sounds, in different								
settings.								
6. Develop an awareness of safety								
considerations when dealing with energy								
sources and devices, emphasizing fire								
safety and prevention.								

7. Apply the understanding of energy sources to improve energy efficiency at school, home, or in the local community.						
8.: Recognize that energy exists in various forms and can be transferred from one object to another and transformed from one form to another. 9: Identify and distinguish between different forms of energy, including light, sound, and heat energy. 10.Describe how heat energy can cause changes, such as cooking food, melting ice, or heating a room.		2	36,37			
TOTAL	 100%	40				