Published using Google Docs
SoSe 2014 - Seminar Data Wrangling
Updated automatically every 5 minutes

Themen des Seminars “Data Wrangling”

Artur Andrzejak, Lutz Büch

Sommersemester 2014, Institut für Informatik, Universität Heidelberg

Link zur Seminarseite: http://pvs.ifi.uni-heidelberg.de/teaching/ss2014/s-data-wrangling/

Teilnehmer

Vorname

Nachname

Thema

Block

Datum

Vorbesprechung

Ausarb.

Jonas

Cordes

B1

1

18. Mai

Daniel

Egenolf

A1

1

18. Mai

Tobias

Limpert

A5

1

18. Mai

Christian

Kromm

C6

1

18. Mai

Claudia

Dünkel

A3

2

1. Juni

Jonas

Scholten

C9

2

1. Juni

Matthias

Iacsa

B2

1

1. Juni

Hüseyin

Dagaydin

C3

2

1. Juni

Stefan

Mücke

C4

2

1. Juni

Özhan

Durgan

C1

2

30. Juni

Teilnehmer

A. Introduction to Data Wrangling

A1 Data Quality

A2 String similarity

A3 Schema Matching and Schema Mapping

A4 Record Matching

A5 Data Fusion

B. Modern data-driven methods

B1 Active Learning

B2 Programming by Example and Program Synthesis

C. Application of data-driven methods in Data Wrangling

C1 Wrapper induction for Data Extraction

C2 Learning String Transformation From Examples

C3 Automating String Processing in Spreadsheets Using I/O-Examples

C4 Synthesizing Number Transformation from I/O-Examples

C5 Learning Semantic String Transformations from Examples*

C6 Interactive Deduplication using Active Learning

C7 Transformation-based Framework for Record Matching

C8 Adaptive Duplicate Detection Using Learnable String Similarity Measures

C9 DUMAS - Horizontal Schema Matching using Duplicates

C10 iMAP: discovering complex semantic matches between database schemas

C11 Sample-Driven Schema Mapping

A. Introduction to Data Wrangling

General literature:

A1 Data Quality

A2 String similarity

A3 Schema Matching and Schema Mapping

A4 Record Matching

A5 Data Fusion

B. Modern data-driven methods

B1 Active Learning

B2 Programming by Example and Program Synthesis

C. Application of data-driven methods in Data Wrangling

C1 Wrapper induction for Data Extraction

C2 Learning String Transformation From Examples

C3 Automating String Processing in Spreadsheets Using I/O-Examples

C4 Synthesizing Number Transformation from I/O-Examples

C5 Learning Semantic String Transformations from Examples*

C6 Interactive Deduplication using Active Learning

C7 Transformation-based Framework for Record Matching

C8 Adaptive Duplicate Detection Using Learnable String Similarity Measures

C9 DUMAS - Horizontal Schema Matching using Duplicates

C10 iMAP: discovering complex semantic matches between database schemas

C11 Sample-Driven Schema Mapping