
editing and porting hair extra skeletons
guide by @sleepybnuuy 🐇💤

this brief guide will walk through the following:

-​ what is an extra skeleton, why do i want it, and how does it work?
-​ extracting a skeleton with VFXEdit
-​ editing an exported skeleton in Blender
-​ importing a finished skeleton through VFXEdit
-​ adjusting and applying the skeleton’s physics
-​ adding brand new bones to a hairstyle for posing

none of this is exhaustive - it may in fact involve bad practices or janky spaghetti code! However
it should work and shouldn’t break your game.

This guide assumes you know some of the following:

-​ basics of importing and exporting mods through textools or penumbra
-​ fundamentals for editing mods through blender
-​ familiarity with weight painting or weight transferring
-​ use of posing tools like anamnesis, ktisis

if you’re foggy on any of the above, this may not be the guide for you!
however, if you’ve ever edited a hair and wished for better/different weights and bones, this
guide is probably for you 🐇

SPECIAL NOTE 6/28/25: i’ve made a followup to this guide that goes into a bit more detail on
mashing multiple skeletons together – this one is primarily focused on porting a unique skeleton
between races. you may benefit from reading one or both depending on your project, so the link
to that is here: HOW TO USE MULTIPLE HAIR SKELETONS FOR 1 MASHUP

RECOMMENDED TOOLS include:

-​ Textools
-​ XIVLauncher / Dalamud
-​ VFXEdit
-​ Blender 4.0+

what is an extra skeleton?
extra skeletons are bonus sets of bones that XIV will load under certain conditions. If a weapon
has a spinny thing on it, a chestpiece has dangly bits on it, or hair has extra parts to it, these
can all be controlled by the addition of an extra skeleton to the playermodel.

https://docs.google.com/document/d/1gI_H7o4305R51_IJyGRrmkQ-VHCkORHdMIFKk5JSioA

These are super useful for a variety of reasons, such as adding custom animations to a weapon
beyond just particle effects, or in the case of hair skeletons, giving the model more bones to be
weighted to. Unlike the player skeleton, extra hair skeletons are controlled entirely by the
game’s physics engine - you don’t have to touch a single animation file to make them move
around, which is super nice for developers and also for us who like nice flowy hair.

You’ll still have to weight paint or transfer weights involving these bonus bones, but being able
to add as many as you like, or in as many positions as your hairstyle needs, is obviously a great
benefit to have. Many hair mods tend to grab the best-fitting skeleton from an existing hairstyle
on your race/gender and weight to those bones - but if you can define and edit your own extra
skeleton, you can make a totally new set of bones to play with (and even give them physics! no
more rigid ponytails)

how do they work? what’s the gritty details
as with a lot of VFX modding, the answer may often be “We just don’t know.” however, at a high
level, the following is true:

-​ Player skeletons are defined as sklb files, which control the layout of bones to be
animated

-​ These bones are animated with other VFX files (.vfx, .pap, .eid, etc)
-​ Extra hair skeletons are also sklb files, but are conditionally loaded and applied based

on the hair’s metadata
-​ Bones defined by an extra skeleton are animated fully through phyb files, but can

still be manipulated with gpose tools like Ktisis or Anamnesis
-​ Extra Skeleton Parameters (EST) in an object’s metadata can be configured

either with Penumbra or Textools, signaling to the game to apply a particular
skeleton ID when a gear piece or hairpiece is loaded

-​ Hair models can be weighted to both player armature bones and extra skeleton
bones, meaning that when the proper skeleton and bones are loaded, the extra
skeleton and its motions/posing can affect the hair mesh

It is far easier and safer to muck around with extra skeletons than player skeletons - because
they’re loaded in as extra bits and never referred to on animations, there’s no big risk of
compatibility issues with other mods, body types, etc. Less likely to crash and burn too.

extracting a skeleton with VFXEdit
you should install VFXEdit through Dalamud and browse its documentation here:
https://github.com/0ceal0t/Dalamud-VFXEditor

For an example project, we’ll explore a workflow for porting MIDLANDER F HAIR 14 and its
extra skeleton to midlander masc. This is a good candidate for a skeleton port, because the
extra skeleton for this hairstyle belongs exclusively to F-midlander models - meaning if we
wanted to weight something similar on a guy, it’d be exhausting to get the twintails fitting and
moving naturally without a matching skeleton.

Once you’ve identified a hair that you’d like to edit the skeleton of, first identify the filepaths that
said hairstyle uses for its skeleton and physics. You can observe these either through
penumbra’s on-screen viewer tab, the bones available in ktisis/anamnesis, or the metadata tags
linked with your hairstyle:

https://github.com/0ceal0t/Dalamud-VFXEditor

Identifying extra skeleton bones via Ktisis

Identifying extra skeleton filepath in Penumbra

Identifying skeleton index with EST metadata

Once you’ve identified the skeleton to rip, we can use vfxedit to find and export the SKLB file.

In VFXEdit’s SKLB panel, load your desired hair SKLB by browsing underneath the race and

gender

Wow, real bones just like in science class

Use the GLTF option from the export button to save this skeleton as an armature

With your GLTF armature saved, you can import it to Blender 4.0+ (follow these instructions for
import settings if you run into issues)

You can delete the Icosphere, DUMMY_MESH, and glTF_not_exported elements to make your

armature look like normal bones

https://github.com/0ceal0t/Dalamud-VFXEditor/wiki/Using-Blender-to-Edit-Skeletons-and-Animations

editing an exported skeleton
To verify that all our bones are correct, we can load in an exported FBX of F Midlander hair 14
to compare the GLTF skeleton’s exports against.

The next steps are tricky and there’s probably smarter ways to do them! However, high level
what we want to accomplish are the following:

1.​ Refit the F hair mesh to midlander M
2.​ Move the extra skeleton bones to new positions around the M hair
3.​ Join the extra skeleton bones with a midlander M head bone
4.​ Export the modified skeleton as a GLTF for VFXEdit
5.​ Join our extra skeleton armature with the full midlander M hair armature
6.​ Export the hair mesh as an FBX for Textools using our new bones and weights

phew!!!!

refit the hair
i already did this for demonstration purposes but this is as standard as any hair port or edit; you
can also use an existing port instead of making a whole new one

The important part is that we end up with a visual representation of where our extra skeleton
bones should end up.

translate extra bones
There’s probably a smart way to do this or script this with Python, but essentially all we need to
do for this step is to move our extra bones into complementary locations on the refit mesh.

The positions don’t need to be exactsies, and they can always be adjusted later if you’re finding
they’re in an inconvenient spot for posing, weighting, or physics. Don’t worry about the j_kao
bone for now, as we’ll be using our target race’s head bone in the next step, instead of the one
packed with our input skeleton. We should end up with something like this to begin reparenting:

join with target race head bone
If you haven’t already, import a hairstyle from your target race (midlander M in our case) to yoink
the armature of. This could be your hairstyle you plan to replace, or any of them. We can hide
the mesh, since all we care about are the bones:

Our midlander F head bone is way below (and smaller than) the midlander M j_kao, so for
consistency, we’ll make sure to tie these extra bones to the masc-sized bone instead.
Select the new M armature and enter edit mode - duplicate the j_kao bone here using Shift+D.

With your duped j_kao selected, press P to separate it into its own armature. Then, in object
mode, join that split armature with your extra skeleton armature using Ctrl+J.

This leaves us with an extra skeleton armature containing two j_kao bones - we can delete the
original j_kao in edit mode, which will unparent our ex bones. Still in edit mode, select each EX
bone followed by the new j_kao, then use Ctrl+P to Make Parent for them. Make sure to use
Keep Offset to maintain their floating positions.

This leaves us with our repositioned head bone and extra skeleton bones, all lined up nicely
with our refit hair mesh. Note that the mesh should NOT inherit from this skeleton - we export it
as the armature alone for VFXEdit.

NOTE that, as a potential alternative to reparenting shenanigans, you could try noting down the
position/scale/rotation parameters of your target head bone in VFXEdit - saving these
coordinates for later, you can dump them over the unmoved j_kao bone, but this may also shift
around your child bones. Play around with it!

export extra skeleton to GLTF
Use these export settings to spit out your armature alone into a GLTF file - VFXEdit will convert
this into a new sklb to define the bone placements around your character model. You can
re-import that GLTF in blender to make sure it looks alright.

NOTE: Make sure to clean up your bone names before exporting!

https://github.com/0ceal0t/Dalamud-VFXEditor/wiki/Using-Blender-to-Edit-Skeletons-and-Animations#exporting-from-blender

joining the extra skeleton to target hair armature
in our workspace, we should still have the midlander M hair skeleton - we’ll modify this to serve
as the new armature for our refit’s mesh.
NOTE, you may want to save a new workspace or create a duplicate copy of your edited SKLB
armature, since we’ll be attaching it to the rest of the body now.

On your target hairstyle’s armature (midlander M 0001 for this example), you can remove any
existing ex bones in edit mode, then join our extra skeleton armature through object mode as
we did before.

To resolve the two j_kao bones now, you can either delete the extra skeleton’s j_kao or the M
skeleton’s j_kao, they should be equivalent. Re-parent your ex bones either way, so that we end
up with a hierarchy like this:

Now that our target armature is set up correctly, we can change the armature deforms on our
refit mesh to use this midlander M skeleton, instead of the midlander F skeleton. Good
naming/renaming conventions will help a lot here to keep straight which is which.

Our refit mesh should now be pointed to our combined armature of the hair extra skeleton and
the midlander M spine+head; meaning that when we load this hairstyle with our extra skeleton
configured ingame, the weights above will apply roughly the same as they do for midlander F,
just on the resized midlander M model. You can now adjust your weights as you like to using our
newly created extra bones.

exporting the refitted hair as FBX
with the new armature and weights (edited or original) applied, output your mesh and armature
as an FBX for textools as you would with any other mod. Our final FBX should have the EX
bones and weights attached.

OK so now what?
The above steps have produced the following:

-​ a .GLTF file containing the edited extra skeleton
-​ an .FBX file containing the edited mesh, weighted to the extra skeleton

We can technically load the FBX as a new mod at any point now, but because we haven’t yet
configured our edited extra skeleton, it won’t be able to load our extra bones or the weights
we’ve applied to them - ingame, we’ll only see whatever extra bones our target hairstyle
originally had.

Not ideal! To take advantage of our new skeleton and bone weights, we need to go back to
VFXEdit. This time, we should load the extra skeleton of our target hairstyle (midlander M 0003
for this example.)

sklb replacement

Select the same hairstyle for both Loaded Sklb and Sklb Being Replaced - this means that when
we import a new skeleton over Midlander M 3, we’ll be able to see the preview live. Hit Replace
and pick out your edited GLTF armature.

Important Aside: each bone in an SKLB has both a unique Name and a unique ID - the latter
cannot easily be changed, but is essential for how the game interprets parent-child
relationships. If bone B is a child of bone A, make sure that bone B has a higher ID value than
bone A. You can read a technique for ensuring sane bone IDs in the addenda here.

Once the skeleton is loaded, hitting the UPDATE button in VFXEdit will apply it to our
playermodel, and the new bones can be viewed in gpose (provided your character has the
correct hairstyle and metadata for loading it)

Oopsie boingo!!!!!! In my case, something got screwed up with the rotations and positions of the
bones before I exported them from blender, meaning that everything loaded on a roughly 45
degree tilt. But! We’ve got bones! And they have weights!

A bit of trial and error with editing and reimporting later, and we have the bones loaded in the
correct positions (my j_kao was rotated to -47 roll degrees in Blender, needed to be 90).

You’ll likely notice that weights are a bit janky at this step, and that’s just fine! Now that we’ve
set up the sklb with bone placements that we’re happy with, we can revisit weights after packing
together the VFX files. For now, let’s also set up the .phyb replacement - this will port the
physics from the F midlander model to these bones on the M model.

phyb replacement
In the same vfxeditor workspace (you can save a workspace file locally to come back to your
changes at any time), open up the Phyb editor. For the Loaded Phyb, select the phyb
corresponding to your original extra skeleton (for this example, F midlander 102). For the Phyb
Being Replaced, select the phyb of your target skeleton (for this example, M midlander 003).

Much like when we replace files in textools or penumbra, this configuration sets us up to
overwrite the original M Midlander 03 physics with the physics of F Midlander 102. There’s a lot
going on in this editor that I don’t even understand, but here’s a bit of info:

-​ the Collision tab defines various 3d shapes that collision simulation will be applied
against from the game’s havok physics engine

-​ the Simulation tab can define multiple Simulators. For hair skeletons, each one typically
defines a Chain of bones, where each bone is a Node on that chain.

-​ Chains can be part of collision simulations, or otherwise be used to define the
effects of motion on linked sets of bones. A long ponytail may have a Chain of 3
bones that run down its length, with the parameters inside each Node controlling

how they’re allowed to move or be affected by motion in relation to the other
bones in the Chain.

There’s a lot more documentation on phybs here, but tweaking these is firmly Fuck Around And
Find Out Territory. When we’re porting a hairstyle and skeleton together though, the chains and
collision simulations should be close enough between our origin and target skeletons that we
don’t need to futz with them much. We can fully reuse the twintails’ physics simulation for this
port, since we haven’t added to the mesh or greatly changed the position of any bones.

After defining the loaded and replaced phyb, hitting UPDATE will let us see the physics in
motion, working together with the skeleton we’ve already replaced in the workspace.

.phyb OFF

.phyb ON

(Note: remember that the game’s physics simulation is framerate dependent - you’ll see less
motion and effect of physics on these bones at higher framerates. The above were taken with
FPS capped to 45)

sklb and phyb export
With these changes applied, we can export them both at once into a .PMP, .TTMP2, or both.
Once you’re done making changes, save your workspace if you want to come back to it, then hit
Export. Choose your output format, and in the export panel, make sure to check off Sklb and
Phyb.

https://docs.google.com/document/d/1g0iSnvz9IjkGBVqXM5h3KfoyP_LOsr9LGKqiVhMZ_Us/edit

From here, just pack up your sklb+phyb mod together with your weighted mesh, and you’re
done! waow

example files
heres’s some uploads of various files from this example project!

-​ Refit hair FBX with F armature
-​ Refit hair FBX with expanded M armature
-​ Original GLTF skeleton
-​ Edited GLTF skeleton
-​ Final physics+sklb PMP, TTMP2

FAQ

How do I unfuck my bone IDs after replacing the skeleton?
Great question!!! I don’t know!!! SKLBs are a nonsense format dreamed up by unhinged
developers with the havok engine!!! However there’s a method to preemptively unfuck your
bone IDs before importing the edited skeleton. VFXEdit creates new bones in incrementing

https://drive.google.com/file/d/10DiIFrOQavWoInxFijH03sNk3abLv73Q/view?usp=drive_link
https://drive.google.com/file/d/1MD0ATCr7pVEbAccxTDWds-PpZQ_zgHCL/view?usp=sharing
https://drive.google.com/file/d/1TIHF17T97wfOAJYbNfDntThZ5sLVcdvP/view?usp=drive_link
https://drive.google.com/file/d/1wPlSoJU3Z_1CxG2DBKKTObYLyrc5-4eb/view?usp=drive_link
https://drive.google.com/file/d/1kZ-51LuD8FlX57UypIzDLaCBzUSD6tB0/view?usp=sharing
https://drive.google.com/file/d/1g3CRaflNEqvkZZ_8t0F-7cJH9MvqvGU3/view?usp=sharing

order by ID, and when you import a new skeleton, it attempts to match any bones on the
imported skeleton to bones that already exist on the targeted skeleton. This means that we can
rename/create as many bones as we like before import, line up the parent/child hierarchies,
then bring in the new mesh.

Bones can be added into the hierarchy arbitrarily before import to make sure your IDs are in
the correct order, then renamed to map your imported bones onto those correct ID values.

What if I want to use bones from multiple extra skeletons?
Sure, you can do that! Important things to keep in mind:

-​ A hair can only have one active extra skeleton at a time, so your various extra bones will
need to be condensed into one sklb.

-​ A hair can only have one phyb applied to it at a time, so if you want all your combined
extra bones to have physics simulation, you’ll need to muck with a phyb and try to
combine the various chains/colliders from source phybs into one that references all of
your bones.

-​ You can also just do one phyb or no phyb, and leave the extra bones there for
posing purposes only (once weighted on the mesh)

-​ Too much physics all at once (especially with collider physics) can make really
weird/laggy/game breaky shit happen, so try to keep it reasonable

What if I want bones that don’t exist on ANY extra skeleton?
Yeah sure you can do that too! A caveat would be that adding physics to fully new extra
skeleton bones would require making a custom .phyb to affect them (I am scared of the phyb
menu so please don’t ask me), but for posing purposes you can spin up some new bones real
easy.

EDITOR’S NOTE: this is not actually ‘real easy’ but is definitely doable! Took about a day to get
the below mini-tutorial put together, with some trial and error both in weights and skeleton
settings.

Identify your in-use extra skeleton

Add and organize additional bones in the hierarchy; choose a sensible naming scheme. For
this example, I use tt_rx / tt_lx for twintail right and left bones. Export this GLTF when you
have your bones named and parented like you want. Keep in mind the importance of bone

IDs!

Import your new GLTF and target hair mod together; then, reposition your newly made bones
along the hair as needed.

Remember to keep in mind bone direction, as this will inform how different angles make the

mesh bend.

Keep in mind the X-axis distances as well as the Y/Z positioning. Move symmetric bones the

same distances apart for consistency.
Once you’ve moved your bones to new positions, you can export this armature to GLTF, then

parent it to the imported hair’s skeleton as described above.

Weight paint! Can’t help you out here, use your best judgment. I’m bad at it!!!! 🐇

Once you’ve weighted satisfactorily to the new bones (you can test it out with Pose Mode if

you want to observe the horrors), export your mesh and combined armature as FBX for
textools. Don’t forget to normalize all/limit total!

Load up your weighted model through textools, and ingame, apply your edited skeleton over
the targeted extra skeleton. Remember to set up your bone names and hierarchy beforehand

to keep your bone IDs in order, if they aren’t already!

Bit of fiddling later and it looks pretty OK in the sklb view!

Without the new model installed, the weights are pretty goofy…

Hm, not good!!!! I did say I was bad at this

Take two with better normalizing and weight-fixing and normal recalculating and skeleton
rebuilding… (for my case, I had to offset the j_kao bone by ~1.6 Y coordinates in vfxedit to get

it looking OK). To avoid jank like the above (or hair stretching way above/below the player’s
head), make sure that your final skeleton’s j_kao bone is in the same coordinate position as

the original skeleton’s. Mine was set to 0,0,0.

Wow, a wholeass proof of concept!!

NOTE that these arbitrarily-created bones will not be affected by any physics unless defined
as such in the accompanying .phyb file - screw around with that at your own risk, because for

complicated skeletons like this, it’ll certainly need trial and error. For a modification to or
similar-to an existing skeleton, you can likely copy & tweak some settings from a similar phyb

and tag them onto your new bones instead. Work smarter not harder 🐇

Do I have to use VFXEdit for this?
Not technically! You could apply a similar workflow fully in Blender/Textools by using
BlenderAssist - made to support animation and skeleton editing, BlenderAssist can translate an
exported SKLB from FFXIV to a GLTF for use in Blender. The size, scaling, and rotations can all
get a bit funky in the process, and it isn’t exactly currently supported compared to VFXEditor’s
development, but it can be a useful tool in your toolbox!

special thanks
wouldn’t be possible to write or coherently read a guide like this without the help of

-​ Modding 101
-​ Students of Baldesion
-​ Saenomaed
-​ Ro for lending their sample mesh
-​ IrisStarcaller my bones mentor

more questions? Message me on twitter or in the modding 101 discord!

https://github.com/0ceal0t/BlenderAssist
https://twitter.com/sleepybnuuy
https://discord.com/invite/Mx8TnSCzRz

	editing and porting hair extra skeletons
	what is an extra skeleton?
	how do they work? what’s the gritty details

	extracting a skeleton with VFXEdit
	editing an exported skeleton
	refit the hair
	translate extra bones
	join with target race head bone
	export extra skeleton to GLTF
	joining the extra skeleton to target hair armature
	exporting the refitted hair as FBX

	OK so now what?
	sklb replacement
	phyb replacement
	sklb and phyb export

	example files
	FAQ
	How do I unfuck my bone IDs after replacing the skeleton?
	What if I want to use bones from multiple extra skeletons?
	What if I want bones that don’t exist on ANY extra skeleton?
	Do I have to use VFXEdit for this?

	special thanks

