Sugar Labs (Sugar)
Institute (SugarLabs) Proposal (GSoC 2024)

sugar

|
r ;}':“‘W. I*j E:
| | |]
A S S

Google Summer of Code

Project Title: Add an Al-assistant to the Write Activity
Project Length: 350 Hours

Project Difficulty: Hard

Coding Mentor: \Walter Bender

Assisting Mentor: [biam Chihurumnaya

https://github.com/sugarlabs/GSoC/blob/master/Ideas-2024.md#Add-an-AI-assistant-to-the-Write-Activity
https://github.com/walterbender/
https://github.com/chimosky/

Name: Soham Sarode

Email: sohamsarode2312@gmail.com

Github Profile: https://github.com/soham2312

First Language: I speak English Proficiently

Location: India(GMT+5:30)

Education: Pre-Final Year for BTech CSE (IIIT Jabalpur)

To convince the project team that I'm a good fit for adding an Al

assistant to the Write Activity, I would emphasize the
following points:

1. Expertise in NLP and AI: I possess strong skills in natural
language processing (NLP) I would like to take you to the
personal project of Codeforces Recommendation System and
artificial intelligence (AI), including experience with Hugging

Face for the GPT-2 model in transformers.

2. Technical Proficiency: I am proficient in using tools like
PyTorch, transformers library, and GPT-2 models, as
demonstrated in the provided code snippet. I have
experience working with large language models and

understand their capabilities and limitations.

mailto:sohamsarode2312@gamil.com
https://github.com/soham2312

3. Chatbot Development: I have prior experience in
developing chatbots using TensorFlow, which has given me

insights into creating conversational Al systems.

4. NLP Project Experience: I have worked on natural
language processing projects before, including developing a
recommendation system for Codeforces. This experience has
enhanced my understanding of NLP techniques and their

practical applications.

5. Understanding Project Goals: I have a clear
understanding of the project's objectives, particularly in
enhancing the writing process with grammar correction and

Al-assisted suggestions.

6. Collaborative Approach: I value collaboration, open
communication, and feedback, and I am committed to
working closely with the project team to deliver a

high-quality solution aligned with the project's objectives.

By demonstrating my expertise, technical skills, understanding of
project goals, and collaboration capabilities, I am confident that I
can effectively contribute to adding an Al assistant to the Write

Activity in Write Activity for Sugar.

Sugar Labs Contributions

1. Replaced WebL10n with i18next in FoodChain activity

Issue: #1378

Pull request: #1525

Outdated Localization Framework: The existing localization
framework, WebL10n, in the FoodChain activity, is outdated and
no longer actively maintained, potentially causing compatibility
issues and lacking modern localization features.

e Modernization and Enhancement: Migrating to i18next, an
actively maintained internationalization framework, ensures
modern localization capabilities, ongoing support, and improved
compatibility with evolving technology standards for the
FoodChain activity.

2.Replaced WebL10n with i18next in EbookReader activity

Issue: #1378
Pull request: #1531
Outdated Localization Framework: The existing localization
framework, WebL10n, in the EbookReader activity is outdated
and no longer actively maintained, potentially causing
compatibility issues and lacking modern localization features.
e Modernization and Enhancement: Migrating to i18next, an
actively maintained internationalization framework, ensures
modern localization capabilities, ongoing support, and improved
compatibility with evolving technology standards for the
EbookReader activity.

https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1525
https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1531

3.Replaced WebL10n with i18next in MarkDown activity

Issue: #1378

Pull request: #1540

Outdated Framework: The existing localization framework,
WebL10n, in the Markdown activity is outdated and no longer
maintained, potentially leading to compatibility issues and
lacking modern localization features.

Modernization and Support: Migrating to i18next, an actively
maintained internationalization framework, ensures modern
localization capabilities, ongoing support, and compatibility with
evolving technology standards for the Markdown activity.

Other Organizations Contributions

C2Si Organization

1. Addressing Hardcoded Data and Database Reflection in Backup Email

Component

Issue: #64

The issue with the 'backup email' component arises from
hard-coded data and actions not reflecting in the database. A
solution is needed to establish a database connection, fetch
users excluding the logged-in user, and limit the results to four
records.

2. Connecting the Firebase database to the component of 'Backup email' in the
user dashboard

Issue: #64

Pull request: #65

The user has added functionality to the 'backup email’
component connected from the database in the 'Forms'
component and implemented Firebase Database Connection for
the Backup Email Component in the User Dashboard.

https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1525
https://github.com/c2siorg/Codelabz/issues/64
https://github.com/c2siorg/Codelabz/issues/64
https://github.com/c2siorg/Codelabz/pull/65

3. Integrate Redux for a voting feature and Firebase integration

Issue: #131

Pull request: #132

This pull request adds Redux action and reducer for managing
the state of the voting feature and integrates Firebase for data
storage and retrieval, improving scalability and performance. It
also includes functionality to check and handle user votes
efficiently.

4. Fixed the behavior of upvote/downvote buttons to prevent negative voting
counts or unlimited voting behavior.

Issue: #133

Pull request: #134

This pull request addresses a critical issue where users can cast
unlimited upvotes/downvotes and negative votes within the
voting system, which compromises data integrity and opens the
system to potential abuse. The fix includes validation checks to
limit users to a single upvote or downvote per item and ensures
that negative votes are not allowed. This enhancement improves
the reliability and security of the voting feature, providing a
more accurate representation of user feedback.

Stdlib-Js Organization

1. [RFC]: Improve Type Declarations for @stdlib/utils/group-in

Issue: #1084

Pull request: #1383, #1435, #1448

Enhance Type Declarations: Improve TypeScript type
declarations for @stdlib/utils/group-in to address significant type
information loss, currently typed as 'any’, when returning
results.

2. [RFC]: Add C Implementation for @stdlib/math/base/special/cot

Issue: #1663

Implement Cotangent Function: Add a C implementation for
@stdlib/math/base/special/cot to enhance the standard library's
functionality.

Function Details: Create stdlib_base_cot, a double-precision
cotangent function that takes a double-precision floating-point
number x as input and returns the cotangent of x.

https://github.com/c2siorg/Codelabz/issues/131
https://github.com/c2siorg/Codelabz/pull/132
https://github.com/c2siorg/Codelabz/issues/133
https://github.com/c2siorg/Codelabz/pull/134
https://github.com/stdlib-js/stdlib/issues/1084
https://github.com/stdlib-js/stdlib/pull/1383
https://github.com/stdlib-js/stdlib/pull/1435
https://github.com/stdlib-js/stdlib/pull/1448
https://github.com/stdlib-js/stdlib/issues/1663

Project Details

What are you making?

Project Description: Adding an Al assistant to the Write Activity

in Sugar Activities
Overview:

The Write Activity in Sugar Activities provides a platform for peer
editing and collaborative writing. However, it lacks advanced
support for grammar correction and Al-assisted writing, which are
crucial for improving the writing process. This project aims to
enhance the Write Activity by integrating an Al assistant that can

provide feedback on written content and suggest improvements.

Objectives:

e Grammar Correction: Implement grammar correction
functionality using natural language processing techniques to
identify and rectify grammatical errors in the written text.

e AI-Assisted Writing Suggestions: Develop AI models to
analyze the text and provide suggestions for improving

writing style, clarity, and coherence.

Integration with Write Activity: Integrate the Al
assistant seamlessly into the Write Activity interface,
ensuring a user-friendly experience for writers.
Workflow Optimization: Optimize the workflow for
grammar correction and writing suggestions to provide
real-time feedback and suggestions as users write.
Technical Implementation: Python Development: Utilize
Python programming language for implementing natural
language processing algorithms and AI models.

Sugar Activity Development: Leverage experience with
Sugar activities to integrate the Al assistant into the Write
Activity interface.

Large Language Models (LLMs) and Chatbots: Utilize
LLMs and chatbot technologies to develop the AI assistant
for grammar correction and writing suggestions.
Fine-Tuning Models: Fine-tune pre-trained language
models (such as GPT-2) on writing-specific datasets to
improve the accuracy and relevance of suggestions.

User Experience (UX) Design: Focus on UX design
principles to ensure that the Al assistant seamlessly
integrates into the Write Activity, providing a smooth and

intuitive user experience.

Code Integration:

The provided code showcases the process of importing a
pre-trained GPT-2 language model, fine-tuning it on custom
writing data, and using it to generate text based on given
prompts. This code can serve as a foundation for integrating the
Al assistant's functionality into the Write Activity, specifically for

providing Al assistance.

Challenges:

e Data Privacy and Security: Ensure data privacy and
security measures are in place, especially when processing
user-generated content.

e Model Accuracy: Continuously improve the accuracy and
relevance of Al-assisted suggestions through iterative model
training and testing.

e Real-time Feedback: Implement real-time feedback
mechanisms to provide immediate suggestions as users

write, without impacting performance.
Conclusion:

By adding an Al assistant to the Write Activity in Sugar Activities,
the project aims to revolutionize the writing experience by

offering advanced grammar correction, Al Assisted writing

suggestions, thereby enhancing the overall quality of written

content.
How will it impact Sugar Labs?

Integrating an Al assistant into the Write Activity in Sugar
Activities will have a significant impact on user experience,

particularly for children using Sugar Labs' projects:

e Enhanced Learning Experience: Children will have access
to advanced grammar correction and Al-assisted writing
suggestions, promoting better learning outcomes and
improving their writing skills over time.

e Engaging and Interactive: The Al assistant adds an
interactive element to the Write Activity, making writing
more engaging and encouraging children to explore and
express their ideas with confidence.

e Personalized Feedback: The Al-assistant can provide
personalized feedback tailored to each child's writing style
and skill level, creating a supportive environment for
learning and growth.

e Empowering Creativity: By offering suggestions and
corrections, the Al assistant empowers children to be more
creative in their writing while also learning proper grammar

and writing techniques.

e Accessible Learning Tools: Integrating modern Al
technologies makes learning tools more accessible and
intuitive for children, promoting self-directed learning and
exploration.

e Positive Impact on Education: The project's focus on user
experience for children ensures that Sugar Labs' educational
tools remain engaging, effective, and impactful in supporting

children's learning journeys.

What technologies (programming languages, etc.)

will you be using?
The technologies that will be used for this project are as follows:

e Python: Python will be used for implementing NLP
algorithms, developing AI models, and integrating the Al
Assistant within the Sugar activities framework.

e Natural Language Processing (NLP): NLP techniques will
be employed for grammar correction, text analysis, and
generating Al-assisted writing suggestions within the Write
Activity.

e Large Language Models (LLMs): LLMs such as GPT-2 will
be utilized for generating text and providing context-aware
suggestions based on NLP analysis.

e Chatbot Technologies: Chatbot technologies will enhance
user interactions with the Al-assistant, utilizing NLP for
understanding user queries and providing relevant
responses.

e Sugar Activities Framework: Development within the
Sugar activities framework will include integrating NLP-based

functionalities for grammar correction, writing feedback, and
interactive user experiences.

Plan of Action: Grammar Checker and Fine-Tuning for Text

Generation
Goal:

The goal is to implement a grammar checker and fine-tuning
mechanism for text generation within the Write Activity in Sugar

project.
Requirements:

e Python programming skills

e Knowledge of natural language processing (NLP) techniques
e Familiarity with Al models and fine-tuning processes

e Access to GPT-2 or similar large language models

e Development environment set up for Sugar project
Functionalities:

Grammar Checker: Implement an NLP-based grammar checker

to identify and correct grammatical errors in written text.

e I have created a prototype for an NLP-based grammar and
spell checker to identify and correct errors in written text.

e Colab Link: Link

e Video Link: Link

https://colab.research.google.com/drive/1KAQwrdy59e0Wao4eKtnlQjjRymPsXtLz?usp=sharing
https://drive.google.com/file/d/1YPTBvKuLIoARIq7mzj4eKsqKaDm95Eql/view?usp=sharing

Fine-Tuning for Text Generation: Fine-tune a pre-trained Al
model (e.g., GPT-2) on custom writing data to improve text

generation quality and relevance.

e I have developed a prototype for text generation using the
GPT-2 model from Hugging Face, which was further
fine-tuned with custom datasets to enhance the quality and
relevance of the generated text

e Colab Link: Link

e Video Link: Link

Design Figma File: Design
Prototype Video: Video

User Experience (UX) Improvements for Grammar Checker:

e Seamless Integration: Integrate the grammar checker
directly into the Write Activity interface, allowing users to
access grammar correction tools without switching between
different applications.

e Interactive Feedback: Provide real-time feedback on
grammatical errors as users type, with interactive
suggestions that users can accept or ignore with ease.

User Experience (UX) Improvements for Al-Assisted Writing:

e Non-Intrusive Suggestions: Display Al-generated writing
suggestions in a non-intrusive manner, such as pop-ups or
tooltips, to avoid disrupting the writing process.

e Contextual Relevance: Ensure that Al-generated suggestions
are contextually relevant and displayed based on the user's
current writing context, enhancing the usability of the Al
assistant.

https://colab.research.google.com/drive/1kaVQDHxlIek9UZZwgzNMhamWhN-Q7W6t?usp=sharing
https://drive.google.com/file/d/19OvoUoqWpHNa9YFjSVTCKA6W6F41_vyi/view?usp=sharing
https://www.figma.com/proto/iJGmqQfFjUcLem5zPZYxtb/Untitled?node-id=1-58&starting-point-node-id=1%3A58&mode=design&t=NmdzNBdSTYKkbbQB-1
https://drive.google.com/file/d/1iWan-9grJaK4yO9nXl7eDjg2heq3eHBE/view?usp=sharing

Steps to Implement:
Set Up Development Environment:

Install necessary libraries and tools, including Python, NLP
libraries (e.g., NLTK, spaCy), transformers library for Al

models(Hugging Face), and Sugar development environment.

Data Collection and Preprocessing

Gather Text Samples for Grammar Checking:

e Collect a diverse dataset of text samples containing various
grammatical errors such as spelling mistakes, punctuation
errors, sentence structure issues, etc.

e Include text from different genres and styles to ensure the
grammar checker can handle a wide range of writing styles

and contexts.

Fine-Tuning Dataset Collection:

e Gather a dataset of writing samples that reflect the target
writing style and content for fine-tuning the AI model.

e Include a mix of sentences, paragraphs, and longer text
passages to capture the nuances of the writing style and

context.

Data Preprocessing for Grammar Checking and Fine-tuning:

Tokenization: Tokenize the text data into words, sentences,
or tokens for processing.

Cleaning: Remove any irrelevant or noisy data, such as
special characters, HTML tags, or non-textual content.
Normalization: Normalize the text data by converting it to
lowercase, removing accents, and standardizing
abbreviations.

Formatting: Format the data into appropriate input formats
for NLP tasks, such as tokenized sequences or structured
data for training the grammar checker and fine-tuning the Al

model.

Implement Grammar Checker:

e Develop an NLP-based grammar checker using Python and

appropriate NLP libraries.

e Train the grammar checker on the collected dataset to learn

grammatical rules and error patterns.

Fine-Tuning for Text Generation:

e Select a pre-trained AI model (e.g., GPT-2) for text
generation.
e Fine-tune the AI model using the collected dataset to adapt

it to writing style and content specifics.
Integration with Write Activity:

e Integrate the grammar checker and fine-tuned AI model into
the Write Activity of Sugar project.
e Implement user interface components for accessing

grammar checking and text generation functionalities.
Testing and Validation:

e Test the grammar checker and text generation features
within the write activity of sugar Activity to ensure
functionality and accuracy.

e Validate the results by comparing generated text with
expected outputs and evaluating grammar correction

accuracy.
Optimization and Deployment:

e Optimize the performance of the grammar checker and Al

model for efficient use within write activity.

e Deploy the updated write activity with grammar checking

and fine-tuned text generation capabilities.

By following these steps, the plan aims to successfully implement
a grammar checker and fine-tuning mechanism for text
generation within the write ativity project, enhancing the writing

experience for users.
Tools for Measuring Performance

e Accuracy: Measure correctness in grammar checking and
text generation.

e F1 Score: Balance precision and recall for performance
assessment.

e BLEU Score: Evaluate text generation similarity to

human-written samples.

e ROUGE Score: Assess summary quality and overlap with

reference text.

e Perplexity: Measure language model uncertainty for text

generation.

e Confusion Matrix: Detailed breakdown of correct and

incorrect predictions.

Optimizing the ALgorithm/Model

Identify Bottlenecks: Conduct thorough performance analysis to

identify bottlenecks such as inefficient layers or

computational-heavy operations that significantly impact model
speed and efficiency.

Optimize Hyperparameters: Fine-tune hyperparameters using
techniques like grid or random search to achieve optimal model
performance while reducing computation time and resource

usage.

Some methods I will use for optimization of javaScript

Identify Bottlenecks:

Profiling Tools: Use profiling tools such as TensorFlow Profiler or
PyTorch Profiler to analyze the execution time and resource usage
of different model components. These tools provide insights into
which parts of the model are taking the most time or consuming

the most resources, helping you focus on optimizing those areas.

Optimize Hyperparameters:

Bayesian Optimization: Use Bayesian optimization techniques

such as Gaussian Processes (GP) or Tree-structured Parzen
Estimators (TPE) to efficiently search for optimal
hyperparameters. Bayesian optimization models the
hyperparameter space probabilistically and iteratively explores
promising regions, making it efficient for large search spaces and

computationally expensive models.

GSoC 2024 has two evaluations, once after every 5 weeks.
Highlight the work you plan to complete before each
evaluation.

Timeline outlines project events chronologically, while Milestone 1 focuses on
foundational tasks like UX changes and grammar checker development.

Milestone 2 advances to fine-tuning, optimization, and integration, preparing
the project for evaluation and deployment.

Timeline

Important Dates

MileStone-1

Sumbit Proposal FInal Evaluation

Evaluation

1 May - 26 May 8 July -12 July | 12 July - 19 Aug 19 Aug - 26 Aug

Community

Bonding Work Period

After Submission Of Proposal

From April 3 to May 1, the project will enter a phase focused on exploring its intricacies
further. This involves delving into the project details, comprehending its nuances, and
assembling all the requisite learning resources essential for its seamless development.
Additionally, this period will entail referencing various repositories that have previously
undertaken the implementation of Al Assistant for writing activity, a crucial step in

gathering insights and leveraging existing knowledge to enhance project outcomes.

From May 1 to May 26, the project will focus on community bonding, including engaging
with the mentor. This phase involves building rapport within the project community,
fostering open communication channels, and collaborating closely with the mentor to

discuss and refine project goals and requirements. Discussions with the mentor will be

crucial in gaining valuable insights, receiving guidance, and aligning strategies to ensure

a successful and impactful development process.

Milestone 1

UX Changes and Seamless Integration:
e Integrate the grammar checker into the Write Activity interface with seamless

access.
e Ensure interactive feedback for real-time error suggestions.
Data Collection and Preprocessing:
e Gather text samples for fine-tuning and grammar checking.
e Preprocess data for NLP tasks and grammar checker training.

Grammar Checker and Fine Tuned Model Implementation:

e Develop and implement the NLP-based grammar checker.
e Test the accuracy and functionality of the grammar checker and fine-tuned model
with collected data.

Validation and Documentation Preparation:

e Validate grammar checker results and refine as needed.

e Prepare initial documentation for grammar checker usage.

No. [Description of PR / action Start Date Expected Date
for PR

1.1 UX Changes and Seamless Integration 22-26 May | 4-8 June

1.2 | Data Collection and Preprocessing 6-8 June 10-12 June

1.3 Grammar Checker and Fine Tuned Model 12-14 June | 18-20 June

Implementation

1.4 | Validation and Documentation Preparation | 20-22 June |24-25 June

1.5 | Finalized the implementation and UX 25-30 June | 1-3 July
integration into the write activity
1.6 | Prepare for midterm evaluation 4-8 July
Milestone 2

Fine-Tuning and Model Optimization (July 1 to July 10):

e Fine-tune Al model for text generation based on collected data.
e Optimize hyperparameters for grammar-checking accuracy.

Testing and Validation (July 11 to July 20):

e Test grammar checker and text generation features for accuracy and reliability.
e Validate results and refine models as necessary.

Integration and Deployment (July 21 to August 10):

Finalize Documentation(August 11 to August 20):

Integrate grammar checker and Al text generation into write activity.
e Optimize performance and deploy features for user testing.

e Complete comprehensive documentation for grammar checker and Al-assisted

writing features.

e Prepare for final evaluation and feedback collection from users and mentors.

No.

Description of PR / action

Start Date

Expected Date
of PR

2.1 12-18 July 18-20 July
Fine-Tuning and Model Optimization

2.2 20-26 July 26-28 July
Testing and Validation

2.3 29 Jul- 5 5-7 Aug
Integration and Deployment Aug

24 Review all implementations, discuss changes and new [7-15 Aug 15-17 Aug
functionalities with your mentor, and update
documentation accordingly.

2.5 17-20 Aug 20-22 Aug
Finalize Documentation

2.6 Prepare for final evaluation 22-26 Aug

Final Goal of the Project

The final goal of the project is to successfully integrate a user-friendly grammar checker
and Al-assisted text generation functionalities into the write activity project, ensuring
seamless access, interactive feedback, and accurate suggestions for users. This goal
encompasses all aspects of development, testing, optimization, integration, and
documentation to deliver a robust and impactful solution for enhancing the writing
experience within Sugar

Mention how much time will you spend each week working

on your project

| will be working 40 hours a Week

How will you report progress between evaluations?

Google Summer of Code (GSoC), | plan to regularly interact with my mentor on every
functionality implemented and provide weekly progress reports to ensure alignment with
project goals and receive valuable feedback and guidance.

Discuss your post-GSoC plans. Will you continue
contributing to Sugar Labs after GSOC ends?

After the GSoC period, | am eager to continue contributing to the Sugarizer project,
particularly focusing on the Al domain. | am passionate about enhancing models,
refining responses, and optimizing response time to continually improve the user
experience. My goal is to make significant strides in advancing Al capabilities within the
SugarLabs Organization, not only benefiting my assigned project but also collaborating
on other Al projects to collectively elevate the organization's Al functionalities. | am
committed to ongoing learning, innovation, and making meaningful contributions that
positively impact the Sugarizer project and its users.

	Project Details
	What are you making?
	How will it impact Sugar Labs?
	What technologies (programming languages, etc.) will you be using?
	Plan of Action: Grammar Checker and Fine-Tuning for Text Generation
	Goal:
	The goal is to implement a grammar checker and fine-tuning mechanism for text generation within the Write Activity in Sugar project.
	Requirements:
	●​Python programming skills
	●​Knowledge of natural language processing (NLP) techniques
	●​Familiarity with AI models and fine-tuning processes
	●​Access to GPT-2 or similar large language models
	●​Development environment set up for Sugar project
	Functionalities:
	Grammar Checker: Implement an NLP-based grammar checker to identify and correct grammatical errors in written text.
	Fine-Tuning for Text Generation: Fine-tune a pre-trained AI model (e.g., GPT-2) on custom writing data to improve text generation quality and relevance.
	Steps to Implement:
	Set Up Development Environment:
	Install necessary libraries and tools, including Python, NLP libraries (e.g., NLTK, spaCy), transformers library for AI models(Hugging Face), and Sugar development environment.
	Data Collection and Preprocessing
	Gather Text Samples for Grammar Checking:
	●​Collect a diverse dataset of text samples containing various grammatical errors such as spelling mistakes, punctuation errors, sentence structure issues, etc.
	●​Include text from different genres and styles to ensure the grammar checker can handle a wide range of writing styles and contexts.
	Fine-Tuning Dataset Collection:
	●​Gather a dataset of writing samples that reflect the target writing style and content for fine-tuning the AI model.
	●​Include a mix of sentences, paragraphs, and longer text passages to capture the nuances of the writing style and context.
	
	Data Preprocessing for Grammar Checking and Fine-tuning:
	
	●​Tokenization: Tokenize the text data into words, sentences, or tokens for processing.
	●​Cleaning: Remove any irrelevant or noisy data, such as special characters, HTML tags, or non-textual content.
	●​Normalization: Normalize the text data by converting it to lowercase, removing accents, and standardizing abbreviations.
	●​Formatting: Format the data into appropriate input formats for NLP tasks, such as tokenized sequences or structured data for training the grammar checker and fine-tuning the AI model.
	Implement Grammar Checker:
	●​Develop an NLP-based grammar checker using Python and appropriate NLP libraries.
	●​Train the grammar checker on the collected dataset to learn grammatical rules and error patterns.
	
	
	
	Fine-Tuning for Text Generation:
	●​Select a pre-trained AI model (e.g., GPT-2) for text generation.
	●​Fine-tune the AI model using the collected dataset to adapt it to writing style and content specifics.
	Integration with Write Activity:
	●​Integrate the grammar checker and fine-tuned AI model into the Write Activity of Sugar project.
	●​Implement user interface components for accessing grammar checking and text generation functionalities.
	Testing and Validation:
	●​Test the grammar checker and text generation features within the write activity of sugar Activity to ensure functionality and accuracy.
	●​Validate the results by comparing generated text with expected outputs and evaluating grammar correction accuracy.
	Optimization and Deployment:
	●​Optimize the performance of the grammar checker and AI model for efficient use within write activity.
	●​Deploy the updated write activity with grammar checking and fine-tuned text generation capabilities.
	By following these steps, the plan aims to successfully implement a grammar checker and fine-tuning mechanism for text generation within the write ativity project, enhancing the writing experience for users.
	Tools for Measuring Performance
	GSoC 2024 has two evaluations, once after every 5 weeks. Highlight the work you plan to complete before each evaluation.
	TimeLine

	Mention how much time will you spend each week working on your project
	How will you report progress between evaluations?
	Discuss your post-GSoC plans. Will you continue contributing to Sugar Labs after GSOC ends?

