
NOTE: This is a public document.

[WIP] Mesos Cluster Maintenance

This is an updated design, based on the original design here.

Authors Benjamin Mahler <bmahler@apache.org>
Joseph Wu <joseph@mesosphere.io>
Artem Harutyunyan <artem@mesosphere.io>

Revision 0.1

Status Draft

JIRA Epic
Terminology
Disambiguation
Motivation
Goals
Non-Goals
Constraints
Architecture

Maintenance state transition
Maintenance workflow
Maintenance State
Safety Mechanisms

Proposed MVP
API

[WIP] HTTP API
Framework API

New-style Event/Call API:
Existing Scheduler API:

Future (post MVP) work

JIRA Epic

MESOS-1474

Terminology

● Operator - A person or external tooling/scripts which manages the Mesos cluster.
● Maintenance - An operation that makes resources on a slave unavailable, after which,

no guarantees can be made about the state of the slave.
● Unavailability - A period in which the associated resources may not be available. In the

context of this design document, unavailability is due to maintenance. No guarantees
can be made about the resources after the unavailability period.

https://docs.google.com/document/d/1NjK7MQeJzTRdfZTQ9q1Q5p4dY985bZ7cFqDpX4_fgjM/edit?usp=sharing
https://issues.apache.org/jira/browse/MESOS-1474


● Drain - A period for the framework to reconcile its own requirements with a maintenance
schedule. The framework should be taking preemptive steps to prepare for the
unavailability, or communicate the framework’s inability to conform to the maintenance
schedule.

● Inverse offer - A mechanism for the master to ask for resources back from a framework
(the opposite of regular offers). This notifies frameworks about unavailability and gives
frameworks an opportunity to respond about their capability to comply. The same
mechanism can be generalized for use towards non-maintenance goals such as
reallocating resources or resource preemptions.
Note about the term: The allocation of resources in Mesos is called an Offer; taking back
allocated resources is the inverse of allocating. Additionally, frameworks can decline the
inverse offer, hence the offer.

● Maintenance schedule - A list maintained by master (and persisted in the registry for
failover) consisting of proposed unavailability for each of the slaves participating in the
maintenance.

Disambiguation

● Revocable resource - A resource which could be taken back (using TASK_LOST and
Reason) at any time. Frameworks may not be asked before revocable resources are
taken away.

● Preemption - A concept where an allocator asks for some resources back from a
framework.

Motivation

Operators regularly need to perform maintenance tasks on machines comprising a mesos
cluster. Most mesos upgrades can be done without affecting running tasks, but there are
situations where maintenance is task-affecting. For example:

● Host maintenance (e.g. hardware repair, kernel upgrades).
● Non-recoverable slave upgrades (e.g. adjusting slave attributes/resources).

In order to ensure that maintenance operators do not violate frameworks’ SLAs, maintenance
information needs to be conveyed from operators to frameworks and vice versa. Frameworks
need to be aware of planned unavailability events and operators must be aware of frameworks’
adaptability to maintenance.

Maintenance awareness allows frameworks to avoid downtime for long running tasks by
(re)placing them on machines not undergoing maintenance. If all resources are planned for
maintenance, then the framework can prefer machines scheduled for maintenance least
imminently.



Maintenance awareness is also crucial when a framework uses persistent disk resources, to
ensure that the framework is aware of the expected duration of unavailability for a persistent
disk resource (e.g. using 3 1TB replicas, don’t need to replicate 1TB over the network when only
1 of the 3 replicas is going to be unavailable for a reboot (< 1 hour)).

Goals

● Enable maintenance-aware scheduling in frameworks.
● Enable maintenance with persistent resources.
● Enable maintenance to be controlled by an operator.
● Produce metrics that help operators decide whether a maintenance schedule is

appropriate or not.

Non-Goals

● Determine optimal maintenance schedules:
○ This is a hard problem, and requires evaluation of all frameworks’ fault

constraints. For now, the creation of the schedule is in the hands of the operator.
Operators should not be creating schedules with maintenance occurring
concurrently across fault domains. Note that there is nothing preventing
frameworks from exposing information to guide schedule creation.

● Perform the maintenance actions through Mesos:
○ For now, the actual maintenance procedure that is needed will be done externally

through an operator.

Constraints

● Ensure frameworks can decline maintenance (e.g. SLA violation).
● Ensure operators can enforce maintenance when it’s mandatory.

Architecture

Maintenance state transition

From the maintenance operator’s perspective a slave can be in one of the following
modes/states:

● UP Mode - the slave operates normally, there is no maintenance scheduled.
○ Transition from UP Mode to DRAIN Mode is performed when the operator

schedules maintenance.
○ Transition from UP Mode to DOWN Mode is used in an emergency case and is

outside of the normal flow of operations.



● DRAIN Mode - the slave is part of a maintenance schedule. It is still operational,
however all its offers carry maintenance information (see Unavailability). Any resources
reserved or in use on the slave will prompt inverse offers to be sent.

○ Transition from DRAIN Mode to DOWN Mode is initiated by the operator at or
after the start of a scheduled maintenance window.

○ Transition from DRAIN Mode to UP Mode is done when the corresponding
maintenance schedule is cancelled.

● DOWN Mode - the slave is down for maintenance. No offers are sent, no tasks are
supposed to be running on the slave.

○ Transition from DOWN Mode to DRAIN Mode is performed when there is a need
to delay (but not to cancel) the maintenance, and the operator wants to utilize
resources of the node during the delay.

○ Transition from DOWN Mode to UP Mode is performed when either the
corresponding maintenance schedule is cancelled or when the maintenance
process is completed.

All state transition are a result of explicit requests initiated by the operator. Mesos itself never
initiates the change of the state.
For example, to plan and perform maintenance on a slave, the operator must first schedule the
maintenance, putting the slave into DRAIN Mode. When the time of maintenance arrives, the
operator must make another call to deactivate the slave, putting the slave into DOWN Mode.



Maintenance workflow

A typical maintenance workflow represents a single cycle through the state transition diagram.

● The maintenance workflow is initiated by the operator by sending a maintenance
schedule to the master. A schedule consists of a list of proposed downtime intervals for
some set of slaves.
In a production environment the schedule will typically be constructed in a way to ensure
that at any given point in time the number of slaves that are operational (i.e. are not part
of maintenance) are enough to ensure uninterrupted operation of service (e.g. no
overlap across fault domains, like “rack”). Below is the visualization of maintenance
schedule timeline.

The interval is a conservative estimate set by the operator, used only as a scheduling
hint for frameworks. It is up to the individual framework to decide how to act given
maintenance information.

○ For fault tolerance, the maintenance schedule is persisted in the replicated
registry.

● All resources scheduled for maintenance are tagged with an upcoming unavailability:
○ For the resources that are currently in use, inverse offers are sent with the

unavailability. Inverse offers are sent as long as the slave is scheduled for
maintenance.

○ For newly offered resources, offers include the unavailability. If the offer is
accepted, inverse offers are sent immediately.

○ For outstanding offers, the previous offers are rescinded and resent with the
unavailability.

● Frameworks can perform scheduling in a maintenance-aware fashion:
○ Slaves with unavailability are less preferable for long running tasks.



○ Stateful tasks on soon-to-be-unavailable slaves can be migrated to available
slaves.

○ Accepting or rejecting an inverse offer does not result in immediate changes in
unavailability schedule, or in the way mesos acts. Inverse offers merely represent
some extra information that frameworks may find useful. In the same manner a
rejection or acceptance of an offer is a hint for an operator. The operator may or
may not chose to take that hint into account.

● Operators use the master’s maintenance endpoints to communicate to frameworks
about maintenance. The master uses inverse offers to convey this information to
frameworks.

○ Inverse offers are sent by the master to frameworks using resources
to-be-maintained.

○ A framework can accept an inverse offer, which indicates that the framework is
ok with the maintenance currently, as in taking these resources away is not going
to critically affect the framework.

■ A filter attached to the inverse offer can be used by the framework to
control when it wants to be contacted again with the inverse offer, since
future circumstances may change the viability of the maintenance
schedule. The “filter” for InverseOffers is identical to the existing
mechanism for re-offering Offers to frameworks.

■ An acceptance also signifies that the framework can kill tasks, shut down
executors, and/or unreserve resources prior to the maintenance window.
The framework should ideally make sure that, by the time of the
maintenance start, there are no tasks running on the corresponding
system.

○ An inverse offer can be rejected with a reason based on failure constraints (e.g.
SLA, replica availability, etc).

● When the unavailability time is reached:
○ The master keeps the slave in DRAIN mode until an operator makes a decision.

This means that the operation of the slave is not disrupted in any way and offers
(with unavailability information) are still sent for this slave.

● When the operator transitions into DOWN mode:
○ If there are no tasks running on the slave, and there are no resource

reservations on the slave, then the operator can safely put a slave into DOWN
mode.

○ If there are still tasks running on the slave or there are resource reservations
on the slave, then the operator can put a slave into DOWN mode regardless.
That kills all tasks (TASK_LOST) running on the slave.

■ The operator can determine if this is safe based on (1) what is currently
running and (2) the frameworks’ latest reasons for declining the inverse



offers. Alternatively an operator can wait until the resources are freed by
the frameworks or re-schedule the maintenance.

■ Resource reservations will still be valid after the slave exits the DOWN
mode.

○ After entering DOWN mode, the slave is deactivated and its resources are not
included in subsequent resource offers.

● When maintenance is complete, or if maintenance needs to be cancelled, the operator
will unschedule the slave from maintenance.

○ The “duration” of the maintenance is a guess made by the operator. Hence, the
slave is not automatically transitioned out of DOWN mode.

○ The operator must flip a flag in the registry to note that the maintenance was
finished (or cancelled).

○ Frameworks are informed about the cancellation of the maintenance.
■ New offers are no longer tagged with unavailability.
■ Existing offers with unavailability get rescinded and reissued.
■ Inverse offers get rescinded.

○ Frameworks are not explicitly informed about the completion of a maintenance
window.

■ Once the slave re-registers, its resources will be offered again, not tagged
with unavailability.

■ If the slave actually shut down (SLAVE_LOST), then any existing or
inverse offers would already have been invalidated.

Maintenance State

● Persisted in the replicated registry:
○ The maintenance schedule.
○ State of each slave’s mode.

● Kept in-memory by the master:
○ Metrics about the accept/decline status of inverse offers.
○ Filters for inverse offers.

Safety Mechanisms

● A slave may only have a single unavailability window. Schedules which have a slave
with multiple windows will be rejected.

● Metrics per slave:
○ Inverse offer acceptance or rejection with reasons.

Proposed MVP



For an MVP we aim for basic functionality:
● Operators can schedule/unschedule maintenance on a slave.
● Operators can put slaves in/out of DOWN mode.
● Given a schedule, all frameworks affected by the schedule (i.e. reserved resources on

the slave or running tasks on the slave) are given inverse offers for each slave they use.
● Frameworks reply to an inverse offer by either accepting or declining them.
● Maintenance information is persisted in case of master failovers. This will be stored in

the replicated registry, (in the same key as the master/slave info).
● No authorization. Everybody who has access to the Mesos Master can schedule

maintenance. The maintenance endpoints can be disabled via the
--firewall_rules master flag.

● The time(s) in the maintenance schedule will not necessarily be synchronized across
masters and slaves.

● Frameworks not affected by the maintenance schedule are not given inverse offers.
● The reasons for rejecting inverse offers will be logged.

API

[WIP] HTTP API

NOTE: Mesos HTTP API is still a work in progress. This will be reviewed later when the internal
implementation is complete and more information on the Mesos HTTP API is available (for
example, it’s still not clear what the accepted way of versioning endpoints is going to be).

● GET /maintenance: returns a list of all schedules that are in effect and their respective
status.

● POST /maintenance: schedule a list of hosts for maintenance.
● DELETE /maintenance: clear a list of schedule(s).
● POST /maintenance/<slave>: change the maintenance mode of a slave.

Framework API

message Unavailability {

// The approximate start time of the unavailability.

// If this is in the past, the unavailability would be expected

// at any time (i.e. Now).

required Time start = 1;

// The approximate duration of the unavailability,

// if this is a transient unavailability.

// Leave blank if unknown or indefinite.

optional Duration duration = 2;

}



message Offer {

required OfferID id = 1;

required FrameworkID framework_id = 2;

required SlaveID slave_id = 3;

required string hostname = 4;

repeated Resource resources = 5;

repeated Attribute attributes = 7;

repeated ExecutorID executor_ids = 6;

optional URL url = 8;

// The resources specified in this offer will become unavailable

// at the specified start time and for the specified duration. Any

// tasks launched using these resources might get killed when

// these resources become unavailable.

optional Unavailability unavailability = 9;

}

// A request to "deallocate" or "return" any resources already

// being consumed by the framework.

message InverseOffer {

required OfferID id = 1;

required FrameworkID framework_id = 2;

// The slave ID if the resources need to be released on a particular slave.

optional SlaveID slave_id = 3;

// The resources specified in this offer will become unavailable

// at the specified start time and for the specified duration. Any

// tasks running using these resources might get killed when

// these resources become unavailable.

required Unavailability unavailability = 4;

// Note: The following fields represent future work which may re-use the

// InverseOffer primitive. For example, the allocator may want to narrow

// in on a specific set of resources, or a specific set of tasks.

// Specific resources that need to be released by the framework.

repeated Resource resources = 5;

// The executor and task IDs if the resources need to be released on specific

// executors and/or tasks.

repeated ExecutorID executor_id = 6;



repeated TaskID task_ids = 7;

}

New-style Event/Call API:

message Event {

// Re-use the OFFERS Event for InverseOffers.

message Offers {

repeated Offer offers = 1;

repeated InverseOffer inverse_offers = 2;

}

}

message Call {

// Re-use the ACCEPT Call, as it currently exists.

message Accept {

repeated OfferID offer_ids = 1;

repeated Offer.Operation operations = 2;

optional Filters filters = 3;

}

// Re-use the DECLINE Call, with a new “reason” field.

// Offers and inverse offers can be declined, including a

// reason message for each decline.

message Decline {

repeated OfferID offer_ids = 1;

repeated Reason reasons = 3; // reasons[i] is for offer_ids[i]

optional Filters filters = 2;

// Possible common scenarios for a framework to reject an InverseOffer.

message Reason {

enum Type {

// A few example types that may be included in the future.

// The MVP will not have specific reasons.

SLA_VIOLATION = 1;

QUOTA_NOT_MET = 2;

...

OTHER = 99;

}

required Type type = 1;

optional string message = 2;

}



}

}

Existing Scheduler API:

● Introduce separate callback for 'inverseResourceOffers'.
● Introduce 'declineOffers' call overload, with additional 'reason' argument.

Future (post MVP) work

● [IMPORTANT] Frameworks use Accept filters to control when (and if) do they want to
receive inverse offers again. This item may be included in the MVP, as the
implementation is theoretically simple and well understood.

● Add permission for maintenance scheduling to ACL’s, including
authentication/authorization of HTTP endpoints.

● (Limited) Versioning for schedules.
● Support for partial reclamation of resources.
● Support resource reclamation in allocation modules.
● Add a “Drained” call to the Even/Call API so that frameworks can explicitly tell the master

that they have drained a slave. Otherwise, it may be possible to infer slave drainage
incorrectly (task failed but framework intended to restart the task).

● Check if time synchronization between masters/slaves is important for maintenance
schedules. If so, investigate what can be done about it.

● A more sophisticated allocator may send InverseOffers to frameworks unaffected by
maintenance, say, in order to free up resources for an affected framework.

● The reasons for rejecting inverse offers can be kept in a more accessible format, which
would give operators more complete information.

● Differentiate between revocable and dynamically reserved resources. Some
maintenance operations might not need to revoke reserved resources. For example, a
persistent volume might not be destroyed during the maintenance.

● Check maintenance schedules for validity in regards to meeting the Quota.
● Implement “whenever you (framework) can get your tasks off of there" semantics as a

possible value for Unavailability message.
● Prevent outages from badly constructed schedules: schedules with > x% overlap in

resources are rejected.
● Prevent outages from badly performed maintenance: if x% resources not being

re-offered, cancel schedule.

https://docs.google.com/document/d/16iRNmziasEjVOblYp5bbkeBZ7pnjNlaIzPQqMTHQ-9I/

