

MINISTRY OF EDUCATION, CULTURE, RESEARCH, AND TECHNOLOGY
SRIWIJAYA UNIVERSITY

FACULTY OF TEACHER TRAINING AND EDUCATION
BACHELOR PROGRAM IN MATHEMATICS EDUCATION

Jl. Raya Palembang – Prabumulih Km.32, Indralaya Ogan Ilir 30662 Website:<https://fkip.unsri.ac.id/mathedu/>

Bachelor Program in Mathematics Education

MODULE HANDBOOK

Module designation	:	Number Theory / GMA2102
Semester	:	3 rd (third) / Odd
Person responsible for the module	:	Prof. Dr. Yusuf Hartono Weni Dwi Pratiwi, S.Pd., M.Sc.
Language	:	Indonesian and English
Relation to the curriculum	:	Study Program Compulsory Course
Teaching methods	:	<ul style="list-style-type: none">Expository, and Class Discussion. (Week 1 - week 15)Structured Assignment (Week 2 - week 15)Independent Activities. (Week 2 - week 15) $3 \times 170 \text{ minutes} = 510 \text{ minutes} = 8.50 \text{ hours}$
Workload	:	14 weeks per semester, excluding mid-term and final exams. 1 sks per week = 170 minutes, consisting of 50 minutes synchronous learning + 60 minutes asynchronous learning + 60 minutes systematic project $170 \text{ minutes} \times 3 \text{ sks} = 510 \text{ Minutes} = 136 \text{ hours} = 8.5 \text{ hours per week}$ Credit point $3 \text{ SKS} = 3 \times 1.6 = 4.8 \text{ ECTS}$
Credit points	:	3 SKS (4.8 ECTS)
Prerequisite's course(s)	:	-
Module objectives	:	After completing this course, the students have ability to: CO1: Describe basic concepts of integers, divisibility, GCD, LCM, Prime numbers, arithmetic basic theorems, Modular Arithmetic, Diophantine Equations, and Integer Functions. CO2: Interpret the concepts of integers, divisibility, GCD, LCM, Prime numbers, basic arithmetic theorems, Modular Arithmetic, Diophantine's Equations, and Integer Number Functions.Functions in solving problems. CO3: Analyze problems related to the concept of integers, divisibility, GCD, LCM, prime numbers, basic arithmetic theorem, Modular Arithmetic, Diophantine's Equation, and Integer Number Functions. CO4: Apply the concepts of integers, divisibility, GCD, LCM, prime numbers, basic arithmetic theorems, Modular Arithmetic, Diophantine's Equations, and Integer.ons.

MINISTRY OF EDUCATION, CULTURE, RESEARCH, AND TECHNOLOGY
SRIWIJAYA UNIVERSITY

FACULTY OF TEACHER TRAINING AND EDUCATION
BACHELOR PROGRAM IN MATHEMATICS EDUCATION

Jl. Raya Palembang – Prabumulih Km.32, Indralaya Ogan Ilir 30662 Website:<https://fkip.unsri.ac.id/mathedu/>

Content	:	<p>This course discusses:</p> <ol style="list-style-type: none">1. number system: integer and mathematical induction2. divisibility3. Greatest Common Divisor (GCD)4. Continued fraction and Least Common Multiple (LCM)5. basic arithmetic theorems6. prime numbers7. modular arithmetic8. Diophantine's equations9. integer functions10. Wilson's and Fermat Theorem11. Euler's Theorem
Examination forms	:	<p>Examination in this course includes:</p> <ol style="list-style-type: none">1. Affective (actively participating during classroom processes and responsibility in doing assignments)2. Tasks3. Mid-term test in the 8th meeting: essay test4. final test: essay test
Study and examination requirements	:	<p>Total Score = (30% x Midterm Exam Score) + (45% x Final Exam Score) + (20% x Assignment) (5% x Class Activities: Participation, Attitude, and Presence)</p> <p>Explanation:</p> <p>1. Midterm Exam</p> <ul style="list-style-type: none">• Midterm Exam is held at the 8th meeting• Midterm Exam is a written exam (essay test) and carried out in the classroom with an implementation time of 100 minutes according to the module schedule. <p>2. Final Exam</p> <ul style="list-style-type: none">• Final Exam is held at the 16th meeting in• Final Exam is a written exam (essay test) and carried out in the classroom with an implementation time of 120 minutes which follows the Final Exam implementation schedule of the department.

MINISTRY OF EDUCATION, CULTURE, RESEARCH, AND TECHNOLOGY
SRIWIJAYA UNIVERSITY

FACULTY OF TEACHER TRAINING AND EDUCATION
BACHELOR PROGRAM IN MATHEMATICS EDUCATION

Jl. Raya Palembang – Prabumulih Km.32, Indralaya Ogan Ilir 30662 Website:<https://fkip.unsri.ac.id/mathedu/>

	<p>3. Assignment</p> <ul style="list-style-type: none">• Assignments are given as exercise before Midterm Exam and before Final Exam.• Assignments are about analyzing problem in daily life and solve it with the concept of the content in number theory.• Assignments are given as structured assignment and it is submitted in limited time. <p>4. Affective Assessment</p> <ul style="list-style-type: none">• Affective assessment is held in every meeting by observing students' attitude in the classroom.• The assessment is based on the observation sheet by using the given scoring rubrics
Reading lists	: <ol style="list-style-type: none">1. Hardy, G. H. and E. M. Wright. 1981. <i>An Introduction to the Theory of Numbers</i>. Fifth Edition. Oxford: Oxford University Press2. Jones, G. A. and J. M. Jones. 1998. <i>Elementary Number Theory</i>. London: Springer-Verlag3. Niven, Ivan <i>et al.</i> 1991. <i>An Introduction to the Theory of Numbers</i>. New York: John Wiley& Sons4. Rosen, K. H. 2005. <i>Elementary Number Theory and Its Applications</i>. 5th Edition. Massachusetts: Addison Wesley.5. Sukirman. 2008. <i>Materi Pokok Teori Bilangan</i>. Modul 1 – 6. Jakarta: Penerbit Universitas Terbuka.6. Tattersall, J. J. 2005. <i>Elementary Number Theory in Nine Chapters</i>. 2nd Edition. Cambridge: Cambridge University Press.7. LeVeque, William J. 1996. <i>Fundamentals of Number Theory</i>. New York: Dover Publications, Inc.

Date of last amendments: January 2023

PLO	CO
-----	----

MINISTRY OF EDUCATION, CULTURE, RESEARCH, AND TECHNOLOGY
SRIWIJAYA UNIVERSITY

FACULTY OF TEACHER TRAINING AND EDUCATION
BACHELOR PROGRAM IN MATHEMATICS EDUCATION

Jl. Raya Palembang – Prabumulih Km.32, Indralaya Ogan Ilir 30662 Website:<https://fkip.unsri.ac.id/mathedu/>

PLO 4: Having knowledge of mathematical concepts in solving mathematical problems and supporting further studies.	CO1: Describe basic concepts of integers, divisibility, GCD, LCM, Prime numbers, arithmetic basic theorems, Modular Arithmetic, Diophantine Equations, and Integer Functions. CO2: Interpret the concepts of integers, divisibility, GCD, LCM, Prime numbers, basic arithmetic theorems, Modular Arithmetic, Diophantine's Equations, and Integer Number Functions. Functions in solving problems.
PLO 7: Able to apply mathematical knowledge logically, critically and systematically in solving problems.	CO3: Analyze problems related to the concept of integers, divisibility, GCD, LCM, prime numbers, basic arithmetic theorem, Modular Arithmetic, Diophantine's Equation, and Integer Number Functions.
PLO 10: Able to utilize technology in solving mathematics and learning problems.	CO4: Apply the concepts of integers, divisibility, GCD, LCM, prime numbers, basic arithmetic theorems, Modular Arithmetic, Diophantine's Equations, and Integer.