
 

Combining WasmCloud with Kubernetes 
 
Kubernetes is the hottest project and infrastructure platform in the cloud world, and it's almost 
safe to say that moving to the cloud = using Kubernetes. 
 
 
Currently WasmCloud has a completely Kubernetes-agnostic model, and while this is a lighter 
approach, it may be more limited in terms of spreading it and adopting it on the ground. I think it 
would be easier to use and land on the ground if it was better integrated with Kubernetes! 
 
The problem with Kubernetes, and one that the WasmCloud team should have recognized 
early on, is that it's getting bloated. However, when combining WasmCloud & Kubernetes, we 
can try to use only some of the features and components of Kubernetes to ensure that using 
WasmCloud maintains the simplicity of the resources and architecture, but also takes into 
account the experience of using it in line with Kubernetes and reduces the user's cost of 
learning and using it. 
Of course, WasmCloud can also be well integrated into the existing huge Kubernetes. 
 
 
So next I describe the simple design of the new KasmCloud (Kubernetes + WasmCloud, the 
traditional Kube ecosystem nomenclature 😄 
 
I think the best part of WasmCloud's design is the use of NATS to decouple Actor and Provider 
calls, and KasmCloud is designed for this pattern, and Providers will be able to run as 
containers as well! 
 
For kasmcloud, it has some core differences: 

1.​ the use of Kube's declarative management of resources, in addition to the declarative 
features, it allows users to use and manage KasmCloud's Provider, Actor, Host, 
and more advanced application resources in the Kubernetes-based management 
platform. 

2.​ Providers can be made to run in containers, Wasm is a secure sandbox, but the provider 
is previously free to run on the host. Although we can run wasmcloud host in 
containers/pods, it's easier to isolate and control resources by having the provider 
run in a single container. 

3.​  we could probably make any program a provider, by which I mean they could all call 
actor through a library.  

4.​ like the Cosmonic Kubernetes Applier, kasmcloud will communicate well with other 
services within kubernetes, and this capability may require the use of the Cosmonic 
Kubernetes Applier. 

5.​ etc... (I haven't finished thinking about it yet😂) 
 



 

Architecture: 

 
The  KasmCloud Host can run in Kubernetes as a container, either as a Deployment or a 
DaemonSet. 

 

CustomResource: 

Based CustomResource: 
●​ WasmCloudHost 
●​ WasmCloudProvider:  
●​ WasmCloudActor 



 

●​ WasmCloudLink 
 
The prefixes are used to differentiate from other resources, so that when Kind has the same 
name, kubectl get won't work the way it's supposed to. Of course, we can also omit the prefixes 
for some resources, such as Provider, Actor, Link, but this is just a DEMO design 
 

Advance CustomResource: 
●​ TBD: Define more advanced Actor, Provider node distribution related definitions, 

somewhat similar to WADM 
 

Components: 
●​ Kube APIServer: Manage KasmCloud's CR resources and provide List-Watch 
●​ Kubelet(optional): Can run other users' pods, or WasmCloud Provider Containers. 
●​ NATS: By default, it is used as a relay for Actor and Provider calls, and perhaps for 

other purposes as well. 
●​ KasmCloud Host：This is mainly used for running the Actor, but you can also choose to 

run the Provider binary in the traditional way using KasmCloud. 
There should be some other functionally related components included as well 
 
 
Of course, we also need to ensure that the legacy WasmCloud Host can access the 
KasmCloud cluster, and we need to deploy the following components 

●​ WasmCloud Host: In some nodes, connect to NATS. 
●​ KasmCloud Repeater: Compatibility between KasmCloud's CR resource management 

and traditional WasmCloud's resource management and command control. 
 
The purpose of supporting the running of a legacy WasmCloud is to ensure that WasmCloud 
can be run and managed based on NATS alone, and can also be connected to a KasmCloud 
cluster as an option. 
 
A traditional WasmCloud Host does not connect to the Kube APIServer, but instead uses NATS 
as a way to invoke commands, event delivery, and the KV Store, which connects to the same 
NATS as the KasmCloud cluster. 
 

KasmCloud Repeater 

The KasmCloud Repeater listens to the KasmCloud NATS and coordinates with resources 
within the Kube APIServer: 

●​ Watch for WasmCloud Host access in NATS and create WasmCloudHost in APIServer. 



 

●​ Observe the creation of Actors and Providers in the WasmCloud Host and synchronize 
them to the APIServer. 

●​ Simulate the behavior of WasmCloud Host for KasmCloud Host so that WasmCloud 
Host can discover and be compatible with KasmCloud Host. 

●​ etc. 
 

Questions 
Minimal deployment of KasmCloud 
* K3S APIServer 
* NATS 
* KasmCloud Host 
 
No Kubelet required, just an APIServer compared to traditional WasmCloud. 
 

Lattice's relationship to Namespace 
Tentatively, a Lattice corresponds to a Namespace, Link, Provider, Actor resources are 
NamespaceScope resources, and WasmCloudHost resources are ClusterScope resources. 
 
 


	Combining WasmCloud with Kubernetes 
	Architecture: 
	 
	CustomResource: 
	Based CustomResource: 
	Advance CustomResource: 

	Components: 
	KasmCloud Repeater 


	Questions 
	Minimal deployment of KasmCloud 
	Lattice's relationship to Namespace 


