

Centro de Engenharia Elétrica e Informática – CEEI
Unidade Acadêmica de Sistemas e Computação – UASC
Disciplina: Laboratório de Programação 2

Laboratório 03

Como usar esse guia:
-​ Leia atentamente cada etapa
-​ Quadros com dicas tem leitura opcional, use-os conforme achar necessário
-​ Preste atenção nos trechos marcados como importante (ou com uma exclamação)

Sumário

Acompanhe o seu aprendizado​ 2

Conteúdo sendo exercitado​ 2
Objetivos de aprendizagem​ 2
Perguntas que você deveria saber responder após este lab​ 2
Para se aprofundar mais...​ 2

Agenda de Contatos​ 4
1. Exibir Menu​ 5
2. Cadastrar Contato​ 5

Implementando Contato​ 6
3. Exibir Contato​ 7

Implementando exibição do Contato​ 7
4. Listar Contatos​ 8

Implementando a listagem dos contatos​ 8
5. Adicionar Favoritos​ 8
6. Aplicar tags aos contatos​ 10
7. Remover contato​ 12
8. Testar Agenda​ 13

Criando testes com o JUnit​ 16
Preparando o ambiente​ 17
Configurando o JUnit​ 17
Escrevendo o primeiro teste (Classe Contato)​ 17

Entendendo um pouco mais sua classe de teste​ 17
Criando o objeto a ser usado no teste​ 18

Bônus 1. Tratar Entradas Inválidas​ 19
Parâmetros Nulos​ 19
Parâmetros Inválidos​ 20
E a posição inválida…?​ 21

Bônus 2. Novas Funcionalidades.​ 21

Entrega​ 22

Acompanhe o seu aprendizado

Conteúdo sendo exercitado
●​ Classe básica de composição
●​ Uso do equals
●​ Introdução a testes de unidade com JUnit
●​ Introdução a tratamento de erros com exceção

Objetivos de aprendizagem
Ao final desse lab você deve conseguir:

●​ Reconhecer composição na relação entre objetos em código Java
●​ Usar delegação para implementar composição entre objetos
●​ Implementar métodos de igualdade entre objetos (equals em Java)
●​ Criar testes para programas que lhe ajudem a confiar na sua implementação e a ganhar

tempo quando estiver programando
●​ Usar exceções para tratar situações inesperadas em programas

Perguntas que você deveria saber responder após este lab
●​ Como se caracteriza o relacionamento entre objetos via composição?
●​ O que significa dizer que o método equals é um método padrão de Java?
●​ Em que situações é necessário sobrescrever o método equals?
●​ O que é uma exceção?
●​ De que forma podemos usar exceções para lidar com entradas inválidas?
●​ Toda exceção deve fazer o programa parar?
●​ Os testes de unidade devem testar a unidade básica de um programa em Java. Liste algumas

boas práticas para escrever testes de unidade.
●​ Em um cenário de composição, como separamos os testes da classe base (composite) e da

classe composta?

Para se aprofundar mais...
●​ Referências bibliográficas incluem:

○​ material de referência desenvolvido por professores de p2/lp2 em semestres
anteriores (ONLINE)

○​ o livro Use a cabeça, Java
○​ o livro Java para Iniciantes
○​ os livros:

■​ Core Java
●​ https://plataforma.bvirtual.com.br/Acervo/Publicacao/1238

■​ Java, Como programar (Deitel)
●​ https://plataforma.bvirtual.com.br/Acervo/Publicacao/39590

●​ Tudo que você precisava saber sobre o framework JUnit (http://junit.org/junit5/)

http://www.dsc.ufcg.edu.br/~livia/disciplinas/p2-atual/1.introducao.htm
http://junit.org/junit5/

●​ Um olhar mais pontual: javadoc da api do JUnit (https://junit.org/junit5/docs/5.8.1/api/)
●​ Artigo sobre sobrescrever o método equals.

https://junit.org/junit5/docs/5.8.1/api/
http://www.devmedia.com.br/sobrescrevendo-o-metodo-equals-em-java/26484

Agenda de Contatos

Neste laboratório, você irá trabalhar no contexto de um sistema para gerenciar seus contatos. O
sistema deve permitir o cadastro e visualização desses contatos. Um contato é representado por um
nome, sobrenome, um telefone e até 5 tags relacionadas aquele contato. Deve ser possível listar
todos os contatos, exibindo o nome completo do contato e sua posição na lista. Também deve ser
possível ver detalhes de um contato (a partir da posição do contato na lista).

Além da funcionalidade de listagem, há a funcionalidade de cadastro onde é passado os detalhes a
serem inseridos e a posição que ele deve ser inserido. O sistema está limitado em 100 contatos.

A seguir descreveremos as funcionalidades do projeto.

Dicas - O que fazer nas situações que NÃO ESTÃO especificadas?!

Resposta: Se não foi especificado, não precisa fazer. Faça o mais simples

Quando não está especificado o que fazer você é livre para fazer o que quiser. A dica que
podemos dar é… não implemente. Ser preguiçoso tem sua vantagem. Imagine que você está
desenvolvendo uma Agenda para um cliente, e você colocou o email nos contatos da Agenda. Três
coisas podem acontecer:

-​ O cliente não gostou da ideia, e você terá perdido tempo programando o email;
-​ O cliente gostou da ideia, mas quer que você faça de um jeito diferente;
-​ O cliente gostou da ideia e gostou do jeito que você fez.

A última alternativa é praticamente impossível de acontecer… As outras duas implicam em
retrabalho. Caso você acabe o projeto antes, dedique seu tempo a: testar, melhorar a qualidade do
código e documentar o que foi feito.

Neste laboratório você partirá do código de um colega que começou a implementação das
funcionalidades descritas aqui mas não acabou. O código está disponível aqui. A ideia deste código
inicial é facilitar seu desenvolvimento e praticar um pouco a leitura e entendimento de programas. O
código contém 3 classes:

●​ Agenda.java: uma versão bem simples de uma agenda onde os contatos são, de fato,
strings. Você deve modificar essa classe tanto para refletir todas as funcionalidade de
agenda descritas neste lab, quanto para refletir uma representação mais adequado para
os contatos

●​ MainAgenda.java: uma versão bem simples de uma interface com usuário para a classe
agenda. Note que existe um código base bem interessante sobre manipulação de menus
aqui, mas, que também está incompleto, especialmente no que se refere às
funcionalidades da Agenda que essa classe irá usar.

●​ LeitorDeAgenda.java: essa classe lê dados de um arquivo .csv que contém dados de um
contato. Observe que esse arquivo não contém todas as informações que desejamos
para um contato, mas somente dados iniciais como nome, sobrenome e telefone. O leitor
vai carregar esses dados do arquivo e pedir para serem cadastrados na nossa Agenda. A
ideia é que você não precise mudar nada nessa classe.

https://drive.google.com/file/d/1f8kXlgxIrRApji6G-ZAmP7D1SlhDbaSt/view?usp=sharing

1. Exibir Menu
O sistema deve exibir um menu para o usuário com as opções existentes nesse sistema, como
descrito abaixo.

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção>

Caso o usuário entre com qualquer valor diferente dos possíveis, deve exibir uma mensagem de
opção inválida e exibir novamente o menu e o pedido por uma opção, como no exemplo abaixo.

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção> X
OPÇÃO INVÁLIDA!

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção>

Por fim, a escolha da opção S simplesmente encerra a execução do programa. A funcionalidade de
cadastro e listagem serão descritas posteriormente.

2. Cadastrar Contato
O sistema deve permitir o cadastro de contatos, como especificado no exemplo abaixo.

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção> C

Posição> 1
Nome> Ouvidoria
Sobrenome> UFCG
Telefone> (83) 21011585
CADASTRO REALIZADO

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção>

Importante! Caso o usuário selecione uma posição que já exista, o contato existente será substituído.

Fique atento as seguintes situações de erro:

1.​ O sistema deve permitir apenas posições válidas (entre 1 e 100, inclusive). O sistema deve
exibir a mensagem “POSIÇÃO INVÁLIDA” e exibir novamente o menu de opções caso uma
posição inválida seja colocada.

2.​ Caso o usuário tente cadastrar um contato com nome e sobrenome já existente no sistema, o
cadastro deve ser negado, e a mensagem "CONTATO JA CADASTRADO" deve ser exibida.
Isto deve acontecer mesmo que o usuário tente cadastrar em uma posição diferente daquela
de onde o contato de mesmo nome e sobrenome já está.

3.​ Caso o usuário tente cadastrar um contato com nome vazio, o cadastro deve ser negado e a
mensagem “CONTATO INVALIDO” deve ser exibida.

4.​ Caso o usuário tente cadastrar um contato com telefone vazio, o cadastro deve ser negado e
a mensagem “CONTATO INVALIDO” deve ser exibida.

Implementando Contato
Existem diferentes formas de estruturar e implementar os contatos do sistema. Na disciplina de LP2
você deve pensar mais nas diferentes alternativas que existem entre as diferentes implementações e
escolher aquela que seja mais adequada (mais legível, mais fácil de manter, mais barata a curto e
longo prazo). Por exemplo, para implementar contatos, você poderia:

-​ Ter 5 arrays String[100], um para nomes, outro para sobrenomes e outros para telefones
-​ Ter uma matriz String[100][5], onde cada linha é um contato e as colunas representam nome,

sobrenome e telefones
-​ Ter um String[500], onde para o contato N, a posição 5*N representa o nome, 5*N+1

sobrenome, 5*N+2 telefone para cada contato na posição
-​ Criar a classe Contato. Nessa alternativa, a Agenda tem um array de contatos (Contato[100])

e o Contato passa a ser o responsável por ter o seu próprio nome, sobrenome e demais
dados.

⚠️⚠️⚠️ Cada uma dessas soluções resolvem o problema, entretanto, é preciso escolher uma delas
e esse é o maior desafio de programar grandes sistemas. De acordo com o conteúdo trabalhado na
disciplina até o momento, esperamos que você já leve em consideração os conceitos estudados de
orientação a objetos e opte pela quarta alternativa =). ⚠️⚠️⚠️

Uma vez decidido como representar os contatos, resta implementar o cadastro em si dos contatos
quando solicitado pelo usuário.

Um método importante a ser considerado para contato é o equals, que permitirá que verifiquemos se
dois contatos cadastrados são iguais. Para essa atividades vamos considerar que dois contatos são
iguais se tiverem o mesmo nome (nome e sobrenome). Por exemplo, caso a classe Contato tenha o
método equals, esse método deveria funcionar como descrito no código abaixo:

https://emojipedia.org/warning/

Contato meuContatoUfcg = new Contato(“Livia”, "Campos", “2101-9999”);
Contato meuContatoCel = new Contato(“Livia”, "Campos", “9973-2999”);
Contato outroContatoCel = new Contato(“Matheus”, "Gaudencio",
“9973-1999”);
if(meuContatoUfcg.equals(meuContatoCel){
 System.out.println("Sou eu, Livia!");
}
if(meuContatoUfcg.equals(outroContatoCel){
 System.out.println("Nao eh Livia!");
}
if(meuContatoUfcg.equals("Oi...."){
 System.out.println("Definitivamente nao eh Livia!");
}

3. Exibir Contato
A opção de exibir o contato deve exibir o contato desejado com todos os seus detalhes que tiverem
algum dado associado. Caso não haja contato na posição em questão, deve apenas exibir a
mensagem “POSIÇÃO INVÁLIDA!” e exibir novamente o menu de opções.

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção> E
Contato> 1

Ouvidoria UFCG
(83) 21011585

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção>

Implementando exibição do Contato
Aqui, novamente, você deve escolher entre diferentes possibilidades de implementações:

-​ O código do main usa os atributos do contato para gerar a mensagem a ser imprimida
-​ O contato passa a ter um método que imprime na saída a mensagem adequada representado

o contato
-​ O contato passa a ter um método que retorna o que deve ser imprimido e o menu imprime o

que foi retornado pelo contato
-​ Uma nova classe será criada. Objetos dessa classe recebem um contato e imprimem a saída

desejada.
-​ ...

⚠️⚠️⚠️ Qual a solução mais adequada? Quais as vantagens e desvantagens de cada solução?
Existem outras soluções melhores? Quando estiver desenvolvendo um código, será bastante comum
ter diferentes alternativas de implementação. A melhor solução geralmente é a que vai oferecer uma
manutenção mais fácil. Por exemplo, se o usuário decidir mudar a mensagem impressa, onde seria
mais fácil modificar? Uma regra boa é não imprimir nada com System.out dentro das classes que não
são o main. Dessa maneira passamos a ter mais flexibilidade uma vez que podemos usar o valor
retornado tanto para ser impresso quanto para qualquer outra operação necessária. ⚠️⚠️⚠️

4. Listar Contatos
Seu sistema deve listar todos os contatos existentes na agenda.

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção> L

1 - Ouvidoria UFCG
2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(S)air

Opção>

Implementando a listagem dos contatos
Todo objeto em Java pode gerar uma representação em String através da implementação do método
public String toString(). Se sua classe implementa esse método, todo objeto pode ser convertido para
String naturalmente pela linguagem Java. Por exemplo, caso a classe Contato tenha o método
toString, esse método será naturalmente invocado ao realizarmos uma operação como descrita no
código abaixo:

Contato meuContato = new Contato(“Matheus”, "Rego", “2101-9999”);
System.out.println(“Contato “ + meuContato);
// a linha acima é equivalente a:
System.out.println(“Contato “ + meuContato.toString());

5. Adicionar Favoritos

Considere agora que é possível favoritar contatos em uma lista rápida de acesso em 10 posições. A
lista de favoritos permite outra forma de acessar seus contatos. Quando você exibe um contato que
está na lista de favoritos, é preciso informar que aquele contato é favorito com um coração.

Para permitir a adição de favoritos, é preciso:

●​ Adicionar a funcionalidade adicionar favorito
●​ Adicionar a funcionalidade de listar favoritos
●​ Alterar a função de exibição de contato

Veja o exemplo abaixo de funcionamento:

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opção> L

1 - Ouvidoria UFCG
2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opção> E
Contato> 1

Ouvidoria UFCG
(83) 21011585

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opção> A
Contato> 1
Posicao> 1
CONTATO FAVORITADO NA POSIÇÃO 1!

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato

(F)avoritos
(A)dicionar Favorito
(S)air

Opção> F

1 - Ouvidoria UFCG

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opção> E
Contato> 1

❤️ Ouvidoria UFCG
(83) 21011585

Fique atento a dois detalhes de uso da lista de favoritos:

●​ Se um novo contato for inserido na lista de favoritos em uma posição que já tenha um
contato, o antigo contato deixa de ser um favorito.

●​ O contato só pode aparecer uma vez na lista de favoritos, ou seja, não é possível cadastrar
um contato que já exista em alguma posição na lista de favoritos.

6. Aplicar tags aos contatos
É possível adicionar tags a um ou mais contatos. A edição deve considerar a posição das tags na
lista, então, se já existir uma tag na posição informada, haverá uma sobrescrita. Lembre-se que são
permitidas apenas 5 tags por contato. A mesma tag pode ser adicionada a mais de um contato por
vez, basta que as posições sejam fornecidas pelo usuário.

Para permitir a adição de tags aos contatos:

●​ Adicionar a funcionalidade tags
●​ Alterar a função de exibição de contato

Veja o exemplo abaixo de funcionamento:

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(S)air

Opção> L

1 - Ouvidoria UFCG
2 - Coordenacao Computacao UFCG

10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(S)air

Opção> T
Contato(s)> 1 2
Tag> ufcg
Posicao tag> 1

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(T)ags
(S)air

Opção> E
Contato> 1

❤️ Ouvidoria UFCG
(83) 21011585
ufcg

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(T)ags
(S)air

Opção> T
Contato(s)> 2
Tag> ccc
Posicao tag> 3

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(S)air

Opção> E
Contato> 2

Coordenacao Computacao UFCG
(83) 2101 1027

ufcg ccc

7. Remover contato

É possível remover um ou mais contatos. A operação de remoção de contato é feita pela posição do
contato na agenda, tornando essa posição vazia. Caso não haja contato na posição em questão,
deve apenas exibir a mensagem “POSIÇÃO INVÁLIDA!” e exibir novamente o menu de opções.
Outro ponto importante é que a remoção de um contato da agenda implica em sua remoção da lista
de favoritos também.

Para permitir a remoção de contatos:

●​ Adicionar a funcionalidade remover contato
●​ Remover o contato da lista de favoritos, se for o caso

Veja o exemplo abaixo de funcionamento:

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(R)Remover Contato
(S)air

Opção> E
Contato> 1

❤️ Ouvidoria UFCG
(83) 21011585

Opção> R
Contato(s)> 1

Opção> L

2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(R)emover Contato
(S)air

Opção> E

Contato> 1

POSICAO INVALIDA!

8. Testar Agenda
Nosso sistema tem 3 funcionalidades básicas: cadastrar, exibir e listar contatos. Para garantir que
você implementou o programa corretamente, é preciso garantir que cada uma dessas
funcionalidades faça o que foi especificado (validação) e garantir que tudo que o software procura
fazer, ele faz corretamente (verificação).

⚠️⚠️⚠️ Testar o software é uma das maneiras de garantir a sua corretude. Testar um software é
verificar se o software a ser executado com determinadas entradas produz a saída esperada. Até
agora costumamos sempre receber essas entradas prontas, mas um bom desenvolvedor deve ser
capaz de produzir testes adequados para seu programa. ⚠️⚠️⚠️

Um bom teste é aquele que:

-​ É capaz de encontrar erros no programa;
-​ É simples;
-​ Não é redundante.

Para testar a Agenda, nós podemos criar um plano de testes. O plano de testes deve ter: casos de
testes, as entradas a serem usadas em cada caso e as saídas esperadas. Um testador desse
sistema que esteja focando nos testes de uma classe Agenda que tivesse as funcionalidades sobre
controle de contatos. Vejamos um caso de teste para o cadastro de um contato na agenda:

Especificação do Teste Exemplo de código de teste

1.​ Cadastrar um novo contato
em posição vazia

○​ Cadastrar o usuário
na posição 1 (vazia)

○​ Colocar nome
“Matheus”,
sobrenome
"Gaudencio" e
telefone “(83)
99999-0000”

○​ A agenda deve ter
cadastrado com
sucesso

Agenda agenda = new Agenda();​

// o método abaixo não lança exceções
agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83)
99999-0000”);

Essa não é a única forma de testar esse código. Caso o cadastroContato retorne um valor booleano
ou um inteiro indicando sucesso, é possível ter outras maneiras de testar a especificação acima, veja
os exemplos abaixo que faz uso do assert para essa verificação.

Agenda agenda = new Agenda();​

// considerando que o método cadastraContato retorna true caso bem sucedido
assert agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83) 99999-0000”);

Agenda agenda = new Agenda();​

// considerando que o método cadastraContato retorna a posição do contato em caso de sucesso
assert agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83) 99999-0000”) == 1;

⚠️⚠️⚠️ O assert é um comando reservado em java para verificar se uma expressão é verdadeira.
Caso não seja, o código irá falhar. No entanto, 1) o assert só é verificado se foi verdadeiro ou falso
quando a jvm é executada com o parâmetro -ea; 2) testar códigos apenas usando asserts é bem
complicado e não é uma prática comum! ⚠️⚠️⚠️

Com um código pronto assim, o desenvolvedor não precisa interagir com a linha de comando,
colocar comandos, ou algo do tipo para garantir que seu código está funcionando. Se o
desenvolvedor testar o código acima ele consegue, rapidamente, identificar que o código funciona ou
não. Se ele fizer alguma alteração nos atributos de Agenda, o desenvolvedor sabe onde está o erro.
TESTES SÃO EXTREMAMENTE IMPORTANTES PARA IDENTIFICAR PROBLEMAS, E
GARANTIR QUE O QUE FOI FEITO FUNCIONA COMO VOCÊ ESPERAVA!

Vejamos agora um exemplo de uma boa descrição de casos de teste para o Cadastrar contato
focados na classe Agenda. Você vai precisar colocar esses testes em código!

●​ Para fazer os testes, considere os dados do contato MATHEUS como:
○​ Nome: Matheus
○​ Sobrenome: Gaudencio
○​ Telefone: (83) 99999-0000

1.​ Cadastrar um novo contato em posição vazia

○​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
○​ A agenda deve ter cadastrado com sucesso

2.​ Cadastrar um novo contato em posição existente
○​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
○​ Cadastrar os dados "Pedro", "Silva", “(84) 98888-1111” na posição 1
○​ A agenda deve ter cadastrado com sucesso

3.​ Cadastrar um novo contato com nome e sobrenome já cadastrados em outra posição
○​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
○​ Cadastrar os dados de MATHEUS na posição 3 (vazia)
○​ A agenda não deve ter cadastrado com sucesso

4.​ Cadastrar um novo contato na posição limite
○​ Cadastrar os dados de MATHEUS na posição 100 (vazia)
○​ A agenda deve ter cadastrado com sucesso

5.​ Cadastrar um novo contato em uma posição acima do limite
○​ Cadastrar os dados de MATHEUS na posição 101
○​ A agenda não deve ter cadastrado com sucesso

6.​ Cadastrar um novo contato em uma posição abaixo do limite
○​ Cadastrar os dados de MATHEUS na posição 0

○​ A agenda não deve ter cadastrado com sucesso
7.​ Cadastrar um novo contato com telefone vazio

○​ Cadastrar os dados “Matheus”, sobrenome "Gaudencio" e telefone “” na posição 1
○​ A agenda não deve ter cadastrado com sucesso

8.​ Cadastrar um novo contato com nome vazio
○​ Cadastrar os dados “”, sobrenome "Gaudencio" e telefone “(83) 99999-0000” na

posição 1
○​ A agenda não deve ter cadastrado com sucesso

É importante observar que, para uma funcionalidade simples como “Cadastrar um novo contato na
agenda", temos pelo menos 7 casos de teste diferentes! Algumas observações importantes:

-​ TESTE APENAS AQUILO QUE FOI ESPECIFICADO! Precisa testar se o sobrenome for
vazio? Se há letras no telefone? Não. Se a especificação não dita, não é um comportamento
que precisa existir.

-​ TODO TESTE É INDEPENDENTE! Sempre comece cada teste do zero. E teste apenas
aquilo que é propósito do teste. Não tente testar 4 funcionalidades diferentes em um único
caso de teste pois, em caso de falha, pode dificultar identificar onde é o erro.

Veja agora exemplos de casos de testes esperados da funcionalidade de exibir contato ainda da
classe Agenda:

1.​ Exibir um contato cadastrado com todos os dados
a.​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
b.​ A representação do contato obtido da agenda na posição 1 deve ser:

Matheus Gaudencio
(83) 99999-0000

2.​ Exibir um contato cadastrado sem o telefone
a.​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
b.​ A representação do contato obtido da agenda na posição 1 deve ser:

Matheus Gaudencio
3.​ Exibir um contato em uma posição sem contato

a.​ Ao pegar a representação da agenda na posição 100, o sistema deve dar um erro (ou
retornar nada).

4.​ Exibir um contato em uma posição inválida (limite inferior)
a.​ Ao pegar a representação da agenda na posição 0, o sistema deve dar um erro (ou

retornar nada)
5.​ Exibir um contato em uma posição inválida (limite superior)

a.​ Ao pegar a representação da agenda na posição 101, o sistema deve dar um erro (ou
retornar nada)

6.​ Exibir um contato favoritado
a.​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
b.​ Favoritar o usuário da posição 1
c.​ A representação do contato obtido da agenda na posição 1 deve ser:

❤️ Matheus Gaudencio
(83) 99999-0000

7.​ Exibir um contato com tags
a.​ Cadastrar os dados de MATHEUS na posição 1 (vazia)
b.​ Adicionar a tag professor-ufcg na posicao 1 da lista de tags, ao contato da posicao 1
c.​ A representação do contato obtido da agenda na posição 1 deve ser:

Matheus Gaudencio

(83) 99999-0000
professor-ufcg

Importante: estes são apenas alguns testes para a classe Agenda. Ainda existem outras
funcionalidades que poderiam ser testadas, como adicionar favoritos e aplicar tags. Além disso,
mostramos testes de uma única classe Agenda. Você ainda precisa testar cada classe
individualmente. Seria necessário bolar casos de teste para uma classe Contato, por exemplo. Isto
é importante pois, se o teste da agenda falhar, pode ser difícil identificar se o erro existe na classe
Agenda, ou uma classe usada por Agenda (como a classe Contato). Se Contato tiver seus próprios
testes, e eles estiverem passando, provavelmente o problema estará em Agenda. Isto significa que
pode ser necessário testar algo já testado em Agenda, mas agora para Contato. Por exemplo, é
interessante testar a exibição/toString de um Contato, mesmo que isso seja o valor retornado pela
Agenda ao exibir contato.

Resumo:
●​ Teste todas as unidades (classes) do seu sistema!
●​ Teste cada funcionalidade de uma classe, mesmo que ela tenha sido usada (e

testada) em outra classe!

Um bom caso de teste é o que testa as situações que podem revelar um erro no programa. Um bom
testador é aquele que é capaz de identificar as situações de código que podem gerar erros no
programa. São exemplos dessas situações no cadastro: “O cadastro normal de um contato”, “A
substituição de um contato já existente”, “O cadastro em posição inválida”.

⚠️⚠️⚠️ Nós desenvolvemos testes que operam nas posições 0, 1, 100 e 101. Essas posições
representam VALORES LIMITE da especificação. Um valor limite é aquele que está na borda e
representa situações extremas da execução do programa. Pense da seguinte forma: “se o programa
funciona para posição 1, ele vai funcionar para posição 2, 3, 4, 5…”. Da mesma forma, as situações
que ele provavelmente poderia ter erros seriam aquelas situações limite (posições como 100, 101..
para o nosso programa). Pense em quantas vezes você confundiu o operador “>=” com “>”. ⚠️⚠️⚠️

Programas, mesmo que simples, podem ter 10 ou mais casos de teste por funcionalidade! Nossa
agenda poderia ter facilmente 40 casos de teste. Toda vez que alteramos o programa, mesmo que
seja para alterar o nome de uma variável, estamos potencialmente inserindo um erro. E é importante
executar todos os testes cada vez que o programa é alterado.

Felizmente você não precisa testar manualmente cada um dos casos de teste. Existem bibliotecas e
programas que permitem que o programa seja automaticamente testado!

Criando testes com o JUnit

O Junit é uma biblioteca (conjunto de códigos) que permite a execução automática de testes de
classes. Esses testes mais básicos são conhecidos como testes de unidade.

-- USE SEMPRE O JUNIT 5 --

https://www.baeldung.com/junit-5

Preparando o ambiente
O primeiro passo é definir onde no projeto vão ficar os nossos testes. Tipicamente, as classes de
teste (chamado de código de teste) ficam em um diretório diferente dos usados para armazenar as
classes com o código da aplicação (também chamado de código de produção). Digamos que o
programa que você está fazendo está na pasta “agenda” e que o diretório com os pacotes e classes
do programa esteja em uma pasta chamada “src” dentro de “agenda” (ou seja, agenda/src). Seria
natural colocar os testes em uma pasta testes (ou seja: agenda/testes).

Para isso, no eclipse, clique com o botão direito no projeto e selecione New > Source Folder.
Nomeie seu novo diretório fonte para “testes”. O ideal é que a mesma hierarquia de pacotes que
existe no pacote do seu projeto exista também no seu diretório de testes. Se, por exemplo, você tem
o pacote principal, com a classe Menu, então o teste dessa classe se chamará MenuTest e ficará no
pacote principal dentro da pasta testes. (Não crie esta classe agora.)

Configurando o JUnit
Vá em "build path" do projeto criado (clicando com o botão direito do mouse sobre o projeto, escolha
a opção "Build path > Add libraries". Adicione a biblioteca JUnit. Você vai precisar escolher a versão
do JUnit. Trabalhe sempre com a versão estável mais recente do JUnit, que no caso é a 5. Finalize
esta configuração. O “build path” define o classpath a ser utilizado na compilação do projeto.

Escrevendo o primeiro teste (Classe Contato)
⚠️⚠️⚠️ Clicando com o botão direito sobre o diretório de testes, escolha "New > JUnit Test Case".
Você vai ter que oferecer informação para que o esqueleto da sua classe de teste seja criado com
pouco esforço. A sua classe sob teste (class under test) é a classe Contato. A boa prática de
programação sugere que o nome de sua classe de teste seja o mesmo nome da classe sendo
testada seguido do nome Test: ContatoTest. Clique em "Next" para continuar a configuração de seu
esqueleto de teste. Você vai agora definir que métodos da classe Contato você quer testar. Você
quer testar todos os métodos que não sejam muito triviais (exemplo: um método getNome que
retorna nome ou métodos gerados automaticamente pelo eclipse). ⚠️⚠️⚠️

Você já pode rodar o teste que você escreveu clicando com o botão direito do mouse sobre a classe
e selecionando "Run as > JUnit Test". O esqueleto da classe de teste criada automaticamente vai
sempre falhar. Falhas são representadas por uma barra vermelha no término da execução do teste.
O próximo passo é implementar os testes para testar cada método da classe.

Entendendo um pouco mais sua classe de teste

Cada método de teste na sua classe de teste começa com uma anotação @Test. Essa anotação diz
à JVM que cada método da classe de teste deve testar um aspecto "pequeno" da classe sob teste.
Por exemplo, deve haver um método de teste para testar cada método da classe Contato
separadamente. Cada método de teste deve ser pequeno e específico.

Os métodos de teste JUnit se utilizam de asserções ("assertions"), que são declarações que checam
se uma condição é verdadeira ou falsa. Se a condição é falsa, o teste falha. Quando todas as

asserções feitas em um método de teste são verdadeiras, vai aparecer uma barra verde ao final da
execução do caso de teste. “Passar” e “Falhar” são veredictos de um caso de teste.

JUnit oferece muitos métodos de assertion.

Criando o objeto a ser usado no teste
Em todo teste (método anotado com @Test) que exercita uma classe, um ou mais objetos da classe
sob teste precisam ser criados. É com base nesse(s) objetos que as asserções são avaliadas. É
comum ter um método que cria esses objetos. É o método anotado com @BeforeEach. Veja a seguir:

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertNotEquals;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

public class ContatoTest {

 private Contato contatoBase;

 @BeforeEach

 void preparaContatos() {

 this.contatoBase = new Contato("Matheus", "Gaudencio", "555-5551");

 }

 @Test
 void testNomeCompleto() {
 String msg = "Esperando obter o nome completo";
 assertEquals("Matheus Gaudencio",
this.contatoBase.nomeCompleto(), msg);
 }
}

Antes de executar cada método anotado com o @Test, o JUnit executa o método anotado com
@BeforeEach de forma que o contatoBasico é criado a cada teste executado.

Agora é a sua vez de implementar seus testes!

Faça testes para as classes Contato e Agenda.

Dicas - O que não precisa ser testado?

getAtributo Em geral, esses métodos não tem lógica complexa (só retornam valor), então não
precisam ser testados diretamente.

Métodos
privados

Não são testados diretamente, nem devem se tornar métodos públicos para que
possam ser testados.

https://junit.org/junit5/docs/5.0.3/user-guide/#writing-tests-assertions

Dicas - Vários casos de testes pressupõem a existência do método equals

O equals em
Contato

Considere que dois contatos são iguais se tiverem o mesmo nome (nome e
sobrenome).

Bônus 1. Tratar Entradas Inválidas
Até agora permitimos que o usuário possa colocar qualquer nome, telefone e qualquer entrada.
Entretanto, nunca devemos confiar que o usuário sempre vai usar o sistema da maneira correta.
Essa afirmação é forte, mas significa que, independente do sistema, há grande chance do usuário
fazer bobagem, então devemos tomar cuidado de validar os dados recebidos.

Por exemplo, o usuário pode acabar não colocando um nome para o contato (nome vazio).
Considerando essa situação, você pode pensar em diferentes designs para impedir que isso
aconteça:

-​ Na classe principal, ao receber a entrada de nome, você verifica se o nome é vazio e, se for,
não se deve criar o objeto contato;

-​ Na classe Contato, ao construir o objeto, devemos verificar se o nome é vazio. Se for, o
objeto não deve permitir sua criação.

Para saber o que fazer nessa situação, vamos ver primeiro o que é feito em Java.

Parâmetros Nulos
Veja a saída da execução do código abaixo quando criamos um objeto Scanner com um parâmetro
nulo:

import java.util.Scanner;

public class ExemploConstrutorInvalido {

 public static void main(String[] args) {
 Scanner sc = new Scanner(null);
 System.out.println("O programa vai fechar...");​
 }
}

Saída:

// Error: // Uncaught Exception: Typed variable declaration : Object constructor : at Line: 3 : in file:
<unknown file> : new Scanner (null)

Target exception: java.lang.NullPointerException

java.lang.NullPointerException
 ​ at java.io.StringReader.<init>(StringReader.java:50)
 ​ at java.util.Scanner.<init>(Scanner.java:702)

Ao construir um objeto Scanner com o parâmetro null, o Java INTERROMPE a execução e “lança”
uma exceção. Observe que a mensagem “O programa vai fechar…” não aparece pois o programa
não chega a executar essa linha de código.

É muito comum encontrar no código do Java o seguinte código em construtores e métodos:

public String next(Pattern pattern) {
 if (pattern == null) {​
 throw new NullPointerException();
 }​
 ...​
}

⚠️⚠️⚠️ Uma exceção representa uma situação de erro no sistema. O throw é a palavra chave em
Java que “lança” uma exceção. Quando uma exceção dessa natureza acontece, é porque o usuário
tentou fazer algo com o sistema que, caso ele continuasse executando, apenas ocasionaria mais
erros ao sistema. O sistema, ao lançar uma exceção, para de executar e imprime uma mensagem
com esse erro. É importante observar que uma exceção também é um objeto (new
NullPointerException()). ⚠️⚠️⚠️

Altere seu programa de forma que o mesmo não aceite argumentos null no construtor de Contato.
Caso um argumento null seja passado, seu programa deve lançar uma exceção
NullPointerException. Crie o teste associado para garantir que a exceção está sendo de fato lançada.
Para isso, basta usar uma notação especial do JUnit, como mostra o código abaixo:

@Test
public void testNomeNull() {
 try {
 Contato contatoInvalido = new Contato(null, “Gaudencio”,
“21010000”);
 fail("Era esperado exceção ao passar código nulo");
 } catch (NullPointerException npe) {

 }
}

Você pode melhorar a mensagem que aparece durante uma exceção, bastando para isso criar o
objeto NullPointerException com a mensagem como parâmetro. Exemplo: “throw new
NullPointerException(“Nome nulo”);”.

Parâmetros Inválidos
Entretanto, existem parâmetros inválidos além de nulos. Por exemplo, e se o nome do contato for
criado com uma string vazia? Ou se for uma string só composta por espaços? Nesta situação, o
objeto em questão não é nulo! Entretanto, esse parâmetro não representa um nome de uma pessoa.

Nesta situação, os objetos em Java costumam lançar uma exceção chamada
IllegalArgumentException. Por exemplo, no método abaixo, utilizado durante a seleção de um
intervalo de um array (classe Arrays), o Java verifica se o índice inicial (fromIndex) é menor ou igual
ao índice final do intervalo (toIndex). Quando esta situação não é respeitada, uma exceção é
lançada.

private static void rangeCheck(int length, int fromIndex, int toIndex) {
​ if (fromIndex > toIndex) {
​ ​ throw new IllegalArgumentException(
​ ​ "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
​ }​
​ ...

Faça que seu programa lance IllegalArgumentException quando os contatos forem construídos com
objetos Strings não-nulos, porém inválidos (nessa situação, strings vazias ou composta apenas por
espaços).

E a posição inválida…?
Observe que quando o usuário coloca uma posição inválida, nós não interrompemos a execução do
programa! Ou seja, o sistema não para sua execução quando o usuário coloca uma posição inválida.

Essa é uma situação esperada e que permite recuperação. Nessa situação, não lançamos uma
exceção, mas simplesmente inserimos essa situação dentro do fluxo do programa (condição a ser
tratada num else, por exemplo).

Existem ainda situações que parte do código pode lançar exceções, mas que o programador não
quer que o programa pare de executar. Nestas situações, nós precisamos capturar e tratar as
exceções lançadas. Exploraremos isto em situações futuras.

Dicas - Algumas outras exceções de Java e seus significados...

ArithmeticException Operação aritmética inválida (divisão por zero)

ClassCastException O objeto não é da classe adequada

IllegalArgumentException O parâmetro do método/construtor não é válido

IndexOutOfBoundsException O índice utilizado foi maior ou menor que os limites do array

NoSuchElementException O elemento desejado não existe

NumberFormatException O formato do número em questão é inválido

UnsupportedOperationException A operação desejada não é suportada/permitida.

Bônus 2. Novas Funcionalidades.

Vamos deixar a brincadeira mais divertida...

●​ Incrementando a classe Contato
○​ O telefone pode ser editado agora (Mudar Telefone)
○​ Você pode remover uma tag de um contato

●​ Incrementando Agenda
○​ Você pode agora remover um contato da lista de favoritos

■​ A remoção do contato da lista de favoritos, não apaga o contato
○​ Você pode ter outras formas de consultar um contato na agenda

■​ Pelo nome: retorna uma representação textual de todos os contatos que
apresentam o mesmo nome que o especificado

■​ Pelo sobrenome: retorna uma representação textual de todos os contatos que
apresentam o mesmo sobrenome que o especificado

■​ Pela tag: retorna uma retorna uma representação textual de todos os contatos
que contém, em sua lista de tags, a mesma tag especificada

Entrega
Faça um programa de Agenda que:

-​ Cadastre contatos
-​ Exiba detalhes de um contato
-​ Imprima a lista de contatos
-​ Adicione e imprima favoritos

conforme o que está descrito nas seções 1-5 da especificação acima e tenha testes de unidade feitos
com JUnit.

Bônus: Seu programa deve parar de executar e lançar uma exceção quando o contato for criado com
uma entrada inválida (nulo ou espaço vazio para qualquer um dos campos).

É importante que todo código esteja devidamente documentado, à exceção das classes de testes
(mas se quiser documentar, e recomendamos, pode ficar à vontade).

Ainda, você deve entregar um programa com testes para as classes com lógica testável (todas as
classes menos a classe de interface com o usuário). IMPORTANTE! NÓS IREMOS AVALIAR SEU
CÓDIGO A PARTIR DOS TESTES! Nós não executaremos a sua interface por linha de comando
várias vezes, mas pelo contrário, avaliaremos se você fez bons testes, e qual o resultado da
execução desses testes!

Faça bons testes, que explorem as condições limite.

Para a entrega, faça um zip da pasta do seu projeto. Coloque o nome do projeto para:
LAB3_SEU_NOME e o nome do zip para LAB3_SEU_NOME.ZIP. Exemplo de projeto:
LAB3_MATHEUS_GAUDENCIO.ZIP. Este zip deve ser submetido pelo Canvas.

Seu programa será avaliado pela corretude e, principalmente, pelo DESIGN do sistema. É
importante:

-​ Usar nomes adequados de variáveis, classes, métodos e parâmetros.
-​ Fazer um design simples, legível e que funciona. É importante saber, apenas olhando o nome

das classes e o nome dos métodos existentes, identificar quem faz o que no código.

	Laboratório 03
	Acompanhe o seu aprendizado
	Conteúdo sendo exercitado
	Objetivos de aprendizagem
	Perguntas que você deveria saber responder após este lab
	Para se aprofundar mais...

	
	Agenda de Contatos
	1. Exibir Menu
	2. Cadastrar Contato
	Implementando Contato

	3. Exibir Contato
	Implementando exibição do Contato

	4. Listar Contatos
	Implementando a listagem dos contatos

	5. Adicionar Favoritos
	6. Aplicar tags aos contatos
	7. Remover contato
	8. Testar Agenda

	Criando testes com o JUnit
	Preparando o ambiente
	Configurando o JUnit
	Escrevendo o primeiro teste (Classe Contato)
	Entendendo um pouco mais sua classe de teste

	Criando o objeto a ser usado no teste
	

	Bônus 1. Tratar Entradas Inválidas
	Parâmetros Nulos
	Parâmetros Inválidos
	E a posição inválida…?

	
	Bônus 2. Novas Funcionalidades.
	
	Entrega

