
Overview
●​ Discovery of Server Capabilities and Configuration

●​ SMART Defines Two Patterns For Client Authorization

●​ SMART Defines Two Patterns For Client Authentication

●​ Scopes for Limiting Acess

●​ Token Introspection

This implementation guide describes foundational patterns based on OAuth 2.0 for client
applications to authorize, authenticate, and integrate with FHIR-based data systems.

Discovery of Server Capabilities and Configuration
SMART defines a discovery document available at .well-known/smart-configuration relative to a
FHIR Server Base URL, allowing clients to learn the authorization endpoint URLs and features a
server supports. This information helps client direct authorization requests to the right endpoint,
and helps clients construct an authorization request that the server can support.

SMART Defines Two Patterns For Client Authorization
Authorization via SMART App Launch
Authorizes a user-facing client application (“App”) to connect to a FHIR Server. This pattern allows
for “launch context” such as currently selected patient to be shared with the app, based on a user’s
session inside an EHR or other health data software, and allows for delegation of a user’s
permissions to the app itself.

Authorization via SMART Backend Services
Authorizes a headless or automated client application (“Backend Service”) to connect to a FHIR
Server. This pattern allows for backend services to connect and interact with an EHR when there is
no user directly involved in the launch process, or in other circumstances where permissions are
assigned to the client out-of-band.

SMART Defines Two Patterns For Client Authentication
When clients need to authenticate, this implementation guide defines two methods.

Note that client authentication is not required in all authorization scenarios, and not all SMART
clients are capable of authenticating (see discussion of “Public Clients” in the SMART App Launch
overview).

Asymmetric (“private key JWT”) authentication
Authenticates a client using an asymmetric keypair. This is SMART’s preferred authentication
method because it avoids sending a shared secret over the wire.

Symmetric (“client secret”) authentication
Authenticate a client using a secret that has been pre-shared between the client and server.

Scopes for Limiting Acess
SMART uses a language of “scopes” to define specific access permissions that can be delegated to a
client application. These scopes draw on FHIR API definitions for interactions, resource types, and
search paramters to describe a permissions model. For example, an app might be granted scopes
like user/Encounter.rs, allowing it to read and search for Encounters that are accessible to the user
who has authorized the app. Similarly, a backend service might be granted scopes
like system/Encounter.rs, allowing it to read and search for Encounters within the overall set of data
it is configured to access. User-facing apps can also receive “launch context” to indicate details

http://build.fhir.org/ig/HL7/smart-app-launch/index.html#discovery-of-server-capabilities-and-configuration
http://build.fhir.org/ig/HL7/smart-app-launch/index.html#smart-defines-two-patterns-for-client-authorization
http://build.fhir.org/ig/HL7/smart-app-launch/index.html#smart-defines-two-patterns-for-client-authentication
http://build.fhir.org/ig/HL7/smart-app-launch/index.html#scopes-for-limiting-acess
http://build.fhir.org/ig/HL7/smart-app-launch/index.html#token-introspection
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#support-for-public-and-confidential-apps
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

about the current patient or other aspects of a user’s EHR session or a user’s selections when
launching the app.

Note that the scope syntax has changed since SMARTv1. Details are at Scopes for requesting
clinical data.

Token Introspection
SMART defines a Token Introspection API allowing Resource Servers or software components to
understand the scopes, users, patients, and other context associated with access tokenes. This
pattern allows a looseer coupling between Resource Servers and Authorization Servers.

App Launch
●​ Profile audience and scope

●​ Security and Privacy Considerations

●​ SMART authorization & FHIR access: overview

●​ Top-level steps for SMART App Launch

●​ Register App with EHR

●​ Launch App: Standalone Launch

●​ Launch App: EHR Launch

●​ Retrieve .well-known/smart-configuration

●​ Obtain authorization code

●​ Obtain access token

●​ Access FHIR API

●​ Refresh access token

The SMART App Launch Framework connects third-party applications to Electronic Health Record
data, allowing apps to launch from inside or outside the user interface of an EHR system. The
framework supports apps for use by clinicians, patients, and others via a PHR or Patient Portal or
any FHIR system where a user can launch an app. It provides a reliable, secure authorization
protocol for a variety of app architectures, including apps that run on an end-user’s device as well
as apps that run on a secure server. The Launch Framework supports four key use cases:

1.​ Patients apps that launch standalone

2.​ Patient apps that launch from a portal

3.​ Provider apps that launch standalone

4.​ Provider apps that launch from a portal

These use cases support apps that perform data visualization, data collection, clinical decision
support, data sharing, case reporting, and many other functions.

Profile audience and scope
This profile is intended to be used by developers of apps that need to access user identity
information or other FHIR resources by requesting authorization from OAuth 2.0 compliant
authorization servers. It is compatible with FHIR R2 (DSTU2) and later; this publication includes
explicit definitions for FHIR R4.

OAuth 2.0 authorization servers are configured to mediate access based on a set of rules
configured to enforce institutional policy, which may include requesting end-user authorization. This
profile does not dictate the institutional policies that are implemented in the authorization server.

The profile defines a method through which an app requests authorization to access a FHIR
resource, and then uses that authorization to retrieve the resource. Synchronization of patient
context is not addressed; for use cases that require context synchronization (e.g., learning about
when the in-context patient changes within an EHR session) see FHIRcast. In other words, if the
patient chart is changed during the session, the application will not inherently be updated. Other
security mechanisms, such as those mandated by HIPAA in the US (end-user authentication,

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-clinical-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-clinical-data
http://build.fhir.org/ig/HL7/smart-app-launch/token-introspection.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#profile-audience-and-scope
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#security-and-privacy-considerations
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#smart-authorization--fhir-access-overview
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#top-level-steps-for-smart-app-launch
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#register-app-with-ehr
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#launch-app-standalone-launch
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#launch-app-ehr-launch
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#retrieve-well-knownsmart-configuration
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#obtain-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#obtain-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#access-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#refresh-access-token
https://fhircast.org/

session time-out, security auditing, and accounting of disclosures) are outside the scope of this
profile.

This profile provides a mechanism to delegate an entity’s permissions (e.g., a user’s permissions)
to a 3rd-party app. The profile includes mechanisms to delegate a limited subset of an entity’s
permissions (e.g., only sharing access to certain data types). However, this profile does not model
the permissions that the entity has in the first place (e.g., it provides no mechanism to specify that
a given entity should or should not be able to access specific records in an EHR). Hence, this profile
is designed to work on top of an EHR’s existing user and permissions management system,
enabling a standardized mechanism for delegation.

Security and Privacy Considerations
App protection
The app is responsible for protecting itself from potential misbehaving or malicious values passed
to its redirect URL (e.g., values injected with executable code, such as SQL) and for protecting
authorization codes, access tokens, and refresh tokens from unauthorized access and use. The app
developer must be aware of potential threats, such as malicious apps running on the same
platform, counterfeit authorization servers, and counterfeit resource servers, and implement
countermeasures to help protect both the app itself and any sensitive information it may hold. For
background, see the OAuth 2.0 Threat Model and Security Considerations.

●​ Apps SHALL ensure that sensitive information (authentication secrets, authorization codes,
tokens) is transmitted ONLY to authenticated servers, over TLS-secured channels.

●​ Apps SHALL generate an unpredictable state parameter for each user session; SHALL
include state with all authorization requests; and SHALL validate the state value for any
request sent to its redirect URL.

●​ An app SHALL NOT execute untrusted user-supplied inputs as code.

●​ An app SHALL NOT forward values passed back to its redirect URL to any other arbitrary or
user-provided URL (a practice known as an “open redirector”).

●​ An app SHALL NOT store bearer tokens in cookies that are transmitted as clear text.

●​ Apps SHOULD persist tokens and other sensitive data in app-specific storage locations only,
and SHOULD NOT persist them in system-wide-discoverable locations.

Support for “public” and “confidential” apps
Within this profile we differentiate between the two types of apps defined in the OAuth 2.0
specification: confidential and public. The differentiation is based upon whether the execution
environment within which the app runs enables the app to protect secrets. Pure client-side apps
(for example, HTML5/JS browser-based apps, iOS mobile apps, or Windows desktop apps) can
provide adequate security, but they may be unable to “keep a secret” in the OAuth2 sense. In
other words, any “secret” key, code, or string that is statically embedded in the app can potentially
be extracted by an end-user or attacker. Hence security for these apps cannot depend on secrets
embedded at install-time.

For strategies and best practices to protecting a client secret refer to:

●​ OAuth 2.0 Threat Model and Security Considerations: 4.1.1. Threat: Obtaining Client
Secrets

●​ OAuth 2.0 for Native Apps: 8.5. Client Authentication

●​ OAuth 2.0 Dynamic Client Registration Protocol

Use the confidential app profile if your app is able to protect a secret

for example:

●​ App runs on a trusted server with only server-side access to the secret

●​ App is a native app that uses additional technology (such as dynamic client registration and
universal redirect_uris) to protect the secret

Use the public app profile if your app is unable to protect a secret

for example:

https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6819#section-4.1.1
https://tools.ietf.org/html/rfc6819#section-4.1.1
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-12#section-8.5
https://tools.ietf.org/html/rfc7591

●​ App is an HTML5 or JS in-browser app (including single-page applications) that would
expose the secret in user space

●​ App is a native app that can only distribute a secret statically

Considerations for PKCE Support
All SMART apps SHALL support Proof Key for Code Exchange (PKCE). PKCE is a standardized,
cross-platform technique for clients to mitigate the threat of authorization code interception or
injection. PKCE is described in IETF RFC 7636. SMART servers SHALL support
the S256 code_challenge_method and SHALL NOT support the plain method.

Related reading
Implementers can review the OAuth Security Topics guidance from IETF as a collection of Best
Current Practices.

Some resources shared with apps following this IG may be considered Patient Sensitive;
implementers should review the Core FHIR Specification’s Security Page for additional security and
privacy considerations.

SMART authorization & FHIR access: overview
An app can launch from within an existing EHR or Patient Portal session; this is known as an EHR
launch. Alternatively, it can launch as a standalone app.

In an EHR launch, an opaque handle to the EHR context is passed along to the app as part of the
launch URL. The app later will include this context handle as a request parameter when it requests
authorization to access resources. Note that the complete URLs of all apps approved for use by
users of this EHR will have been registered with the EHR authorization server.

Alternatively, in a standalone launch, when the app launches from outside an EHR session, the app can
request context from the EHR authorization server during the authorization process described
below.

Once an app receives a launch request, it requests authorization to access a FHIR resource by
causing the browser to navigate to the EHR’s authorization endpoint. Based on pre-defined rules
and possibly end-user authorization, the EHR authorization server either grants the request by
returning an authorization code to the app’s redirect URL, or denies the request. The app then
exchanges the authorization code for an access token, which the app presents to the EHR’s
resource server to access requested FHIR resources. If a refresh token is returned along with the
access token, the app may use this to request a new access token, with the same scope, once the
access token expires.

Top-level steps for SMART App Launch
1.​ Register App with EHR (one-time step, can be out-of-band)

2.​ Launch App: Standalone Launch or EHR Launch

3.​ Retrieve .well-known/smart-configuration

4.​ Obtain authorization code

5.​ Obtain access token

6.​ Access FHIR API

7.​ Refresh access token

AppAppEHR with Authorization ServerEHR with Authorization ServerFHIR ServerFHIR
Serveropt[Precondition: Client Registration](may be out of band)alt[EHR Launch]EHR
userlaunches appLaunch request[Standalone Launch]App userconnects to EHRDiscovery
requestDiscovery responseAuthorization requestoptEHR incorporates user inputinto
authorization decisionalt[Granted]Authorization grantedAccess token requestAccess token
responseRequest Resources[Denied]Authorization error

​

Register App with EHR

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16
http://hl7.org/fhir/security.html#Patient
http://hl7.org/fhir/security.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-1-register
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-2-launch-standalone
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-2-launch-ehr
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-3-discovery
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-4-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-6-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-7-refresh

Note: this is a one-time setup step, and can occur out-of-band.

Before a SMART app can run against an EHR, the app must be registered with that EHR’s
authorization service. SMART does not specify a standards-based registration process, but we
encourage EHR implementers to consider the OAuth 2.0 Dynamic Client Registration Protocol for an
out-of-the-box solution.

Request
No matter how an app registers with an EHR’s authorization service, at registration time every
SMART app must:

●​ Register zero or more fixed, fully-specified launch URL with the EHR’s authorization server

●​ Register one or more fixed, fully-specified redirect_uris with the EHR’s authorization
server. Note: In the case of native clients following the OAuth 2.0 for Native Apps
specification (RFC 8252), it may be appropriate to leave the port as a dynamic variable in
an otherwise fixed redirect URI.

For confidential clients, additional registration-time requirements are defined based on the client
authentication method.

●​ For asymmetric client authentication: a JSON Web Key Set or JWSK URL is established

●​ For symmetric client authentication: a client secret is established

Response
The EHR confirms the app’s registration parameters and communicates a client_id to the app.

Launch App: Standalone Launch
In SMART’s standalone launch flow, a user selects an app from outside the EHR, for example by tapping
an app icon on a mobile phone home screen.

Request
There is no explicit request associated with this step of the SMART App Launch process. The app
proceeds to the next step of the SMART App Launch flow.

Response
N/A

Examples
●​ Public client

●​ Confidential client, asymmetric authentication

●​ Confidential client, symmetric authentication

Launch App: EHR Launch
In SMART’s EHR launch flow, a user has established an EHR session, and then decides to launch an
app. This could be a single-patient app (which runs in the context of a patient record), or a
user-level app (like an appointment manager or a population dashboard).

Request
The EHR initiates a “launch sequence” by opening a new browser instance (or iframe) pointing to
the app’s registered launch URL and passing some context.

The following parameters are included:

Parameters

iss require
d

Identifies the EHR's FHIR endpoint, which the app can use to obtain additional details about the E

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc8252
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#registering-a-client-communicting-public-keys
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-3-discovery
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#step-2-launch
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html#step-2-launch
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-symmetric-auth.html#step-2-launch

launch require
d

Opaque identifier for this specific launch, and any EHR context associated with it. This parameter
by passing along a launch parameter (see example below).

For example

A launch might cause the browser to navigate to:

Location: https://app/launch?iss=https%3A%2F%2Fehr%2Ffhir&launch=xyz123

On receiving the launch notification, the app would query the
issuer’s .well-known/smart-configuration endpoint which contains (among other details) the EHR’s
identifying the OAuth authorize and token endpoint URLs for use in requesting authorization to
access FHIR resources.

Later, when the app prepares its authorization request, it includes launch as a requested scope and
includes a launch={launch id} URL parameter, echoing the value it received from the EHR in this
notification.

Response
The app proceeds to the next step of the SMART App Launch flow.

Retrieve .well-known/smart-configuration
In order to obtain launch context and request authorization to access FHIR resources, the app
discovers the EHR FHIR server’s SMART configuration metadata, including
OAuth authorization_endpoint and token_endpoint URLs.

Request
The discovery URL is constructed by appending .well-known/smart-configuration to the FHIR Base
URL. The app issues an HTTP GET to the discovery URL with an Accept header
supporting application/json.

Response
The EHR responds with a SMART configuration JSON document as described in conformance

Examples
●​ Example request and response

Obtain authorization code
To proceed with a launch, the app constructs a request for an authorization code.

Request
The app supplies the following parameters to the EHR’s “authorize” endpoint.

Note on PKCE Support: the EHR SHALL ensure that the code_verifier is present and valid when the
code is exchanged for an access token.

Parameters

response_type required Fixed value: code.

client_id required The client's identifier.

redirect_uri required Must match one of the client's pre-registered redirect URIs.

http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#using-well-known
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-4-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-3-discovery
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#example-request

Launch conditional When using the EHR Launch flow, this must match the launch value received from

Scope required Must describe the access that the app needs, including scopes like patient/*.r
identity) and either:

●​ a launch value indicating that the app wants to receive already-establis

●​ a set of launch context requirements in the form launch/patient, which

See SMART on FHIR Access Scopes details.

State required An opaque value used by the client to maintain state between the request and
redirecting the user-agent back to the client. The parameter SHALL be used for
attacks. The app SHALL use an unpredictable value for the state parameter wit
random uuid is suitable).

aud required URL of the EHR resource server from which the app wishes to retrieve FHIR dat
a counterfeit resource server. (Note: in the case of an EHR launch flow, this aud va
the aud parameter is semantically equivalent to the resource parameter defined
we have decided not to rename it for reasons of backwards compatibility. We m
implementer feedback indicates that alignment would be valuable. For the curr
support a resource parameter as a synonym for aud.

code_challenge required This parameter is generated by the app and used for the code challenge, as spe
when code_challenge_method is 'S256', this is the S256 hashed version of the c

code_challenge_method required Method used for the code_challenge parameter. Example value: S256. See cons

The app SHOULD limit its requested scopes to the minimum necessary (i.e., minimizing the
requested data categories and the requested duration of access).

If the app needs to authenticate the identify of or retrieve information about the end-user, it should
include two OpenID Connect scopes: openid and fhirUser. When these scopes are requested, and
the request is granted, the app will receive an id_token along with the access token. For full
details, see SMART launch context parameters.

The following requirements are adopted from OpenID Connect Core 1.0 Specification section
3.1.2.1:

●​ Authorization Servers SHALL support the use of the HTTP GET and POST methods at the
Authorization Endpoint.

●​ Clients SHALL use either the HTTP GET or the HTTP POST method to send the Authorization
Request to the Authorization Server. If using the HTTP GET method, the request
parameters are serialized using URI Query String Serialization. If using the HTTP POST
method, the request parameters are serialized using Form Serialization and the
application/x-www-form-urlencoded content type.

For example

If an app needs demographics and observations for a single patient, and also wants information
about the current logged-in user, the app can request:

●​ patient/Patient.rs

●​ patient/Observation.rs

●​ openid fhirUser

If the app was launched from an EHR, the app adds a launch scope and a launch={launch id} URL
parameter, echoing the value it received from the EHR to be associated with the EHR context of this
launch notification.

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#considerations-for-pkce-support
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Apps using the standalone launch flow won’t have a launch id at this point. These apps can declare
launch context requirements by adding specific scopes to the authorization request: for
example, launch/patient to indicate that the app needs a patient ID, or launch/encounter to indicate
it needs an encounter. The EHR’s “authorize” endpoint will take care of acquiring the context it
needs (making it available to the app).​
For example, if your app needs patient context, the EHR may provide the end-user with a patient
selection widget. For full details, see SMART launch context parameters.

The app then causes the browser to navigate the browser to the EHR’s authorization URL as
determined above. For example to cause the browser to issue a GET:

Location: https://ehr/authorize?

 response_type=code&

 client_id=app-client-id&

 redirect_uri=https%3A%2F%2Fapp%2Fafter-auth&

 launch=xyz123&

scope=launch+patient%2FObservation.rs+patient%2FPatient.rs+openid+fhirUser&

 state=98wrghuwuogerg97&

 aud=https://ehr/fhir

Alternatively, the following example shows one way for a client app to cause the browser to issue
a POST, using HTML and javascript:

<html>

 <body onload="javascript:document.forms[0].submit()">

 <form method="post" action="https://ehr/authorize">

 <input type="hidden" name="response_type" value="code"/>

 <input type="hidden" name="client_id" value="app-client-id"/>

 <input type="hidden" name="redirect_uri" value="https://app/after-auth"/>

 <input type="hidden" name="launch" value="xyz123"/>

 <input type="hidden" name="scope" value="launch patient/Observation.rs
patient/Patient.rs openid fhirUser"/>

 <input type="hidden" name="state" value="98wrghuwuogerg97"/>

 <input type="hidden" name="aud" value="https://ehr/fhir"/>

 </form>

 </body>

</html>

Response
The authorization decision is up to the EHR authorization server, which may request authorization
from the end-user. The EHR authorization server will enforce access rules based on local policies
and optionally direct end-user input.

The EHR decides whether to grant or deny access. This decision is communicated to the app when
the EHR authorization server returns an authorization code (or, if denying access, an error
response). Authorization codes are short-lived, usually expiring within around one minute. The
code is sent when the EHR authorization server causes the browser to navigate to the
app’s redirect_uri, with the following URL parameters:

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

Parameters

code required The authorization code generated by the authorization server. The authorization code *must* exp

state required The exact value received from the client.

The app SHALL validate the value of the state parameter upon return to the redirect URL and
SHALL ensure that the state value is securely tied to the user’s current session (e.g., by relating
the state value to a session identifier issued by the app).

For example

Based on the client_id, current EHR user, configured policy, and perhaps direct user input, the EHR
makes a decision to approve or deny access. This decision is communicated to the app by causing
the browser to navigate to the app’s registered redirect_uri. For example:

Location: https://app/after-auth?

 code=123abc&

 state=98wrghuwuogerg97

Examples
●​ Public client

●​ Confidential client, asymmetric authentication

●​ Confidential client, symmetric authentication

Obtain access token
After obtaining an authorization code, the app trades the code for an access token.

Request
The app issues an HTTP POST to the EHR authorization server’s token endpoint URL, using
content-type application/x-www-form-urlencoded, as described in section 4.1.3 of RFC6749.

For public apps, authentication is not possible (and thus not required), since a client with no secret
cannot prove its identity when it issues a call. (The end-to-end system can still be secure because
the client comes from a known, https protected endpoint specified and enforced by the redirect
uri.) For confidential apps, authentication is required. Confidential clients SHOULD use Asymmetric
Authentication if available, and MAY use Symmetric Authentication.

Parameters

grant_type required Fixed value: authorization_code

code required Code that the app received from the authorization server

redirect_uri required The same redirect_uri used in the initial authorization request

code_verifier required This parameter is used to verify against the code_challenge parameter previously

client_id conditional Required for public apps. Omit for confidential apps.

Response

http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#step-4-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html#step-4-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-symmetric-auth.html#step-4-authorization-code
https://tools.ietf.org/html/rfc6749#section-4.1.3
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html

The EHR authorization server SHALL return a JSON object that includes an access token or a
message indicating that the authorization request has been denied. The JSON structure includes
the following parameters:

Parameters

access_token required The access token issued by the authorization server

token_type required Fixed value: Bearer

expires_in recommended Lifetime in seconds of the access token, after which the token SHALL NOT be a

scope required Scope of access authorized. Note that this can be different from the scopes req

id_token optional Authenticated user identity and user details, if requested

refresh_token optional Token that can be used to obtain a new access token, using the same or a subs

In addition, if the app was launched from within a patient context, parameters to communicate the
context values MAY BE included. For example, a parameter like "patient": "123" would indicate the
FHIR resource https://[fhir-base]/Patient/123. Other context parameters may also be available. For
full details see SMART launch context parameters.

The parameters are included in the entity-body of the HTTP response, as described in section 5.1
of RFC6749.

The access token is a string of characters as defined in RFC6749 and RFC6750. The token is
essentially a private message that the authorization server passes to the FHIR Resource Server,
telling the FHIR server that the “message bearer” has been authorized to access the specified
resources.​
Defining the format and content of the access token is left up to the organization that issues the
access token and holds the requested resource.

The authorization server’s response SHALL include the HTTP “Cache-Control” response header field
with a value of “no-store,” as well as the “Pragma” response header field with a value of
“no-cache.”

The EHR authorization server decides what expires_in value to assign to an access token and
whether to issue a refresh token, as defined in section 1.5 of RFC6749, along with the access
token. If the app receives a refresh token along with the access token, it can exchange this refresh
token for a new access token when the current access token expires (see step 5 below).

Apps SHOULD store tokens in app-specific storage locations only, not in system-wide-discoverable
locations. Access tokens SHOULD have a valid lifetime no greater than one hour. Confidential
clients may be issued longer-lived tokens than public clients.

A large range of threats to access tokens can be mitigated by digitally signing the token as
specified in RFC7515 or by using a Message Authentication Code (MAC) instead. Alternatively, an
access token can contain a reference to authorization information, rather than encoding the
information directly into the token itself.​
To be effective, such references must be infeasible for an attacker to guess. Using a reference may
require an extra interaction between the resource server and the authorization server; the
mechanics of such an interaction are not defined by this specification.

At this point, the authorization flow is complete. Follow steps below to work with data and
refresh access tokens, as shown in the following sequence diagram.

Examples
●​ Public client

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749#page-10
https://tools.ietf.org/html/rfc7515
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#step-5-access-token

●​ Confidential client, asymmetric authentication

●​ Confidential client, symmetric authentication

Access FHIR API
With a valid access token, the app can access protected EHR data by issuing a FHIR API call to the
FHIR endpoint on the EHR’s resource server.

Request
From the access token resopnse, an app has received an OAuth2 bearer-type access token
(access_token property) that can be used to fetch clinical data. The app issues a request that
includes an Authorization header that presents the access_token as a “Bearer” token:

Authorization: Bearer {{access_token}}

(Note that in a real request, {{access_token}} is replaced with the actual token value.)

Response
The resource server SHALL validate the access token and ensure that it has not expired and that its
scope covers the requested resource. The resource server also validates that the aud parameter
associated with the authorization (see above) matches the resource server’s own FHIR endpoint.
The method used by the EHR to validate the access token is beyond the scope of this specification
but generally involves an interaction or coordination between the EHR’s resource server and the
authorization server.

On occasion, an app may receive a FHIR resource that contains a “reference” to a resource hosted
on a different resource server. The app SHOULD NOT blindly follow such references and send along
its access_token, as the token may be subject to potential theft. The app SHOULD either ignore the
reference, or initiate a new request for access to that resource.

Example Request and Response
Example

GET https://ehr/fhir/Patient/123

Authorization: Bearer i8hweunweunweofiwweoijewiwe

Response

{

 "resourceType": "Patient",

 "birthTime": ...

}

Refresh access token
Refresh tokens are issued to enable sessions to last longer than the validity period of an access
token. The app can use the expires_in field from the token response (see step 5) to determine
when its access token will expire. EHR implementers are also encouraged to consider using
the OAuth 2.0 Token Introspection Protocol to provide an introspection endpoint that clients can
use to examine the validity and meaning of tokens. An app with “online access” can continue to get
new access tokens as long as the end-user remains online. Apps with “offline access” can continue
to get new access tokens without the user being interactively engaged for cases where an
application should have long-term access extending beyond the time when a user is still interacting
with the client.

The app requests a refresh token in its authorization request via
the online_access or offline_access scope (see SMART on FHIR Access Scopes for details). A server

http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-symmetric-auth.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-4-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
https://tools.ietf.org/html/rfc7662
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

can decide which client types (public or confidential) are eligible for offline access and able to
receive a refresh token. If granted, the EHR supplies a refresh_token in the token response. A
refresh token SHALL BE bound to the same client_id and SHALL contain the same, or a subset of,
the set of claims authorized for the access token with which it is associated. After an access token
expires, the app requests a new access token by providing its refresh token to the EHR’s token
endpoint.]

Request
An HTTP POST transaction is made to the EHR authorization server’s token URL, with
content-type application/x-www-form-urlencoded. The decision about how long the refresh token
lasts is determined by a mechanism that the server chooses. For clients with online access, the
goal is to ensure that the user is still online.

●​ For public apps, authentication is not possible (and thus not required). For confidential apps, see
authentication considerations in step 5.

The following request parameters are defined:

Parameters

grant_type require
d

Fixed value: refresh_token.

refresh_token require
d

The refresh token from a prior authorization response

scope optional The scopes of access requested. If present, this value must be a strict sub-set of the scop
obtained at refresh time). A missing value indicates a request for the same scopes grante

Response
The response is a JSON object containing a new access token, with the following claims:

JSON Object property name

access_token require
d

New access token issued by the authorization server.

token_type require
d

Fixed value: bearer

expires_in require
d

The lifetime in seconds of the access token. For example, the value 3600 denotes that the
response was generated.

scope require
d

Scope of access authorized. Note that this will be the same as the scope of the original ac
by the app.

refresh_token optional The refresh token issued by the authorization server. If present, the app should discard an
replacing it with this new value.

In addition, if the app was launched from within a patient context, parameters to communicate the
context values MAY BE included. For example, a parameter like "patient": "123" would indicate the
FHIR resource https://[fhir-base]/Patient/123. Other context parameters may also be available. For
full details see SMART launch context parameters.

Examples

http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

●​ Public client

●​ Confidential client, asymmetric authentication

●​ Confidential client, symmetric authentication

2,1 Example App Launch for Public Client
●​ Example: App Launch with Asymmetric Authentication

o​ Launch App

o​ Retrieve .well-known/smart-configuration

o​ Obtain authorization code

o​ Retrieve access token

o​ Access FHIR API

o​ Refresh access token

2.1 Example: App Launch with Asymmetric Authentication

Launch App
This is a user-driven stepm triggering the subsequent workflow.

In this example, the launch is initiated aginst a FHIR server with a base URL of:

https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2
EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir

… and the app’s redirect URL has been registered as:

https://sharp-lake-word.glitch.me/graph.html

… and the app has been registered as a public client, assigned a client_id of:

demo_app_whatever

Retrieve .well-known/smart-configuration

curl -s
'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir/.well-known/smart-configuration
' \

 -H 'accept: application/json'

{

 "authorization_endpoint":
"https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/authorize",

 "token_endpoint":
"https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token",

http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#step-7-refresh
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html#step-7-refresh
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-symmetric-auth.html#step-7-refresh
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#example-app-launch-with-asymmetric-authentication
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#launch-app
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#retrieve-well-knownsmart-configuration
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#obtain-authorization-code
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#retrieve-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#access-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html#refresh-access-token

 "introspection_endpoint":
"https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/introspect",

 "code_challenge_methods_supported": [

 "S256"

],

 "grant_types_supported": [

 "authorization_code"

],

 "token_endpoint_auth_methods_supported": [

 "private_key_jwt",

 "client_secret_basic"

],

 "token_endpoint_auth_signing_alg_values_supported": [

 "RS384",

 "ES384"

],

 "scopes_supported": [

 "openid",

 "fhirUser",

 "launch",

 "launch/patient",

 "patient/*.cruds"

 "user/*.cruds",

 "offline_access"

],

 "response_types_supported": [

 "code"

],

 "capabilities": [

 "launch-ehr",

 "launch-standalone",

 "client-public",

 "client-confidential-symmetric",

 "client-confidential-asymmetric",

 "context-passthrough-banner",

 "context-passthrough-style",

 "context-ehr-patient",

 "context-ehr-encounter",

 "context-standalone-patient",

 "context-standalone-encounter",

 "permission-offline",

 "permission-patient",

 "permission-user",

 "permission-v2",

 "authorize-post"

]

}

Obtain authorization code
Generate a PKCE code challenge and verifier, then redirect browser to the authorize_endpoint from
the discovery response (newlines added for clarity):

https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2
EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/authorize?

 response_type=code&

 client_id=demo_app_whatever&

scope=launch%2Fpatient%20patient%2FObservation.rs%20patient%2FPatient.rs%20offline_acc
ess&

 redirect_uri=https%3A%2F%2Fsharp-lake-word.glitch.me%2Fgraph.html&

aud=https%3A%2F%2Fsmart.argo.run%2Fv%2Fr4%2Fsim%2FeyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJq
IjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ%2Ffhir&state=0hJc1S
9O4oW54XuY&

 code_challenge=YPXe7B8ghKrj8PsT4L6ltupgI12NQJ5vblB07F4rGaw&

 code_challenge_method=S256

Receive authorization code when EHR redirects the browser back to (newlines added for clarity):

https://sharp-lake-word.glitch.me/graph.html?

code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIi
OnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb2
4iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6
ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbm
dlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y0ckdhdyIsInNjb3BlIjoibGF1bmNo
L3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cm
kiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMjAx
NCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r4Z_boe2zv3A3E&

 state=0hJc1S9O4oW54XuY

Retrieve access token
Generate a client authentication assertion and prepare arguments for POST to token API (newlines
added for clarity):

client_id=demo_app_whatever&

code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIi
OnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb2
4iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6
ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbm
dlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y0ckdhdyIsInNjb3BlIjoibGF1bmNo
L3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cm
kiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMjAx
NCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r4Z_boe2zv3A3E&

grant_type=authorization_code&

redirect_uri=https%3A%2F%2Fsharp-lake-word.glitch.me%2Fgraph.html&

code_verifier=o28xyrYY7-lGYfnKwRjHEZWlFIPlzVnFPYMWbH-g_BsNnQNem-IAg9fDh92X0KtvHCPO5_C-
RJd2QhApKQ-2cRp-S_W3qmTidTEPkeWyniKQSF9Q_k10Q5wMc8fGzoyF

Issue POST to the token endpoint:

curl
'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token' \

 -H 'accept: application/json' \

 -H 'content-type: application/x-www-form-urlencoded' \

 --data-raw
'client_id=demo_app_whatever&code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp
7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnb
y5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU
2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kI
joiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y
0ckdhdyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1Bhd
GllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGg
uaHRtbCIsImlhdCI6MTYzMzUzMjAxNCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r
4Z_boe2zv3A3E&grant_type=authorization_code&redirect_uri=https%3A%2F%2Fsharp-lake-word
.glitch.me%2Fgraph.html&code_verifier=o28xyrYY7-lGYfnKwRjHEZWlFIPlzVnFPYMWbH-g_BsNnQNe
m-IAg9fDh92X0KtvHCPO5_C-RJd2QhApKQ-2cRp-S_W3qmTidTEPkeWyniKQSF9Q_k10Q5wMc8fGzoyF'

{

 "need_patient_banner": true,

 "smart_style_url": "https://smart.argo.run/smart-style.json",

 "patient": "87a339d0-8cae-418e-89c7-8651e6aab3c6",

 "token_type": "Bearer",

 "scope": "launch/patient patient/Observation.rs patient/Patient.rs",

 "expires_in": 3600,

 "access_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9z
dHlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ij
g3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29w
ZSI6ImxhdW5jaC9wYXRpZW50IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIiwiY2
xpZW50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzIwMTQs
ImV4cCI6MTYzMzUzNTYxNH0.PzNw23IZGtBfgpBtbIczthV2hGwanG_eyvthVS8mrG4",

 "refresh_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRy
dWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLC

JwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRl
bW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2VydmF0aW9uLnJzIH
BhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXhwIjoxNjY1MDY5
ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM"

}

Access FHIR API

curl
'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir/Observation?code=4548-4&_sort%3
Adesc=date&_count=10&patient=87a339d0-8cae-418e-89c7-8651e6aab3c6' \

 -H 'accept: application/json' \

 -H 'authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9zd
HlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ijg
3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29wZ
SI6ImxhdW5jaC9wYXRpZW50IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIiwiY2x
pZW50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzIwMTQsI
mV4cCI6MTYzMzUzNTYxNH0.PzNw23IZGtBfgpBtbIczthV2hGwanG_eyvthVS8mrG4'

{

 "resourceType": "Bundle",

 "id": "9e3ed23b-b62e-4a3d-9ac8-9b66a67f700d",

 "meta": {

 "lastUpdated": "2021-10-06T10:52:52.847-04:00"

 },

 "type": "searchset",

 "total": 11,

 "link": [

 {

 "relation": "self",

 "url":
"https://smart.argo.run/v/r4/fhir/Observation?_count=10&_sort%3Adesc=date&code=4548-4&
patient=87a339d0-8cae-418e-89c7-8651e6aab3c6"

 },

 {

 "relation": "next",

 "url":
"https://smart.argo.run/v/r4/fhir?_getpages=9e3ed23b-b62e-4a3d-9ac8-9b66a67f700d&_getp
agesoffset=10&_count=10&_pretty=true&_bundletype=searchset"

 }

],

 "entry": [

 {

<SNIPPED for brevity>

Refresh access token
Generate a client authentication assertion and prepare arguments for POST to token API (newlines
added for clarity)

client_id=demo_app_whatever&

grant_type=refresh_token&

refresh_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9
iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0e
WxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWV
udF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2Vyd
mF0aW9uLnJzIHBhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXh
wIjoxNjY1MDY5ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM&

curl
'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N
2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token' \

 -H 'accept: application/json' \

 -H 'content-type: application/x-www-form-urlencoded' \

 --data-raw
'client_id=demo_app_whatever&code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp
7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnb
y5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU
2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kI
joiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoieFFzdkN5c2FMbEZvVkU5ZV92MTFiWmNwUlR6RW5wVnIzY2c2VTJ
YeFpFbyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1Bhd
GllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGg
uaHRtbCIsImlhdCI6MTYzMzUzMzY1NCwiZXhwIjoxNjMzNTMzOTU0fQ.ovs8WkW7ViCvoiTGJXxWb21OtiJfUm
wgXwkt3a1gNRc&grant_type=authorization_code'

{

 "need_patient_banner": true,

 "smart_style_url": "https://smart.argo.run/smart-style.json",

 "patient": "87a339d0-8cae-418e-89c7-8651e6aab3c6",

 "token_type": "Bearer",

 "scope": "launch/patient patient/Observation.rs patient/Patient.rs offline_access",

 "expires_in": 3600,

 "access_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9z
dHlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ij
g3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInJlZnJlc2hfdG9rZW4iOiJleUpoYkdjaU9p
SklVekkxTmlJc0luUjVjQ0k2SWtwWFZDSjkuZXlKamIyNTBaWGgwSWpwN0ltNWxaV1JmY0dGMGFXVnVkRjlpWV
c1dVpYSWlPblJ5ZFdVc0luTnRZWEowWDNOMGVXeGxYM1Z5YkNJNkltaDBkSEJ6T2k4dmMyMWhjblF1WVhKbmJ5
NXlkVzR2TDNOdFlYSjBMWE4wZVd4bExtcHpiMjRpTENKd1lYUnBaVzUwSWpvaU9EZGhNek01WkRBdE9HTmhaUz
AwTVRobExUZzVZemN0T0RZMU1XVTJZV0ZpTTJNMkluMHNJbU5zYVdWdWRGOXBaQ0k2SW1SbGJXOWZZWEJ3WDNk
b1lYUmxkbVZ5SWl3aWMyTnZjR1VpT2lKc1lYVnVZMmd2Y0dGMGFXVnVkQ0J3WVhScFpXNTBMMDlpYzJWeWRtRj
BhVzl1TG5KeklIQmhkR2xsYm5RdlVHRjBhV1Z1ZEM1eWN5QnZabVpzYVc1bFgyRmpZMlZ6Y3lJc0ltbGhkQ0k2
TVRZek16VXpNemcxT1N3aVpYaHdJam94TmpZMU1EWTVPRFU1ZlEuUTQxUXdaQ0VRbFoxNk03WXd2WXVWYlVQMD
NtUkZKb3FSeEw4U1M4X0ltTSIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29wZSI6ImxhdW5jaC9wYXRpZW50
IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIG9mZmxpbmVfYWNjZXNzIiwiY2xpZW

50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzM4NTksImV4
cCI6MTYzMzUzNzQ1OX0.-4vtO6iADkH7HM6-IqoSchEMv2mVsztjHg-5RBkPXrc",

 "refresh_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRy
dWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLC
JwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRl
bW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2VydmF0aW9uLnJzIH
BhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXhwIjoxNjY1MDY5
ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM"

}

2.2 Example App Launch for Asymmetric Client Auth
2.3 Example: App Launch with Asymmetric
Authentication
Launch App
This is a user-driven stepm triggering the subsequent workflow.

In this example, the launch is initiated aginst a FHIR server with a base URL of:

https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2
EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir

… and the app’s redirect URL has been registered as:

https://sharp-lake-word.glitch.me/graph.html

… and the app’s public key has been registered as:

{

 "kty": "EC",

 "crv": "P-384",

 "x": "wcE8O55ro6aOuTf5Ty1k_IG4mTcuLiVercHouge1G5Ri-leevhev4uJzlHpi3U8r",

 "y": "mLRgz8Giu6XA_AqG8bywqbygShmd8jowflrdx0KQtM5X4s4aqDeCRfcpexykp3aI",

 "kid": "afb27c284f2d93959c18fa0320e32060",

 "alg": "ES384",

}

(For reproducibility: the corresponding private key
parameter "d" is "WcrTiYk8jbI-Sd1sKNpqGmELWGG08bf_y9SSlnC4cpAl5GRdHHN9gKYlPvMFqiJ5". This would
not be shared in a real-world registration scenario.)

… and the app has been assigned a client_id of:

demo_app_whatever

3 Backend Services

●​ Profile Audience and Scope

●​ Underlying Standards

●​ Conformance Language

●​ Top-level steps for Backend Services Authorization

●​ Register SMART Backend Service (communicating public keys)

●​ Retrieve .well-known/smart-configuration

●​ Obtain acess token

●​ Access FHIR API

Profile Audience and Scope
This profile is intended to be used by developers of backend services (clients) that autonomously
(or semi-autonomously) need to access resources from FHIR servers that have pre-authorized
defined scopes of access. This specification handles use cases complementary to the SMART App
Launch protocol. Specifically, this profile describes the runtime process by which the client acquires
an access token that can be used to retrieve FHIR resources. This specification is designed to work
with FHIR Bulk Data Access, but is not restricted to use for retrieving bulk data; it may be used to
connect to any FHIR API endpoint, including both synchronous and asynchronous access.

Use this profile when the following conditions apply:
●​ The target FHIR authorization server can register the client and pre-authorize access to a

defined set of FHIR resources.

●​ The client may run autonomously, or with user interaction that does not include access
authorization.

●​ The client supports client-confidential-asymmetric authentication

●​ No compelling need exists for a user to authorize the access at runtime.

Note See Also: The FHIR specification includes a set of security considerations including security,
privacy, and access control. These considerations apply to diverse use cases and provide general
guidance for choosing among security specifications for particular use cases.

Examples
●​ An analytics platform or data warehouse that periodically performs a bulk data import from

an electronic health record system for analysis of a population of patients.

●​ A lab monitoring service that determines which patients are currently admitted to the
hospital, reviews incoming laboratory results, and generates clinical alerts when specific
trigger conditions are met. Note that in this example, the monitoring service may be a
backend client to multiple servers.

●​ A data integration service that periodically queries the EHR for newly registered patients
and synchronizes these with an external database

●​ A utilization tracking system that queries an EHR every minute for bed and room usage and
displays statistics on a wall monitor.

●​ Public health surveillance studies that do not require real-time exchange of data.

Underlying Standards
●​ HL7 FHIR RESTful API

●​ RFC5246, The Transport Layer Security Protocol, V1.2

http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#profile-audience-and-scope
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#underlying-standards
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#conformance-language
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#top-level-steps-for-backend-services-authorization
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#register-smart-backend-service-communicating-public-keys
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#retrieve-well-knownsmart-configuration
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#obtain-acess-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#access-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://hl7.org/fhir/uv/bulkdata/
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://hl7.org/fhir/security.html
http://www.hl7.org/fhir/http.html
https://tools.ietf.org/html/rfc5246

●​ RFC6749, The OAuth 2.0 Authorization Framework

●​ RFC7515, JSON Web Signature

●​ RFC7517, JSON Web Key

●​ RFC7518, JSON Web Algorithms

●​ RFC7519, JSON Web Token (JWT)

●​ RFC7521, Assertion Framework for OAuth 2.0 Client Authentication and Authorization
Grants

●​ RFC7523, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and
Authorization Grants

●​ RFC7591, OAuth 2.0 Dynamic Client Registration Protocol

Conformance Language
This specification uses the conformance verbs SHALL, SHOULD, and MAY as defined in RFC2119.
Unlike RFC 2119, however, this specification allows that different applications may not be able to
interoperate because of how they use optional features. In particular:

1.​ SHALL: an absolute requirement for all implementations

2.​ SHALL NOT: an absolute prohibition against inclusion for all implementations

3.​ SHOULD/SHOULD NOT: A best practice or recommendation to be considered by
implementers within the context of their particular implementation; there may be valid
reasons to ignore an item, but the full implications must be understood and carefully
weighed before choosing a different course

4.​ MAY: This is truly optional language for an implementation; can be included or omitted as
the implementer decides with no implications

Top-level steps for Backend Services Authorization
Backend ServiceBackend ServiceFHIR authorization serverFHIR authorization serverFHIR
resource serverFHIR resource serveropt[Precondition: Client Registration](may be out of
band)Discovery requestDiscovery responseAccess token requestalt[Granted]Access token
responseRequest Resources[Denied]Authorization error

​

1.​ Register Backend Service (one-time step, can be out-of-band)

2.​ Retrieve .well-known/smart-configuration

3.​ Obtain access token

4.​ Access FHIR API

Register SMART Backend Service (communicating public keys)
Before a SMART client can run against a FHIR server, the client SHALL register with the server by
following the registration steps described in client-confidential-asymmetric authentication.

Retrieve .well-known/smart-configuration
In order to request authorization to access FHIR resources, the app discovers the EHR FHIR
server’s SMART configuration metadata, including OAuth token endpoint URL.

Request
The app issues an HTTP GET with an Accept header supporting application/json to retrieve the
SMART configuration file.

Response
Servers respond with a discovery response that meets discovery requirements described
in client-confidential-asymmetric authentication.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7515
https://www.rfc-editor.org/rfc/rfc7517.txt
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7591
https://www.ietf.org/rfc/rfc2119.txt
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-1-register
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-2-discovery
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-3-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-4-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#discovery-requirements
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#discovery-requirements

Example Request and Response
For a full example, see example request and response.

Obtain acess token
By the time a client has been registered with the FHIR authorization server, the key elements of
organizational trust will have been established. That is, the client will be considered
“pre-authorized” to access FHIR resources. Then, at runtime, the client will need to obtain an
access token in order to retrieve FHIR resources as pre-authorized. Such access tokens are issued
by the FHIR authorization server, in accordance with the OAuth 2.0 Authorization Framework,
RFC6749.

Because the authorization scope is limited to protected resources previously arranged with the
FHIR authorization server, the client credentials grant flow, as defined in Section 4.4 of RFC6749,
may be used to request authorization. Use of the client credentials grant type requires that the
client SHALL be a “confidential” client capable of protecting its authentication credential.

This specification describes requirements for requesting an access token through the use of an
OAuth 2.0 client credentials flow, with a JWT assertion as the client’s authentication mechanism.
The exchange, as depicted below, allows the client to authenticate itself to the FHIR authorization
server and to request a short-lived access token in a single exchange.

Request
To begin the exchange, the client SHALL use the Transport Layer Security (TLS) Protocol Version
1.2 (RFC5246) or a more recent version of TLS to authenticate the identity of the FHIR
authorization server and to establish an encrypted, integrity-protected link for securing all
exchanges between the client and the FHIR authorization server’s token endpoint. All exchanges
described herein between the client and the FHIR server SHALL be secured using TLS V1.2 or a
more recent version of TLS .

Before a client can request an access token, it generates a one-time-use authentication JWT as
described in client-confidential-symmetric authentication. After generating this authentication JWT,
the client requests an access token via HTTP POST to the FHIR authorization server’s token endpoint
URL, using content-type application/x-www-form-urlencoded with the following parameters:

Parameters

scope required The scope of access requested. See note about scopes be

grant_type required Fixed value: client_credentials

client_assertion_type required Fixed value: urn:ietf:params:oauth:client-assertion-typ

client_assertion required Signed authentication JWT value (see above)

Scopes

The client is pre-authorized by the server: at registration time or out of band, it is given the
authority to access certain data. The client then includes a set of scopes in the access token
request, which causes the server to apply additional access restrictions following the SMART Scopes
syntax. For Backend Services, requested scopes will be system/ scopes (for
example system/Observation.rs, which requests an access token capable of reading all Observations
that the client has been pre-authorized to access).

Response
Enforce Authorization

There are several cases where a client might ask for data that the server cannot or will not return:

http://build.fhir.org/ig/HL7/smart-app-launch/example-backend-services.html#step-2-discovery
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#page-40
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#authenticating-to-the-token-endpoint
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#authenticating-to-the-token-endpoint
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

●​ Client explicitly asks for data that it is not authorized to see (e.g. a client asks for
Observation resources but has scopes that only permit access to Patient resources). In this
case a server SHOULD respond with a failure to the initial request.

●​ Client explicitly asks for data that the server does not support (e.g., a client asks for
Practitioner resources but the server does not support FHIR access to Practitioner data). In
this case a server SHOULD respond with a failure to the initial request.

●​ Client explicitly asks for data that the server supports and that appears consistent with its
access scopes – but some additional out-of-band rules/policies/restrictions prevents the
client from being authorized to see these data. In this case, the server MAY withhold
certain results from the response, and MAY indicate to the client that results were withheld
by including OperationOutcome information in the “error” array for the response as a
partial success.

Rules regarding circumstances under which a client is required to obtain and present an access
token along with a request are based on risk-management decisions that each FHIR resource
service needs to make, considering the workflows involved, perceived risks, and the organization’s
risk-management policies. Refresh tokens SHOULD NOT be issued.

Validate Authentication JWS

The FHIR authorization server validates a client’s authentication JWT according to
the client-confidential-asymmetric authentication profile. See JWT validation rules.

Evaluate Requested Access

Once the client has been authenticated, the FHIR authorization server SHALL mediate the request
to assure that the scope requested is within the scope pre-authorized to the client.

Issue Access Token

If an error is encountered during the authorization process, the FHIR authorization server SHALL
respond with the appropriate error message defined in Section 5.2 of the OAuth 2.0 specification.
The FHIR authorization server SHOULD include an error_uri or error_description as defined in
OAuth 2.0.

If the access token request is valid and authorized, the FHIR authorization server SHALL issue an
access token in response. The access token response SHALL be a JSON object with the following
properties:

Access token response: property names

access_token required The access token issued by the FHIR authorization server.

token_type required Fixed value: bearer.

expires_in required The lifetime in seconds of the access token. The recommended value is 300, for a f

scope required Scope of access authorized. Note that this can be different from the scopes reques

To minimize risks associated with token redirection, the scope of each access token SHOULD
encompass, and be limited to, the resources requested. Access tokens issued under this profile
SHALL be short-lived; the expires_in value SHOULD NOT exceed 300, which represents an
expiration-time of five minutes.

Example Token Request and Response
For a full example, see example token request and response.

Access FHIR API

http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#signature-verification
https://tools.ietf.org/html/rfc6749#page-45
http://build.fhir.org/ig/HL7/smart-app-launch/example-backend-services.html#step-3-access-token

With a valid access token, the app can access protected FHIR data by issuing a FHIR API call to the
FHIR endpoint on the FHIR resource server.

Request
From the access token resopnse, an app has received an OAuth2 bearer-type access token
(access_token property) that can be used to fetch clinical data. The app issues a request that
includes an Authorization header that presents the access_token as a “Bearer” token:

Authorization: Bearer {{access_token}}

(Note that in a real request, {{access_token}} is replaced with the actual token value.)

Response
The resource server SHALL validate the access token and ensure that it has not expired and that its
scope covers the requested resource. The method used by the EHR to validate the access token is
beyond the scope of this specification but generally involves an interaction or coordination between
the EHR’s resource server and the authorization server.

On occasion, an Backend Service may receive a FHIR resource that contains a “reference” to a
resource hosted on a different resource server. The Backend Service SHOULD NOT blindly follow
such references and send along its access_token, as the token may be subject to potential theft.
The Backend Service SHOULD either ignore the reference, or initiate a new request for access to
that resource.

Example Request and Response
For a full example, see example FHIR API request and response.

4 Scopes and Launch Context
●​ Quick Start

●​ Scopes for requesting clinical data

●​ Scopes for requesting context data

●​ Scopes for requesting identity data

●​ Scopes for requesting a refresh token

●​ Extensions

●​ Steps for using an ID token

●​ Worked examples

●​ Appendix: URI representation of scopes

SMART on FHIR’s authorization scheme uses OAuth scopes to communicate (and negotiate) access
requirements. Providing apps with access to broad data sets is consistent with current common
practices (e.g. interface engines also provide access to broad data sets); access is also limited
based on the privileges of the user in context. In general, we use scopes for three kinds of data:

1.​ Clinical data

2.​ Contextual data

3.​ Identity data

Launch context is a negotiation where a client asks for specific launch context parameters
(e.g. launch/patient). A server can decide which launch context parameters to provide, using the
client’s request as an input into the decision process. When granting a patient-level scopes
like patient/*.rs, the server SHALL provide a “patient” launch context parameter.

Quick Start
Here is a quick overview of the most commonly used scopes. Read on below for complete details.

Scope Grants

http://build.fhir.org/ig/HL7/smart-app-launch/example-backend-services.html#step-4-fhir-api
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#quick-start
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-clinical-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-context-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-identity-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-a-refresh-token
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#extensions
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#steps-for-using-an-id-token
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#worked-examples
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#appendix-uri-representation-of-scopes
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-clinical-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-context-data
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#scopes-for-requesting-identity-data

patient/*.rs Permission to read and search any resource for the current patient (see notes on
wildcard scopes below).

user/*.cruds Permission to read and write all resources that the current user can access (see
notes on wildcard scopes below).

openid

fhirUser
Permission to retrieve information about the current logged-in user.

launch Permission to obtain launch context when app is launched from an EHR.

launch/patient When launching outside the EHR, ask for a patient to be selected at launch time.

offline_access Request a refresh_token that can be used to obtain a new access token to replace
an expired one, even after the end-user no longer is online after the access token
expires.

online_access Request a refresh_token that can be used to obtain a new access token to replace
an expired one, and that will be usable for as long as the end-user remains online.

SMART’s scopes are used to delegate access
SMART’s scopes allow a client to request the delegation of a specific set of access rights; such
rights are always limited by underlying system policies and permissions.

For example:

●​ If a client uses SMART App Launch to request user/*.cruds and is granted these scopes by
a user, these scopes convey “full access” relative to the user’s underlying permissions. If
the underlying user has limited permissions, the client will face these same limitations.

●​ If a client uses SMART Backend Services to request system/*.cruds, these scopes convey
“full access” relative to a pre-configured client policy. If the pre-configured policy imposes
limited permissions, the client will face these same limitations.

Neither SMART on FHIR nor the FHIR Core specification provide a way to model the “underlying”
permissions at play here; this is a lower-level responsibility in the access control stack. As such,
clients can attempt to perform FHIR operations based on the scopes they are granted — but
depending on the details of the underlying permission system (e.g., the permissions of the
approving user and/or permissions assigned in a client-specific policy) these requests may be
rejected, or results may be omitted from responses.

For instance, a client may receive:

●​ 200 OK response to a search interaction that appears to be allowed by the granted scopes,
but where results have been omitted from the response Bundle.

●​ 403 Forbidden response to a write interaction that appears to be allowed by the granted
scopes.

Applications reading may receive results that have been filtered or redacted based on the
underlying permissions of the delegating authority, or may be refused access (see guidance
at https://hl7.org/fhir/security.html#AccessDenied).

Scopes for requesting clinical data
SMART on FHIR defines OAuth2 access scopes that correspond directly to FHIR resource types.
These scopes impact the access an application may have to FHIR resources (and actions). We
define permissions to support the following FHIR REST API interactions:

●​ c for create

o​ Type level create

●​ r for read

o​ Instance level read

https://hl7.org/fhir/security.html#AccessDenied
http://hl7.org/fhir/http.html#create
http://hl7.org/fhir/http.html#read

o​ Instance level vread

o​ Instance level history

●​ u for update

o​ Instance level update Note that some servers allow for an update operation to
create a new instance, and this is allowed by the update scope

o​ Instance level patch

●​ d for delete

o​ Instance level delete

●​ s for search

o​ Type level search

o​ Type level history

o​ System level search

o​ System level history

Valid suffixes are a subset of the in-order string .cruds. For example, to convey support for creating
and updating observations, use scope patient/Observation.cu. To convey support for reading and
searching observations, use scope patient/Observation.rs. For backwards compatibility with scopes
defined in the SMART App Launch 1.0 specification, servers SHOULD advertise
the permission-v1 capability in their .well-known/smart-configuration discovery document, SHOULD
return v1 scopes when v1 scopes are requested and granted, and SHOULD process v1 scopes with
the following semantics in v2:

●​ v1 .read ⇒ v2 .rs

●​ v1 .write ⇒ v2 .cud

●​ v1 .* ⇒ v2 .cruds

Scope requests with undefined or out of order interactions MAY be ignored, replaced with server
default scopes, or rejected. For example, a request of .dus is not a defined scope request. This
policy is to prevent misinterpretation of scopes with other conventions (e.g.,
interpreting .read as .rd and granting extraneous delete permissions).

Batches and Transactions
SMART 2.0 does not define specific scopes for batch or transaction interactions. These system-level
interactions are simply convience wrappers for other interactions. As such, batch and transaction
requests should be validated based on the actual requests within them.

Scope Equivalence
Multiple scopes compounded or expanded are equivalent to each other. E.g., Observation.rs is
interchangeable with Observation.r Observation.s. In order to reduce token size, it is recomended
that scopes be factored to their shortest form.

Finer-grained resource constraints using search parameters
In SMART 1.0, scopes were based entirely on FHIR Resource types, as
in patient/Observation.read (for Observations) or patient.Immunization.read (for Immunizations). In
SMART 2.0, we provide more detailed constraints based on FHIR REST API search parameter
syntax. To apply these constraints, add a query string suffix to existing scopes, starting with ? and
followed by a series of param=value items separated by &. For example, to request read and search
access to laboratory observations but not other observations, the
scope patient/Observation.rs?category=http://terminology.hl7.org/CodeSystem/observation-category
|laboratory.

Requirements for support
We’re seeking community consensus on a small common core of search parameters for broad
support; we reserve the right to make some search parameters mandatory in the future.

Experimental features
Because the search parameter based syntax here is quite general, it opens up the possibility of
using many features that servers may have trouble supporting in a consistent and performant

http://hl7.org/fhir/http.html#vread
http://hl7.org/fhir/http.html#history
http://hl7.org/fhir/http.html#update
http://hl7.org/fhir/http.html#upsert
http://hl7.org/fhir/http.html#upsert
http://hl7.org/fhir/http.html#patch
http://hl7.org/fhir/http.html#delete
http://hl7.org/fhir/http.html#search
http://hl7.org/fhir/http.html#history
http://hl7.org/fhir/http.html#search
http://hl7.org/fhir/http.html#history
http://hl7.org/fhir/http.html#transaction

fashion. Given the current level of implementation experience, the following features should be
considered experimental, even if they are supported by a server:

●​ Use of search modifiers such
as Observation.rs?code:in=http://valueset.example.org/ValueSet/diabetes-codes

●​ Use of search parameter chaining such as Observation.rs?patient.birthdate=1990

●​ Use of FHIR’s _filter capabilities

Scope size over the wire
Scope strings appear over the wire at several points in an OAuth flow. Implementers should be
aware that fine-grained controls can lead to a proliferation of scopes, increasing in the length of
the scope string for app authorizations. As such, implementers should take care to avoid putting
arbitrarily large scope strings in places where they might not “fit”. The following considerations
apply, presented in the sequential order of a SMART App Launch:

●​ When initiating an authorization request, app developers should prefer POST-based
authorization requests to GET-based requests, since this avoid URL length limits that might
apply to GET-based authorization requests. (For example, somme current-generation
browsers have a 32kB length limit for values displayed in the URL bar.)

●​ In the authorization code redirect response, no scopes are included, so these
considerations do not apply.

●​ In the access token response, no specific limits apply, since this payload comes in response
to a client-initiated POST.

●​ In the token introspection response, no specific limits apply, since this payload comes in
response to a client-initiated POST.

●​ In the access token itself, implementation-specific considerations may apply. SMART leaves
access token formats out of scope, so formally there are no restrictions. But since access
tokens are included in HTTP headers, servers should take care to ensure they do not get
too large. For example, some current-generation HTTP servers have an 8kB limit on header
length. To remain under this limit, authorization servers that use structured token formats
like JWT might consider embedding handles or pointers to scopes, rather than embedding
literal scopes in an access token. Alternatively, authorization servers might establish an
internal convention mapping shorter scope names into longer scopes (or common
combinations of longer scopes).

Clinical Scope Syntax
Expressed as a railroad diagram, the scope language is:

patientusersystem/FHIR Resource Type*.cruds?param=value&

Patient-specific scopes
Patient-specific scopes allow access to specific data about a single patient. Which patient is not
specified here: clinical data scopes are all about what and not who which is handled in the next
section. Patient-specific scopes start with patient/. Note that some EHRs may not enable access to
all related resources - for example, Practitioners linked to/from Patient-specific resources. Note that
if a FHIR server supports replacing one Patient record with another via Patient.link, the server
documentation SHALL describe its authorization behavior.

Let’s look at a few examples:

Goal Scope Notes

Read all observations
about a patient

patient/Observation.r

s

Read demographics
about a patient

patient/Patient.r Note the difference in capitalization between
“patient” the permission type and “Patient” the
resource.

Add new blood
pressure readings for
a patient

patient/Observation.c Note that the permission is broader than our goal:
with this scope, an app can add not only blood
pressures, but other observations as well. Note also
that write access does not imply read access.

Read all available
data about a patient

patient/*.cruds See notes on wildcard scopes below.

User-level scopes
User-level scopes allow access to specific data that a user can access. Note that this isn’t just
data about the user; it’s data available to that user. User-level scopes start with user/.

Let’s look at a few examples:

Goal Scope Notes

Read a feed of all new lab
observations across a patient
population

user/Observation.rs

Manage all appointments to which
the authorizing user has access

user/Appointment.crud

s
Individual attributes such as d for
delete could be removed if not
required.

Manage all resources on behalf of
the authorizing user

user/*.cruds

Select a patient user/Patient.rs Allows the client app to select a
patient.

System-level scopes
System-level scopes describe data that a client system is directly authorized to access; these
scopes are useful in cases where there is no user in the loop, such as a data monitoring or
reporting service. System-level scopes start with system/.

Let’s look at a few examples:

Goal Scope Notes

Alert engine to monitor all lab observations in a
health system

system/Observation.rs Read-only access to
observations.

Perform bulk data export across all available data
within a FHIR server

system/*.rs Full read/search for all
resources.

System-level bridge, turning a V2 ADT feed into
FHIR Encounter resources

system/Encounter.cud Write access to
Encounters.

Wildcard scopes
As noted previously, clients can request clinical scopes that contain a wildcard (*) for the FHIR
resource. When a wildcard is requested for the FHIR resource, the client is asking for all data for all
available FHIR resources, both now and in the future. This is an important distinction to
understand, especially for the entity responsible for granting authorization requests from clients.

For instance, imagine a FHIR server that today just exposes the Patient resource. The authorization
server asking a patient to authorize a SMART app requesting patient/*.cruds should inform the
user that they are being asked to grant this SMART app access to not just the currently accessible

data about them (patient demographics), but also any additional data the FHIR server may be
enhanced to expose in the future (eg, genetics).

As with any requested scope, the scopes ultimately granted by the authorization server may differ
from the scopes requested by the client! When dealing with wildcard clinical scope requests, this is
often true.

As a best practice, clients should examine the granted scopes by the authorization server and
respond accordingly. Failure to do so may lead to situations in which the client attempts to access
FHIR resources they were not granted access only to receieve an authorization failure by the FHIR
server.

For example, imagine a client with the goal of obtaining read and write access to a patient’s
allergies and as such, requests the clinical scope of patient/AllergyIntolerance.cruds. The
authorization server may respond in a variety of ways with respect to the scopes that are
ultimately granted. The following table outlines several, but not an exhaustive list of scenarios for
this example:

Granted Scope Notes

patient/AllergyIntolerance.cruds The client was granted exactly what it requested:
patient-level read and write access to allergies via the same
requested wildcard scope.

patient/AllergyIntolerance.rs​
patient/AllergyIntolerance.cud

The client was granted exactly what it requested:
patient-level CRUDS access to allergies. However, note that
this was communicated via two explicit scopes rather than a
single scope.

patient/AllergyIntolerance.rs The client was granted just patient-level read access to
allergies.

patient/AllergyIntolerance.cud The client was granted just patient-level write access to
allergies.

patient/*.rs The client was granted read access to all data on the patient.

patient/*.cruds The client was granted its requested scopes as well as
read/write access to all other data on the patient.

patient/Observation.rs The client was granted an entirely different scope:
patient-level read access to the patient’s observations. While
this behavior is unlikely for a production quality authorization
server, this scenario is technically possible.

"" (empty scope string – no scopes
granted)

The authorization server chose to not grant any of the
requested scopes.

As a best practice, clients are encouraged to request only the scopes and permissions they need to
function and avoid the use of wildcard scopes purely for the sake of convenience. For instance, if
your allergy management app requires patient-level read and write access to allergies, requesting
the patient/AllergyIntolerance.cruds scope is acceptable. However, if your app only requires access
to read allergies, requesting a scope of patient/AllergyIntolerance.rs would be more appropriate.

Scopes for requesting context data
These scopes affect what context parameters will be provided in the access token response. Many
apps rely on contextual data from the EHR to answer questions like:

●​ Which patient record is currently “open” in the EHR?

●​ Which encounter is currently “open” in the EHR?

●​ At which clinic, hospital ward, or patient room is the end-user currently working?

To request access to such details, an app asks for “launch context” scopes in addition to whatever
clinical access scopes it needs. Launch context scopes are easy to tell apart from clinical data
scopes, because they always begin with launch.

There are two general approaches to asking for launch context data, depending on the details of
how your app is launched.

Apps that launch from the EHR
Apps that launch from the EHR will be passed an explicit URL parameter called launch, whose value
must associate the app’s authorization request with the current EHR session. For example, If an
app receives the URL parameter launch=abc123, then it requests the scope launch and provides an
additional URL parameter of launch=abc123.

The application could choose to also provide launch/patient and/or launch/encounter as “hints”
regarding which contexts the app would like the EHR to gather. The EHR MAY ignore these hints
(for example, if the user is in a workflow where these contexts do not exist).

If an application requests a clinical scope which is restricted to a single patient (e.g. patient/*.rs),
and the authorization results in the EHR is granting that scope, the EHR SHALL establish a patient
in context. The EHR MAY refuse authorization requests including patient/ that do not also include a
valid launch, or it MAY infer the launch/patient scope.

Standalone apps
Standalone apps that launch outside the EHR do not have any EHR context at the outset. These
apps must explicitly request EHR context. The EHR SHOULD provide the requested context if
requested by the following scopes, unless otherwise noted:

Requesting context with scopes

Requested
Scope

Meaning

launch/patient Need patient context at launch time (FHIR Patient resource). See note below.

launch/encounter Need encounter context at launch time (FHIR Encounter resource).

(Others) This list can be extended by any SMART EHR if additional context is required.
When specifying resource types, convert the type names to all
lowercase (e.g. launch/diagnosticreport).

Note on launch/patient: If an application requests a clinical scope which is restricted to a single
patient (e.g. patient/*.rs), and the authorization results in the EHR granting that scope, the EHR
SHALL establish a patient in context. The EHR MAY refuse authorization requests
including patient/ that do not also include a valid launch/patient scope, or it MAY infer
the launch/patient scope.

Launch context arrives with your access_token
Once an app is authorized, the token response will include any context data the app requested –
along with (potentially!) any unsolicited context data the EHR decides to communicate. For
example, EHRs may use launch context to communicate UX and UI expectations to the app
(see need_patient_banner below).

Launch context parameters come alongside the access token. They will appear as JSON
parameters:

{

 "access_token": "secret-xyz",

 "patient": "123",

 "fhirContext": ["DiagnosticReport/123", "Organization/789"],

//...

}

Here are the launch context parameters to expect:

Launch context
parameter

Example value Meaning

patient "123" String value with a patient id, indicating
that the app was launched in the
context of FHIR Patient 123. If the app
has any patient-level scopes, they will
be scoped to Patient 123.

encounter "123" String value with an encounter id,
indicating that the app was launched in
the context of FHIR Encounter 123.

fhirContext ["Appointment/123"] Array of relative resource References to
any resource type other than “Patient”
or “Encounter”. It is not prohibited to
have more than one Reference to a
given type of resource.

need_patient_banner true or false (boolean) Boolean value indicating whether the
app was launched in a UX context where
a patient banner is required (when true)
or not required (when false). An app
receiving a value of false should not
take up screen real estate displaying a
patient banner.

intent "reconcile-medications" String value describing the intent of the
application launch (see notes below)

smart_style_url "https://ehr/styles/smart_v1.json" String URL where the EHR’s style
parameters can be retrieved (for apps
that support styling)

tenant "2ddd6c3a-8e9a-44c6-a305-52111ad30

2a2"
String conveying an opaque identifier
for the healthcare organization that is
launching the app. This parameter is
intended primarily to support EHR
Launch scenarios.

Notes on launch context parameters

fhirContext

fhirContext: To allow application flexibility, while also maintaining backwards compatibility (and to
keep a predictable JSON structure), any contextual resource types (other than Patient and
Encounter) that were requested by a launch scope will appear in this parameter. The Patient and
Encounter resource types will not be deprecated from top-level parameters, and they will not be
permitted within the fhirContext array.

App Launch Intent (optional)

intent: Some SMART apps might offer more than one context or user interface that can be
accessed during the SMART launch. The optional intent parameter in the launch context provides a
mechanism for the SMART EHR to communicate to the client app which specific context should be

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#launch-intent
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#styling

displayed as the outcome of the launch. This allows for closer integration between the EHR and
client, so that different launch points in the EHR UI can target specific displays within the client
app.

For example, a patient timeline app might provide three specific UI contexts, and inform the
SMART EHR (out of band, at app configuration time) of the intent values that can be used to
launch the app directly into one of the three contexts. The app might respond to intent values like:

●​ summary-timeline-view - A default UI context, showing a data summary

●​ recent-history-timeline - A history display, showing a list of entries

●​ encounter-focused-timeline - A timeline focused on the currently in-context encounter

If a SMART EHR provides a value that the client does not recognize, or does not provide a value,
the client app SHOULD display a default application UI context.

Note: SMART makes no effort to standardize intent values. Intents simply provide a mechanism for
tighter custom integration between an app and a SMART EHR. The meaning of intents must be
negotiated between the app and the EHR.

SMART App Styling (experimental1)

smart_style_url: In order to mimic the style of the SMART EHR more closely, SMART apps can
check for the existence of this launch context parameter and download the JSON file referenced by
the URL value, if provided.

The URL should serve a “SMART Style” JSON object with one or more of the following properties:

{

 color_background: "#edeae3",

 color_error: "#9e2d2d",

 color_highlight: "#69b5ce",

 color_modal_backdrop: "",

 color_success: "#498e49",

 color_text: "#303030",

 dim_border_radius: "6px",

 dim_font_size: "13px",

 dim_spacing_size: "20px",

 font_family_body: "Georgia, Times, 'Times New Roman', serif",

 font_family_heading: "'HelveticaNeue-Light', Helvetica, Arial, 'Lucida Grande',
sans-serif;"

}

The URL value itself is to be considered a version key for the contents of the SMART Style JSON:
EHRs must return a new URL value in the smart_style_url launch context parameter if the contents
of this JSON is changed.

Style Property Description

color_background The color used as the background of the app.

color_error The color used when UI elements need to indicate an area or item of
concern or dangerous action, such as a button to be used to delete an item,
or a display an error message.

color_highlight The color used when UI elements need to indicate an area or item of focus,
such as a button used to submit a form, or a loading indicator.

http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#fn:1

color_modal_backdrop The color used when displaying a backdrop behind a modal dialog or
window.

color_success The color used when UI elements need to indicate a positive outcome, such
as a notice that an action was completed successfully.

color_text The color used for body text in the app.

dim_border_radius The base corner radius used for UI element borders (0px results in square
corners).

dim_font_size The base size of body text displayed in the app.

dim_spacing_size The base dimension used to space UI elements.

font_family_body The list of typefaces to use for body text and elements.

font_family_heading The list of typefaces to use for content heading text and elements.

SMART client apps that can adjust their styles should incorporate the above property values into
their stylesheets, but are not required to do so.

Optionally, if the client app detects a new version of the SMART Style object (i.e. a new URL is
returned the smart_style_url parameter), the client can store the new property values and request
approval to use the new values from a client app stakeholder. This allows for safeguarding against
poor usability that might occur from the immediate use of these values in the client app UI.

Scopes for requesting identity data
Some apps need to authenticate the end-user. This can be accomplished by requesting the
scope openid. When the openid scope is requested, apps can also request the fhirUser scope to
obtain a FHIR resource representation of the current user.

When these scopes are requested (and the request is granted), the app will receive
an id_token that comes alongside the access token.

This token must be validated according to the OIDC specification. To learn more about the user, the
app should treat the fhirUser claim as the URL of a FHIR resource representing the current user.
This URL MAY be absolute (e.g., https://ehr.example.org/Practitioner/123), or it MAY be relative to
the FHIR server base URL associated with the current authorization request
(e.g., Practitioner/123). This will be a resource of type Patient, Practitioner, RelatedPerson,
or Person. Note that the FHIR server base URL is the same as the URL represented in
the aud parameter passed in to the authorization request. Note that Person is only used if the other
resource types do not apply to the current user, for example, the “authorized representative” for
>1 patients.

The OpenID Connect Core specification describes a wide surface area with many optional
capabilities. To be considered compatible with the SMART’s sso-openid-connect capability, the
following requirements apply:

●​ Response types: The EHR SHALL support the Authorization Code Flow, with the request
parameters as defined in SMART App Launch. Support is not required for parameters that
OIDC lists as optional (e.g. id_token_hint, acr_value), but EHRs are encouraged to review
these optional parameters.

●​ Public Keys Published as Bare JWK Keys: The EHR SHALL publish public keys as bare JWK
keys (which MAY also be accompanied by X.509 representations of those keys).

●​ Claims: The EHR SHALL support the inclusion of SMART’s fhirUser claim within
the id_token issued for any requests that grant the openid and fhirUser scopes.

●​ Signed ID Token: The EHR SHALL support Signing ID Tokens with RSA SHA-256.

●​ A SMART app SHALL NOT pass the auth_time claim or max_age parameter to a server that
does not support receiving them.

http://openid.net/specs/openid-connect-core-1_0.html#CodeIDToken
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-core-1_0.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html

Note that support for the following features is optional:

●​ claims parameters on the authorization request

●​ Request Objects on the authorization request

●​ UserInfo endpoint with claims exposed to clients

Scopes for requesting a refresh token
To request a refresh_token that can be used to obtain a new access token after the current access
token expires, add one of the following scopes:

Scope Grants

online_access Request a refresh_token that can be used to obtain a new access token to replace
an expired one, and that will be usable for as long as the end-user remains online.

offline_acces

s
Request a refresh_token that can be used to obtain a new access token to replace
an expired token, and that will remain usable for as long as the authorization
server and end-user will allow, regardless of whether the end-user is online.

Extensions
Additional context parameters and scopes can be used as extensions using the following
namespace conventions:

●​ use a full URI that you control (e.g. http://example.com/scope-name)

●​ use any string starting with __ (two underscores)

Example: Extra context - fhirContext for FHIR Resource References
EHR Launch

Suppose a SMART on FHIR server supports additional launch context during an EHR Launch,
perhaps communicating the ID of an ImagingStudy that is open in the EHR at the time of app
launch. The server could return an access token response where the fhirContext array includes a
value such as ImagingStudy/123.

Standalone Launch

Suppose a SMART on FHIR server supports additional launch context during a Standalone Launch,
perhaps providing an ability for the user to select an ImagingStudy during the launch. A client could
request this behavior by requesting a launch/imagingstudy scope (note that launch requests scopes
are always lower case); then after allowing the user to select an ImagingStudy, the server could
return an access token response where the fhirContext array includes a value such
as ImagingStudy/123.

Example: Extra context - extensions for non-FHIR context
Suppose a SMART on FHIR server wishes to communicate additional context, such as a custom
“dark mode” flag, providing clients a hint about whether they should render a UI suitable for use in
low-light environments. The EHR could accomplish this by returning an access token response
where an extension property is present. The EHR could choose an extension property as a full URL
(e.g., {..., "https://ehr.example.org/props/dark-mode": true}) or by using a "__" prefix (e.g., {...,
"__darkMode": true}).

Example: Extra scopes - extensions for non-FHIR APIs
Suppose a SMART on FHIR server supports a custom behavior like allowing users to choose their
own profile photos through a custom non-FHIR API. The server can designate a custom scope using
a full URL (e.g., https://ehr.example.org/scopes/profilePhoto.manage) or by using a "__" prefix
(e.g., __profilePhoto.manage) and associate this scope with the custom behavior. The server could
advertise this scope in its developer-facing documentation, and also in the scopes_supported array
of its .well-known/smart-configuration file. Clients requesting authorization could include this scope
alongside other standardized scopes, so the scope parameter of the authorization request might
look like: launch/patient patient/*.rs __profilePhoto.manage. If the user grants these scopes, the
access token response would then include a scope value that matches the original request.

Steps for using an ID token
1.​ Examine the ID token for its “issuer” property

2.​ Perform a GET {issuer}/.well-known/openid-configuration

3.​ Fetch the server’s JSON Web Key by following the “jwks_uri” property

4.​ Validate the token’s signature against the public key from step #3

5.​ Extract the fhirUser claim and treat it as the URL of a FHIR resource

Worked examples
●​ Worked Python example: rendered

Appendix: URI representation of scopes
In some circumstances - for example, exchanging what scopes users are allowed to have, or
sharing what they did choose), the scopes must be represented as URIs. When this is done, the
standard URI is to prefix the SMART scopes with http://smarthealthit.org/fhir/scopes/, so that a
scope would be http://smarthealthit.org/fhir/scopes/patient/*.read.

openID scopes have a URI prefix of http://openid.net/specs/openid-connect-core-1_0#5
Asymmetric Authentication

●​ Profile Audience and Scope

●​ Underlying Standards

●​ Conformance Language

●​ Advertising server support for this profile

●​ Registering a client (communicting public keys)

●​ Authenticating to the Token endpoint

●​ Worked example

Profile Audience and Scope
This profile desribes SMART’s client-confidential-asymmetric authentication mechanism. It is
intended for for SMART clients that can manage and sign assertions with asymmetric keys.
Specifically, this profile describes the registration-time metadata required for a client using
asymmetric keys, and the runtime process by which a client can authenticate to an OAuth server’s
token endpoint. This profile can be implemented by user-facing SMART apps in the context of
the SMART App Launch flow or by SMART Backend Services that establish a connection with no
user-facing authorization step.

Use this profile when the following conditions apply:
●​ The target FHIR authorization server supports

SMART’s client-confidential-asymmetric capability

●​ The client can maange asymmetric keys for authentication

●​ The client is able to protect a private key

Note See Also: The FHIR specification includes a set of security considerations including security,
privacy, and access control. These considerations apply to diverse use cases and provide general
guidance for choosing among security specifications for particular use cases.

Underlying Standards
●​ HL7 FHIR RESTful API

●​ RFC5246, The Transport Layer Security Protocol, V1.2

●​ RFC6749, The OAuth 2.0 Authorization Framework

●​ RFC7515, JSON Web Signature

●​ RFC7517, JSON Web Key

http://build.fhir.org/ig/HL7/smart-app-launch/worked_example_id_token.html
http://openid.net/specs/openid-connect-core-1_0#
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#profile-audience-and-scope
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#underlying-standards
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#conformance-language
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#advertising-server-support-for-this-profile
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#registering-a-client-communicting-public-keys
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#authenticating-to-the-token-endpoint
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#worked-example
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html
http://hl7.org/fhir/security.html
http://www.hl7.org/fhir/http.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7515
https://www.rfc-editor.org/rfc/rfc7517.txt

●​ RFC7518, JSON Web Algorithms

●​ RFC7519, JSON Web Token (JWT)

●​ RFC7521, Assertion Framework for OAuth 2.0 Client Authentication and Authorization
Grants

●​ RFC7523, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and
Authorization Grants

●​ RFC7591, OAuth 2.0 Dynamic Client Registration Protocol

Conformance Language
This specification uses the conformance verbs SHALL, SHOULD, and MAY as defined in RFC2119.
Unlike RFC 2119, however, this specification allows that different applications may not be able to
interoperate because of how they use optional features. In particular:

1.​ SHALL: an absolute requirement for all implementations

2.​ SHALL NOT: an absolute prohibition against inclusion for all implementations

3.​ SHOULD/SHOULD NOT: A best practice or recommendation to be considered by
implementers within the context of their particular implementation; there may be valid
reasons to ignore an item, but the full implications must be understood and carefully
weighed before choosing a different course

4.​ MAY: This is truly optional language for an implementation; can be included or omitted as
the implementer decides with no implications

Advertising server support for this profile
As described in the Conformance section, a server advertises its support for SMART Confidential
Clients with Asymmetric Keys by including the client-confidential-asymmetric capability at
is .well-known/smart-configuration endpoint; configuration properties
include token_endpoint, scopes_supported, token_endpoint_auth_methods_supported (with values that
include private_key_jwt), and token_endpoint_auth_signing_alg_values_supported (with values that
include at least one of RS384, ES384).

Example .well-known/smart-configuration Response

HTTP/1.1 200 OK

Content-Type: application/json

{

 "token_endpoint": "https://ehr.example.com/auth/token",

 "token_endpoint_auth_methods_supported": ["private_key_jwt"],

 "token_endpoint_auth_signing_alg_values_supported": ["RS384", "ES384"],

 "scopes_supported": ["system/*.rs"]

}

Registering a client (communicting public keys)
Before a SMART client can run against a FHIR server, the client SHALL generate or obtain an
asymmetric key pair and SHALL register its public key set with that FHIR server’s authorization
service (referred to below as the “FHIR authorization server”). SMART does not require a
standards-based registration process, but we encourage FHIR service implementers to consider
using the OAuth 2.0 Dynamic Client Registration Protocol.

No matter how a client registers with a FHIR authorization server, the client SHALL register
the public key the client will use to authenticate itself to the FHIR authorization server. The public
key SHALL be conveyed to the FHIR authorization server in a JSON Web Key (JWK) structure

https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7591
https://www.ietf.org/rfc/rfc2119.txt
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html
https://tools.ietf.org/html/draft-ietf-oauth-dyn-reg

presented within a JWK Set, as defined in JSON Web Key Set (JWKS). The client SHALL protect the
associated private key from unauthorized disclosure and corruption.

For consistency in implementation, FHIR authorization servers SHALL support registration of client
JWKs using both of the following techniques (clients SHALL choose a server-supported method at
registration time):

1.​ URL to JWK Set (strongly preferred). This URL communicates the TLS-protected endpoint
where the client’s public JWK Set can be found. This endpoint SHALL be accessible via TLS
without authentication or authorization. Advantages of this approach are that it allows a
client to rotate its own keys by updating the hosted content at the JWK Set URL, assures
that the public key used by the FHIR authorization server is current, and avoids the need
for the FHIR authorization server to maintain and protect the JWK Set. The client SHOULD
return a “Cache-Control” header in its JWKS response

2.​ JWK Set directly (strongly discouraged). If a client cannot host the JWK Set at a
TLS-protected URL, it MAY supply the JWK Set directly to the FHIR authorization server at
registration time. In this case, the FHIR authorization server SHALL protect the JWK Set
from corruption, and SHOULD remind the client to send an update whenever the key set
changes. Conveying the JWK Set directly carries the limitation that it does not enable the
client to rotate its keys in-band. Including both the current and successor keys within the
JWK Set helps counter this limitation. However, this approach places increased
responsibility on the FHIR authorization server for protecting the integrity of the key(s)
over time, and denies the FHIR authorization server the opportunity to validate the
currency and integrity of the key at the time it is used.

The client SHALL be capable of generating a JSON Web Signature in accordance with RFC7515. The
client SHALL support both RS384 and ES384 for the JSON Web Algorithm (JWA) header parameter as
defined in RFC7518. The FHIR authorization server SHALL be capable of validating signatures with
at least one of RS384 or ES384. Over time, best practices for asymmetric signatures are likely to
evolve. While this specification mandates a baseline of support clients and servers MAY support and
use additional algorithms for signature validation. As a reference, the signature algorithm discovery
protocol token_endpoint_auth_signing_alg_values_supported property is defined in OpenID Connect
as part of the OAuth2 server metadata.

No matter how a JWK Set is communicated to the FHIR authorization server, each JWK SHALL
represent an asymmetric key by including kty and kid properties, with content conveyed using
“bare key” properties (i.e., direct base64 encoding of key material as integer values). This means
that:

●​ For RSA public keys, each JWK SHALL include n and e values (modulus and exponent)

●​ For ECDSA public keys, each JWK SHALL include crv, x, and y values (curve, x-coordinate,
and y-coordinate, for EC keys)

Upon registration, the client SHALL be assigned a client_id, which the client SHALL use when
requesting an access token.

Authenticating to the Token endpoint
This specification describes how a client authenticates using an asymmetric key, e.g. when
requesting an access token duringSMART App LaunchSMART Backend Services

Authentication is based on the OAuth 2.0 client credentials flow, with a JWT assertion as the client’s
authentication mechanism.

To begin the exchange, the client SHALL use the Transport Layer Security (TLS) Protocol Version
1.2 (RFC5246) or a more recent version of TLS to authenticate the identity of the FHIR
authorization server and to establish an encrypted, integrity-protected link for securing all
exchanges between the client and the FHIR authorization server’s token endpoint. All exchanges
described herein between the client and the FHIR server SHALL be secured using TLS V1.2 or a
more recent version of TLS .

Request
Before a client can request an access token, it SHALL generate a one-time-use JSON Web Token
(JWT) that will be used to authenticate the client to the FHIR authorization server. The
authentication JWT SHALL include the following claims, and SHALL be signed with the client’s

https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc8414
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-3-access-token
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

private key (which SHOULD be an RS384 or ES384 signature). For a practical reference on JWT, as
well as debugging tools and client libraries, see https://jwt.io.

Authentication JWT Header Values

alg require
d

The JWA algorithm (e.g., RS384, ES384) used for signing the authentication JWT.

kid require
d

The identifier of the key-pair used to sign this JWT. This identifier SHALL be unique within the client's

typ require
d

Fixed value: JWT.

jku optional The TLS-protected URL to the JWK Set containing the public key(s) accessible without authentication
URL value that the client supplied to the FHIR authorization server at client registration time. When a
JWK Set URL or the JWK Set supplied at registration time. See Signature Verification for details.

Authentication JWT Claims

iss require
d

Issuer of the JWT -- the client's client_id, as determined during registration with the FHIR authoriza
the sub claim)

sub require
d

The client's client_id, as determined during registration with the FHIR authorization server (note th

aud require
d

The FHIR authorization server's "token URL" (the same URL to which this authentication JWT will be

exp require
d

Expiration time integer for this authentication JWT, expressed in seconds since the "Epoch" (1970-01
minutes in the future.

jti require
d

A nonce string value that uniquely identifies this authentication JWT.

After generating an authentication JWT, the client requests an access token following either
the SMART App Launch or the SMART Backend Services specification. Authentication details are
conveyed using the following additional properties on the token request:

Parameters

client_assertion_type required Fixed value: urn:ietf:params:oauth:client-assertion-typ

client_assertion required Signed authentication JWT value (see above)

Response
Signature Verification

The FHIR authorization server SHALL validate the JWT according to the processing requirements
defined in Section 3 of RFC7523 including validation of the signature on the JWT.

In addition, the authentication server SHALL:

https://jwt.io/
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html#signature-verification
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-3-access-token
https://tools.ietf.org/html/rfc7523#section-3

●​ check that the jti value has not been previously encountered for the given iss within the
maximum allowed authentication JWT lifetime (e.g., 5 minutes). This check prevents replay
attacks.

●​ ensure that the client_id provided is known and matches the JWT’s iss claim

To resolve a key to verify signatures, a FHIR authorization server SHALL follow this algorithm:

1.​ If the jku header is present, verify that the jku is whitelisted (i.e., that it matches the
JWKS URL value supplied at registration time for the specified client_id).

a.​ If the jku header is not whitelisted, the signature verification fails.

b.​ If the jku header is whitelisted, create a set of potential keys by dereferencing
the jku URL. Proceed to step 3.

2.​ If the jku header is absent, create a set of potential key sources consisting of all keys
found in the registration-time JWKS or found by dereferencing the registration-time JWK
Set URL. Proceed to step 3.

3.​ Identify a set of candidate keys by filtering the potential keys to identify the single key
where the kid matches the value supplied in the client's JWT header, and the kty is
consistent with the signature algorithm supplied in the client's JWT header (e.g., RSA for a
JWT using an RSA-based signature, or EC for a JWT using an EC-based signature). If no
keys match, or more than one key matches, the verification fails.

4.​ Attempt to verify the JWK using the key identified in step 3.

To retrieve the keys from a JWKS URL in step 1 or step 2, a FHIR authorization server issues a
HTTP GET request that URL to obtain a JWKS response. For example, if a client has registered a
JWKS URL of https://client.example.com/path/to/jwks.json, the server retrieves the client’s JWKS
with a GET request for that URL, including a header of Accept: application/json.

If an error is encountered during the authentication process, the server SHALL respond with
an invalid_client error as defined by the OAuth 2.0 specification.

●​ The FHIR authorization server SHALL NOT cache a JWKS for longer than the
client’s cache-control header indicates.

●​ The FHIR authorization server SHOULD cache a client’s JWK Set according to the client’s
cache-control header; it doesn’t need to retrieve it anew every time.

Processing of the access token request proceeds according to either the SMART App Launch or
the SMART Backend Services specification.

Worked example
Assume that a “bilirubin result monitoring service” client has registered with a FHIR authorization
server whose token endpoint is at “https://authorize.smarthealthit.org/token”, establishing the
following

●​ JWT “issuer” URL: https://bili-monitor.example.com

●​ OAuth2 client_id: bili_monitor

●​ JWK identfier: kid value (see example JWK)

The client protects its private key from unauthorized access, use, and modification.

At runtime, when the bilirubin monitoring service needs to authenticate to the token endpoint, it
generates a one-time-use authentication JWT.

JWT Headers:

{

 "typ": "JWT",

 "alg": "RS384",

 "kid": "eee9f17a3b598fd86417a980b591fbe6"

https://tools.ietf.org/html/rfc6749#section-5.2
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html#step-3-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/RS384.public.json

}

JWT Payload:

{

 "iss": "https://bili-monitor.example.com",

 "sub": "bili_monitor",

 "aud": "https://authorize.smarthealthit.org/token",

 "exp": 1422568860,

 "jti": "random-non-reusable-jwt-id-123"

}

Using the client’s RSA private key, with SHA-384 hashing (as specified for an RS384 algorithm (alg)
parameter value in RFC7518), the signed token value is:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzM4NCIsImtpZCI6ImVlZTlmMTdhM2I1OThmZDg2NDE3YTk4MGI1OTFmYm
U2In0.eyJpc3MiOiJiaWxpX21vbml0b3IiLCJzdWIiOiJiaWxpX21vbml0b3IiLCJhdWQiOiJodHRwczovL2F1
dGhvcml6ZS5zbWFydGhlYWx0aGl0Lm9yZy90b2tlbiIsImV4cCI6MTQyMjU2ODg2MCwianRpIjoicmFuZG9tLW
5vbi1yZXVzYWJsZS1qd3QtaWQtMTIzIn0.l2E3-ThahEzJ_gaAK8sosc9uk1uhsISmJfwQOtooEcgUiqkdMFdA
UE7sr8uJN0fTmTP9TUxssFEAQnCOF8QjkMXngEruIL190YVlwukGgv1wazsi_ptI9euWAf2AjOXaPFm6t629vz
dznzVu08EWglG70l41697AXnFK8GUWSBf_8WHrcmFwLD_EpO_BWMoEIGDOOLGjYzOB_eN6abpUo4GCB9gX2-U8
IGXAU8UG-axLb35qY7Mczwq9oxM9Z0_IcC8R8TJJQFQXzazo9YZmqts6qQ4pRlsfKpy9IzyLzyR9KZyKLZalBy
twkr2lW7QU3tC-xPrf43jQFVKr07f9dA

Note: to inspect this example JWT, you can visit https://jwt.io. Paste the signed JWT value above
into the “Encoded” field, and paste the sample public signing key (starting with the {"kty":
"RSA" JSON object, and excluding the { "keys": [JWK Set wrapping array) into the “Public Key”
box. The plaintext JWT will be displayed in the “Decoded:Payload” field, and a “Signature Verified”
message will appear.

For a complete code example demonstrating how to generate this assertion, see: rendered Jupyter
Notebook, source .ipynb file.

Requesting an Access Token
A client_assertion generated in this fashion can be used to request an access token as part of a
SMART App Launch authorization flow, or as part of a SMART Backend Services authorization flow.
See complete example:

●​ SMART App Launch: specification; full example

●​ SMART Backend Services: specification; full example

6 Symmetric Authentication
●​ Profile Audience and Scope

●​ Authentication using a client_secret

Profile Audience and Scope
This profile desribes SMART’s client-confidential-symmetric authentication mechanism. It is
intended for for SMART App Launch clients that can maintain a secret but cannot manage
asymmetric keypairs. For client that can manage asymmetric keypairs, Asymmetric
Authentication is preferred. This profile is not intended for SMART Backend Services clients.

http://build.fhir.org/ig/HL7/smart-app-launch/RS384.public.json
http://build.fhir.org/ig/HL7/smart-app-launch/authorization-example-jwks-and-signatures.html
http://build.fhir.org/ig/HL7/smart-app-launch/authorization-example-jwks-and-signatures.html
http://build.fhir.org/ig/HL7/smart-app-launch/authorization-example-jwks-and-signatures.ipynb
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html#step-5-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html
http://build.fhir.org/ig/HL7/smart-app-launch/example-backend-services.html#step-3-access-token
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html#profile-audience-and-scope
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html#authentication-using-a-client_secret
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html
http://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/backend-services.html

Authentication using a client_secret
If a client has registered for Client Password authentication (i.e., it possesses a client_secret that
is also known to the EHR), the client authenticates by supplying an Authorization header with HTTP
Basic authentication, where the username is the app’s client_id and the password is the
app’s client_secret.

Example
If the client_id is “my-app” and the client_secret is “my-app-secret-123”, then the header uses
the value B64Encode(“my-app:my-app-secret-123”), which converts
to bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz. This gives the app the Authorization token for “Basic Auth”.

GET header:

Authorization: Basic bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz

7 Token Introspection
●​ Required fields in the introspection response

●​ Conditional fields in the introspection response

●​ Authorization to perform Token Introspection

●​ Example Request and Response

SMART on FHIR EHRs SHOULD support Token Introspection, which allows a broader ecosystem of
resource servers to leverage authorization decisions managed by a single authorization server.
Token Introspection is conducted according to RFC 7662: OAuth 2.0 Token Introspection, with the
following additional considerations.

Required fields in the introspection response
In addition to the active field required by RFC7662 (a boolean indicating whether the access token
is active), the following fields SHALL be included in the introspection response:

●​ scope. As included in the original access token response. The list of scopes granted by the
authorization server as a space-separated JSON string.

●​ client_id. As included in the original access token response. The client identifier of the
client to which the token was issued.

●​ exp. As included in the original access token response. The integer timestamp indicating
when the access token expires.

Conditional fields in the introspection response
In addition to the required fields, the following fields SHALL be included in the introspection
response when the specified conditions are met:

●​ SMART Launch Context. If a launch context parameter defined in Scopes and Launch
Context (e.g., patient or intent) was included in the original access token response, the
parameter SHALL be included in the token introspection response.

●​ ID Token Claims. If an id_token was included in the original access token response, the
following claims from the ID Token SHALL be included in the Token Introspection response:

o​ iss

o​ sub

●​ ID Token Claims. If an id_token was included in the original access token response, the
following claims from the ID Token SHOULD be included in the Token Introspection
response:

o​ fhirUser

Authorization to perform Token Introspection

http://build.fhir.org/ig/HL7/smart-app-launch/token-introspection.html#required-fields-in-the-introspection-response
http://build.fhir.org/ig/HL7/smart-app-launch/token-introspection.html#conditional-fields-in-the-introspection-response
http://build.fhir.org/ig/HL7/smart-app-launch/token-introspection.html#authorization-to-perform-token-introspection
http://build.fhir.org/ig/HL7/smart-app-launch/token-introspection.html#example-request-and-response
https://datatracker.ietf.org/doc/html/rfc7662
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html

SMART on FHIR EHRs MAY implement access control protecting the Token Introspection endpoint. If
access control is implemented, any client authorized to issue Token Introspection API calls SHOULD
be able to authenticate to the Token Introspection endpoint using its client credentials. Further
considerations for access control are out of scope for the SMART App Launch IG.

Example Request and Response
Example Token Introspection request:

 POST /introspect HTTP/1.1

 Host: server.example.com

 Accept: application/json

 Content-Type: application/x-www-form-urlencoded

 Authorization: Bearer 23410913-abewfq.123483

 token=2YotnFZFEjr1zCsicMWpAA

Example Token Introspection response:

 HTTP/1.1 200 OK

 Content-Type: application/json

 {

 "active": true,

 "client_id": "07a89bd2-52ce-4576-8b85-71698efa8328",

 "scope": "patient/*.read openid fhirUser",

 "sub": "c91dfe96-731d-4e66-b4f9-01f8f8a4b7b2",

 "patient": "Patient/456",

 "fhirUser": "https://ehr.example.org/fhir/Patient/123",

 "exp": 1597678964,

 }

8 Conformance
●​ SMART on FHIR OAuth authorization Endpoints and Capabilities

●​ FHIR Authorization Endpoint and Capabilities Discovery using a Well-Known Uniform
Resource Identifiers (URIs)

The SMART’s App Launch specification enables apps to launch and securely interact with EHRs. The
specification can be described as a set of capabilities and a given SMART on FHIR server
implementation may implement a subset of these. The methods of declaring a server’s SMART
authorization endpoints and launch capabilities are described in the sections below.

SMART on FHIR OAuth authorization Endpoints and Capabilities
The server SHALL convey the FHIR OAuth authorization endpoints and any optional SMART
Capabilities it supports using a Well-Known Uniform Resource Identifiers (URIs) JSON file. (In
previous versions of SMART, some of these details were also conveyed in a server’s
CapabilityStatement; this mechanism is now deprecated.)

Capability Sets

http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#smart-on-fhir-oauth-authorization-endpoints-and-capabilities
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#using-well-known
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#using-well-known
http://build.fhir.org/ig/HL7/smart-app-launch/conformance.html#using-well-known

A Capability Set combines individual capabilities to enable a specific use-case. A SMART on FHIR
server SHOULD support one or more Capability Sets. Unless otherwise noted, each capability listed
is required to satisfy a Capability Set. Any individual SMART server will publish a granular list of its
capabilities; from this list a client can determine which of these Capability Sets are supported:

External implementation guides MAY define additional capabilities to be discovered through this
same mechanism. IGs published by HL7 MAY use simple strings to represent additional capabilities
(e.g., example-new-capability); IGs published by other organizations SHALL use full URIs to
represent additional capabilities (e.g., http://sdo.example.org/example-new-capability).

Patient Access for Standalone Apps

1.​ launch-standalone

2.​ At least one of client-public or client-confidential-symmetric; and MAY
support client-confidential-asymmetric

3.​ context-standalone-patient

4.​ permission-patient

Patient Access for EHR Launch (i.e. from Portal)

1.​ launch-ehr

2.​ At least one of client-public or client-confidential-symmetric; and MAY
support client-confidential-asymmetric

3.​ context-ehr-patient

4.​ permission-patient

Clinician Access for Standalone

1.​ launch-standalone

2.​ At least one of client-public or client-confidential-symmetric; and MAY
support client-confidential-asymmetric

3.​ permission-user

4.​ permission-patient

Clinician Access for EHR Launch

1.​ launch-ehr

2.​ At least one of client-public or client-confidential-symmetric; and MAY
support client-confidential-asymmetric

3.​ context-ehr-patient support

4.​ context-ehr-encounter support

5.​ permission-user

6.​ permission-patient

Capabilities
To promote interoperability, the following SMART on FHIR Capabilities have been defined. A given
set of these capabilities is combined to support a specific use, a Capability Set.

Launch Modes

●​ launch-ehr: support for SMART’s EHR Launch mode

●​ launch-standalone: support for SMART’s Standalone Launch mode

Authorization Methods

●​ authorize-post: support for POST-based authorization

Client Types

●​ client-public: support for SMART’s public client profile (no client authentication)

●​ client-confidential-symmetric: support for SMART’s symmetric confidential client profile
(“client secret” authentication). See Client Authentication: Symmetric.

●​ client-confidential-asymmetric: support for SMART’s asymmetric confidential client profile
(“JWT authentication”). See Client Authentication: Asymmetric.

Single Sign-on

●​ sso-openid-connect: support for SMART’s OpenID Connect profile

Launch Context

The following capabilities convey that a SMART on FHIR server is capable of providing context to an
app at launch time.

Lauch Context for UI Integration

These capabilities only apply during an EHR Launch, and context-style only for an embedded EHR
Launch.

●​ context-banner: support for “need patient banner” launch context (conveyed
via need_patient_banner token parameter)

●​ context-style: support for “SMART style URL” launch context (conveyed
via smart_style_url token parameter). This capability is deemed experimental.

Launch Context for EHR Launch

When a SMART on FHIR server supports the launch of an app from within an existing user session
(“EHR Launch”), the server has an opportunity to pass existing, already-established context (such
as the current patient ID) through to the launching app. Using the following capabilities, a server
declares its ability to pass context through to an app at launch time:

●​ context-ehr-patient: support for patient-level launch context (requested
by launch/patient scope, conveyed via patient token parameter)

●​ context-ehr-encounter: support for encounter-level launch context (requested
by launch/encounter scope, conveyed via encounter token parameter)

Launch Context for Standalone Launch

When a SMART on FHIR server supports the launch of an app from outside an existing user session
(“Standalone Launch”), the server may be able to proactively resolve new context to help establish
the details required for an app launch. For example, an external app may request that the SMART
on FHIR server should work with the end-user to establish a patient context before completing the
launch.

●​ context-standalone-patient: support for patient-level launch context (requested
by launch/patient scope, conveyed via patient token parameter)

●​ context-standalone-encounter: support for encounter-level launch context (requested
by launch/encounter scope, conveyed via encounter token parameter)

Permissions

●​ permission-offline: support for refresh tokens (requested by offline_access scope)

●​ permission-online: support for refresh tokens (requested by online_access scope)

●​ permission-patient: support for patient-level scopes (e.g. patient/Observation.rs)

●​ permission-user: support for user-level scopes (e.g. user/Appointment.rs)

●​ permission-v1: support for SMARTv1 scope syntax (e.g., patient/Observation.read)

●​ permission-v2: support for SMARTv2 granular scope syntax
(e.g., patient/Observation.rs?category=http://terminology.hl7.org/CodeSystem/observation-c
ategory|vital-signs)

FHIR Authorization Endpoint and Capabilities Discovery using a
Well-Known Uniform Resource Identifiers (URIs)

http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-symmetric.html
http://build.fhir.org/ig/HL7/smart-app-launch/client-confidential-asymmetric.html

The authorization endpoints accepted by a FHIR resource server are exposed as a Well-Known
Uniform Resource Identifiers (URIs) (RFC5785) JSON document.

FHIR endpoints requiring authorization SHALL serve a JSON document at the location formed by
appending /.well-known/smart-configuration to their base URL. Contrary to RFC5785 Appendix B.4,
the .well-known path component may be appended even if the FHIR endpoint already contains a
path component.

Responses for /.well-known/smart-configuration requests SHALL be JSON, regardless
of Accept headers provided in the request.

●​ clients MAY omit an Accept header

●​ servers MAY ignore any client-supplied Accept headers

●​ servers SHALL respond with application/json

Sample Request
Sample requests:

Base URL “fhir.ehr.example.com”

GET /.well-known/smart-configuration HTTP/1.1

Host: fhir.ehr.example.com

Base URL “www.ehr.example.com/apis/fhir”

GET /apis/fhir/.well-known/smart-configuration HTTP/1.1

Host: www.ehr.example.com

Response
A JSON document must be returned using the application/json mime type.

Metadata

●​ issuer: CONDITIONAL, String conveying this system’s OpenID Connect Issuer URL.
Required if the server’s capabilities include sso-openid-connect; otherwise, omitted.

●​ jwks_uri: CONDITIONAL, String conveying this system’s JSON Web Key Set URL. Required
if the server’s capabilities include sso-openid-connect; otherwise, optional.

●​ authorization_endpoint: REQUIRED, URL to the OAuth2 authorization endpoint.

●​ grant_types_supported: REQUIRED, Array of grant types supported at the token endpoint.
The options are “authorization_code” (when SMART App Launch is supported) and
“client_credentials” (when SMART Backend Services is supported).

●​ token_endpoint: REQUIRED, URL to the OAuth2 token endpoint.

●​ token_endpoint_auth_methods_supported: OPTIONAL, array of client authentication methods
supported by the token endpoint. The options are “client_secret_post”,
“client_secret_basic”, and “private_key_jwt”.

●​ registration_endpoint: OPTIONAL, If available, URL to the OAuth2 dynamic registration
endpoint for this FHIR server.

●​ scopes_supported: RECOMMENDED, Array of scopes a client may request. See scopes and
launch context. The server SHALL support all scopes listed here; additional scopes MAY be
supported (so clients should not consider this an exhaustive list).

●​ response_types_supported: RECOMMENDED, Array of OAuth2 response_type values that are
supported. Implementers can refer to response_types defined in OAuth 2.0 (RFC 6749) and
in OIDC Core.

https://datatracker.ietf.org/doc/html/rfc5785
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#quick-start
http://build.fhir.org/ig/HL7/smart-app-launch/scopes-and-launch-context.html#quick-start
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html#Authentication

●​ management_endpoint: RECOMMENDED, URL where an end-user can view which applications
currently have access to data and can make adjustments to these access rights.

●​ introspection_endpoint : RECOMMENDED, URL to a server’s introspection endpoint that
can be used to validate a token.

●​ revocation_endpoint : RECOMMENDED, URL to a server’s revoke endpoint that can be used
to revoke a token.

●​ capabilities: REQUIRED, Array of strings representing SMART capabilities
(e.g., sso-openid-connect or launch-standalone) that the server supports.

●​ code_challenge_methods_supported: REQUIRED, Array of PKCE code challenge methods
supported. The S256 method SHALL be included in this list, and the plain method SHALL
NOT be included in this list.

Sample Response

HTTP/1.1 200 OK

Content-Type: application/json

{

 "issuer": "https://ehr.example.com",

 "jwks_uri": "https://ehr.example.com/.well-known/jwks.json",

 "authorization_endpoint": "https://ehr.example.com/auth/authorize",

 "token_endpoint": "https://ehr.example.com/auth/token",

 "token_endpoint_auth_methods_supported": [

 "client_secret_basic",

 "private_key_jwt"

],

 "grant_types_supported": [

 "authorization_code",

 "client_credentials"

],

 "registration_endpoint": "https://ehr.example.com/auth/register",

 "scopes_supported": ["openid", "profile", "launch", "launch/patient",
"patient/*.rs", "user/*.rs", "offline_access"],

 "response_types_supported": ["code"],

 "management_endpoint": "https://ehr.example.com/user/manage",

 "introspection_endpoint": "https://ehr.example.com/user/introspect",

 "revocation_endpoint": "https://ehr.example.com/user/revoke",

 "code_challenge_methods_supported": ["S256"],

 "capabilities": [

 "launch-ehr",

 "permission-patient",

 "permission-v2",

 "client-public",

 "client-confidential-symmetric",

 "context-ehr-patient",

 "sso-openid-connect"

]

}

9 Best Practices
●​ Considerations for Scope Consent (Non-Normative)

●​ App and Server developers should consider trade-offs associated with confidential vs public
app architectures

●​ Best Practices

o​ Best practices for server developers include

o​ Best practices for app developers include

Considerations for Scope Consent (Non-Normative)
In 3rd-party authorization scenarios (where the client and the resource server are not from the
same organization), it is a common requirement for authorization servers to obtain the user’s
consent prior to granting the scopes requested by the client. In order to collect the required
consent in a transparent manner, it is important that the authorization server presents a summary
of the requested scopes in concise, plain language that the user understands.

The responsibility of supporting transparent consent falls on both the authorization server
implementer as well as the client application developer.

Client Application Considerations

●​ In a complex authorization scenario involving user consent, the complexity of the
authorization request presented to the user should be considered and balanced against the
concept of least privilege. Make effective use of both wildcard and SMART 2.0 fine grained
resource scopes to reduce the number and complexity of scopes requested. The goal is to
request an appropriate level of access in a transparent manner that the user fully
understands and agrees with.

Authorization Server Considerations

●​ For each requested scope- present the user with both a short and long description of the
access requested. The long description may be available in a pop-up window or some
similar display method. These descriptions should be in plain language, localized to the
language set in the user’s browser.

●​ Consider publishing consent design documentation for client developers- including user
interface screenshots and full scope description metadata. This will provide valuable
transparency to client developers as they make decisions on what access to request at
authorization time.

●​ Avoid industry jargon when describing a given scope to the user. For example, an average
patient may not know what is meant if a client application is requesting for access to their
“Encounters”.

●​ If using the experimental query-based scopes, consider how the query will be represented
in plain language. If the query cannot easily be explained in a single sentence, adjustment
of the requested scope should be considered or proper documentation provided to educate
the intended user population.

App and Server developers should consider trade-offs associated
with confidential vs public app architectures

1.​ Persistent access is important for providing a seamless consumer experience, and Refresh
Tokens are the mechanism SMART App Launch defines for enabling persistent access. If an
app is ineligible for refresh tokens, the developer is likely to seek other means of achieving

http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#considerations-for-scope-consent-non-normative
http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#app-and-server-developers-should-consider-trade-offs-associated-with-confidential-vs-public-app-architectures
http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#app-and-server-developers-should-consider-trade-offs-associated-with-confidential-vs-public-app-architectures
http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#best-practices
http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#best-practices-for-server-developers-include
http://build.fhir.org/ig/HL7/smart-app-launch/best-practices.html#best-practices-for-app-developers-include

this (e.g., saving a user’s password and simulating login; or moving to a cloud-based
architecture even though there’s no use case for managing data off-device).

2.​ Client architectures where data pass through or are stored in a secure backend server
(e.g., many confidential clients) can offer more secure {refresh token :: client} binding,
but are open to certain attacks that purely-on-device apps are not subject to (e.g., cloud
server becomes compromised and tokens/secrets leak). A breach in this context can be
widespread, across many users.

3.​ Client architectures where data are managed exclusively on end-user devices (e.g., many
public clients including most native apps today, where an app is only registered once with a
given EHR) are open to certain attacks that confidential clients can avoid (e.g., a malicious
app on your device might steal tokens from a valid app, or might impersonate a valid app).
A breach in this context is more likely to be isolated to a given user or device.

The choice of app architecture should be based based on context. Apps that already need to
manage data in the cloud should consider a confidential client architecture; apps that don’t should
consider a purely-on-device architecture. But this decision only works if refresh tokens are
available in either case; otherwise, app developers will switch architectures just to be able to
maintain persistent access, even if the overall security posture is diminished.

Best Practices
This page reflects best practices established at the time of publication. For up-to-date community
discussion, see SMART on FHIR Best Practices on the HL7 Confluence Site

Best practices for server developers include
●​ Remind users which apps have offline access (keeping in mind that too many reminders

lead to alert fatigue)

●​ Mitigate threats of compromised refreshed tokens

●​ Expire an app’s authorization if a refresh token is used more than once (see OAuth
2.1 section 6.1)

●​ Consider offering clients a way to bind refresh tokens to asymmetric secrets managed in
hardware

●​ E.g., per-device dynamic client registration (see ongoing work on UDAP specifications)

●​ E.g., techniques like the draft DPOP specification

Best practices for app developers include
●​ Ensure that refresh tokens are never used more than once

●​ Take advantage of techniques to bind refresh tokens to asymmetric secrets managed in
hardware, when available (see above)

●​ If an app only needs to connect to EHR when the user is present, maintain secrets with
best-available protection (e.g., biometric unlock)

●​ Publicly document any code of conduct that an app adheres to (e.g., CARIN Alliance code of
conduct)

10 Examples
●​ SMART App Launch Examples

●​ SMART Backend Services Examples

SMART App Launch Examples
These examples demonstrate all steps involved in the SMART App Launch authorization process.

●​ Public client

●​ Confidential client, asymmetric authentication

●​ Confidential client, symmetric authentication

https://confluence.hl7.org/display/FHIRI/SMART+on+FHIR+Best+Practices
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-02#section-6.1
https://www.udap.org/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-03
https://www.carinalliance.com/our-work/trust-framework-and-code-of-conduct/
https://www.carinalliance.com/our-work/trust-framework-and-code-of-conduct/
http://build.fhir.org/ig/HL7/smart-app-launch/examples.html#smart-app-launch-examples
http://build.fhir.org/ig/HL7/smart-app-launch/examples.html#smart-backend-services-examples
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-public.html
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-asymmetric-auth.html
http://build.fhir.org/ig/HL7/smart-app-launch/example-app-launch-symmetric-auth.html

SMART Backend Services Examples
This example demonstrates all steps involved in the SMART Backend Services authorization
process.

●​ Backend Services

11 Artifacts Summary
Contents:

This page provides a

http://build.fhir.org/ig/HL7/smart-app-launch/example-backend-services.html

	App Launch
	Profile audience and scope
	Security and Privacy Considerations
	App protection
	Support for “public” and “confidential” apps
	Use the confidential app profile if your app is able to protect a secret
	Use the public app profile if your app is unable to protect a secret

	Considerations for PKCE Support
	Related reading

	SMART authorization & FHIR access: overview
	Top-level steps for SMART App Launch
	Register App with EHR
	Request
	Response

	Launch App: Standalone Launch
	Request
	Response
	Examples

	Launch App: EHR Launch
	Request
	For example

	Response

	Retrieve .well-known/smart-configuration
	Request
	Response
	Examples

	Obtain authorization code
	Request
	For example

	Response
	For example

	Examples

	Obtain access token
	Request
	Response
	Examples

	Access FHIR API
	Request
	Response
	Example Request and Response

	Refresh access token
	Request
	Response
	Examples

	2,1 Example App Launch for Public Client
	2.1 Example: App Launch with Asymmetric Authentication
	Launch App
	Retrieve .well-known/smart-configuration
	Obtain authorization code
	Retrieve access token
	Access FHIR API
	Refresh access token

	
	2.2 Example App Launch for Asymmetric Client Auth
	2.3 Example: App Launch with Asymmetric Authentication
	Launch App

	
	3 Backend Services
	Profile Audience and Scope
	Use this profile when the following conditions apply:
	Examples

	Underlying Standards
	Conformance Language
	Top-level steps for Backend Services Authorization
	Register SMART Backend Service (communicating public keys)
	Retrieve .well-known/smart-configuration
	Request
	Response
	Example Request and Response

	Obtain acess token
	Request
	Scopes

	Response
	Enforce Authorization
	Validate Authentication JWS
	Evaluate Requested Access
	Issue Access Token

	Example Token Request and Response

	Access FHIR API
	Request
	Response
	Example Request and Response

	4 Scopes and Launch Context
	Quick Start
	SMART’s scopes are used to delegate access

	Scopes for requesting clinical data
	Batches and Transactions
	Scope Equivalence
	Finer-grained resource constraints using search parameters
	Requirements for support
	Experimental features
	Scope size over the wire
	Clinical Scope Syntax
	Patient-specific scopes
	User-level scopes
	System-level scopes
	Wildcard scopes

	Scopes for requesting context data
	Apps that launch from the EHR
	Standalone apps
	Requesting context with scopes

	Launch context arrives with your access_token
	Notes on launch context parameters
	fhirContext
	App Launch Intent (optional)
	SMART App Styling (experimental1)

	Scopes for requesting identity data
	Scopes for requesting a refresh token
	Extensions
	Example: Extra context - fhirContext for FHIR Resource References
	EHR Launch
	Standalone Launch

	Example: Extra context - extensions for non-FHIR context
	Example: Extra scopes - extensions for non-FHIR APIs

	Steps for using an ID token
	Worked examples
	Appendix: URI representation of scopes

	openID scopes have a URI prefix of http://openid.net/specs/openid-connect-core-1_0#5 Asymmetric Authentication
	Profile Audience and Scope
	Use this profile when the following conditions apply:

	Underlying Standards
	Conformance Language
	Advertising server support for this profile
	Example .well-known/smart-configuration Response

	Registering a client (communicting public keys)
	Authenticating to the Token endpoint
	Request
	Response
	Signature Verification

	Worked example
	Requesting an Access Token

	6 Symmetric Authentication
	Profile Audience and Scope
	Authentication using a client_secret
	Example

	7 Token Introspection
	Required fields in the introspection response
	Conditional fields in the introspection response
	Authorization to perform Token Introspection
	Example Request and Response

	8 Conformance
	SMART on FHIR OAuth authorization Endpoints and Capabilities
	Capability Sets
	Patient Access for Standalone Apps
	Patient Access for EHR Launch (i.e. from Portal)
	Clinician Access for Standalone
	Clinician Access for EHR Launch

	Capabilities
	Launch Modes
	Authorization Methods
	Client Types
	Single Sign-on
	Launch Context
	Lauch Context for UI Integration
	Launch Context for EHR Launch
	Launch Context for Standalone Launch

	Permissions

	FHIR Authorization Endpoint and Capabilities Discovery using a Well-Known Uniform Resource Identifiers (URIs)
	Sample Request
	Base URL “fhir.ehr.example.com”
	Base URL “www.ehr.example.com/apis/fhir”

	Response
	Metadata

	Sample Response

	9 Best Practices
	Considerations for Scope Consent (Non-Normative)
	App and Server developers should consider trade-offs associated with confidential vs public app architectures

	Best Practices
	Best practices for server developers include
	Best practices for app developers include

	10 Examples
	SMART App Launch Examples
	SMART Backend Services Examples

	
	11 Artifacts Summary

