Universidade Federal
de Campina Grande

Centro de Engenharia Elétrica e Informatica — CEEI
Unidade Académica de Sistemas e Computacao — UASC
Disciplina: Laboratério de Programacgéo 2

Laboratorio 03

Como usar esse quia:
- Leia atentamente cada etapa

- Quadros com dicas tem leitura opcional, use-os conforme achar necessario
- Preste atengdo nos trechos marcados como importante (ou com uma exclamagao)

Sumario

Acompanhe o seu aprendizado
Conteudo sendo exercitado
Objetivos de aprendizagem
Perguntas que vocé deveria saber responder apds este lab
Para se aprofundar mais...

Agenda de Contatos
1. Exibir Menu
2. Cadastrar Contato
Implementando Contato
3. Exibir Contato
Implementando exibicdo do Contato
4. Listar Contatos
Implementando a listagem dos contatos
5. Adicionar Favoritos
6. Aplicar tags aos contatos
7. Remover contato
8. Testar Agenda

Criando testes com o JUnit
Preparando o ambiente
Configurando o JUnit
Escrevendo o primeiro teste (Classe Contato)
Entendendo um pouco mais sua classe de teste
Criando o objeto a ser usado no teste

Bonus 1. Tratar Entradas Invalidas
Parametros Nulos
Parametros Invalidos
E a posicao invalida...?

Bonus 2. Novas Funcionalidades.

0 00 NN O oo s N NMNDNDNNDN

A A A
w N O ©

_ e e A A -
© N NN~

NN =2 =
- O © ©

N
-

Entrega 22

Acompanhe o seu aprendizado

Conteudo sendo exercitado

Classe basica de composicao

Uso do equals

Introducéo a testes de unidade com JUnit
Introducéo a tratamento de erros com excecéao

Objetivos de aprendizagem

Ao final desse lab vocé deve conseguir:

Reconhecer composi¢cao na relagdo entre objetos em cédigo Java

Usar delegacéao para implementar composigcao entre objetos

Implementar métodos de igualdade entre objetos (equals em Java)

Criar testes para programas que lhe ajudem a confiar na sua implementagao e a ganhar
tempo quando estiver programando

Usar excegdes para tratar situagdes inesperadas em programas

Perguntas que vocé deveria saber responder apds este lab

Como se caracteriza o relacionamento entre objetos via composicao?

O que significa dizer que o método equals é um método padrao de Java?

Em que situagdes é necessario sobrescrever o método equals?

O que é uma excegao?

De que forma podemos usar excegdes para lidar com entradas invalidas?

Toda excecao deve fazer o programa parar?

Os testes de unidade devem testar a unidade basica de um programa em Java. Liste algumas
boas praticas para escrever testes de unidade.

Em um cenario de composicdo, como separamos os testes da classe base (composite) e da
classe composta?

Para se aprofundar mais...

Referéncias bibliograficas incluem:
o material de referéncia desenvolvido por professores de p2/lp2 em semestres
anteriores (ONLINE)
o livro Use a cabeca, Java
o livro Java para Iniciantes
os livros:
m Core Java
e https://plataforma.bvirtual.com.br/Acervo/Publicacao/1238
m Java, Como programar (Deitel)
e https://plataforma.bvirtual.com.br/Acervo/Publicacao/39590
Tudo que vocé precisava saber sobre o framework JUnit (http:/junit.org/junit5/)

http://www.dsc.ufcg.edu.br/~livia/disciplinas/p2-atual/1.introducao.htm
http://junit.org/junit5/

e Um olhar mais pontual: javadoc da api do JUnit (https://junit.org/junit/docs/5.8.1/api/)
e Artigo sobre sobrescrever o método equals.

https://junit.org/junit5/docs/5.8.1/api/
http://www.devmedia.com.br/sobrescrevendo-o-metodo-equals-em-java/26484

Agenda de Contatos

Neste laboratério, vocé ira trabalhar no contexto de um sistema para gerenciar seus contatos. O
sistema deve permitir o cadastro e visualizacdo desses contatos. Um contato é representado por um
nome, sobrenome, um telefone e até 5 tags relacionadas aquele contato. Deve ser possivel listar
todos os contatos, exibindo o0 nome completo do contato e sua posi¢ao na lista. Também deve ser
possivel ver detalhes de um contato (a partir da posi¢cao do contato na lista).

Além da funcionalidade de listagem, ha a funcionalidade de cadastro onde é passado os detalhes a
serem inseridos e a posicao que ele deve ser inserido. O sistema esta limitado em 100 contatos.

A seguir descreveremos as funcionalidades do projeto.

Dicas - O que fazer nas situacdes que NAO ESTAO especificadas?!

Resposta: Se nao foi especificado, ndo precisa fazer. Faga o mais simples

Quando nao esta especificado o que fazer vocé é livre para fazer o que quiser. A dica que
podemos dar é... ndo implemente. Ser preguicoso tem sua vantagem. Imagine que vocé esta
desenvolvendo uma Agenda para um cliente, e vocé colocou o email nos contatos da Agenda. Trés
coisas podem acontecer:

- O cliente ndo gostou da ideia, e vocé tera perdido tempo programando o email;

- O cliente gostou da ideia, mas quer que vocé faca de um jeito diferente;

- O cliente gostou da ideia e gostou do jeito que vocé fez.

A Ultima alternativa é praticamente impossivel de acontecer... As outras duas implicam em
retrabalho. Caso vocé acabe o projeto antes, dedique seu tempo a: testar, melhorar a qualidade do
codigo e documentar o que foi feito.

Neste laboratério vocé partira do coédigo de um colega que comecgou a implementacdo das
funcionalidades descritas aqui mas ndo acabou. O codigo esta disponivel aqui. A ideia deste codigo
inicial é facilitar seu desenvolvimento e praticar um pouco a leitura e entendimento de programas. O
codigo contém 3 classes:

e Agenda.java: uma versdo bem simples de uma agenda onde os contatos sdo, de fato,
strings. Vocé deve modificar essa classe tanto para refletir todas as funcionalidade de
agenda descritas neste lab, quanto para refletir uma representacdo mais adequado para
os contatos

e MainAgenda.java: uma versao bem simples de uma interface com usuario para a classe
agenda. Note que existe um cddigo base bem interessante sobre manipulagdo de menus
aqui, mas, que também esta incompleto, especialmente no que se refere as
funcionalidades da Agenda que essa classe ira usar.

e |eitorDeAgenda.java: essa classe |1é dados de um arquivo .csv que contém dados de um
contato. Observe que esse arquivo ndo contém todas as informagdes que desejamos
para um contato, mas somente dados iniciais como nome, sobrenome e telefone. O leitor
vai carregar esses dados do arquivo e pedir para serem cadastrados na nossa Agenda. A
ideia é que vocé nao precise mudar nada nessa classe.

https://drive.google.com/file/d/1f8kXlgxIrRApji6G-ZAmP7D1SlhDbaSt/view?usp=sharing

1. Exibir Menu

O sistema deve exibir um menu para o usuario com as opgdes existentes nesse sistema, como
descrito abaixo.

)adastrar Contato
yistar Contatos
)xibir Contato
yair

Opcao>

Caso o usuario entre com qualquer valor diferente dos possiveis, deve exibir uma mensagem de
opc¢ao invalida e exibir novamente o menu e o pedido por uma opgao, como no exemplo abaixo.

yadastrar Contato
)istar Contatos

)xibir Contato
)

C
L
E
S)air

(
(
(
(

Opgao> X
OPCAO INVALIDA!

)adastrar Contato
)istar Contatos

)xibir Contato
)

C
L
E
S)air

(
(
(
(

Opcao>

Por fim, a escolha da opg¢ao S simplesmente encerra a execug¢ao do programa. A funcionalidade de
cadastro e listagem serao descritas posteriormente.

2. Cadastrar Contato

O sistema deve permitir o cadastro de contatos, como especificado no exemplo abaixo.

(C)adastrar Contato
(L) istar Contatos
(E)xibir Contato
(S)air

Opcgcao> C

Posicédo> 1

Nome> Ouvidoria
Sobrenome> UFCG
Telefone> (83) 21011585
CADASTRO REALIZADO

adastrar Contato
istar Contatos
xibir Contato

(C
(L
(E
(S)air

)
)
)
)

Opcao>

Importante! Caso o usuario selecione uma posicdo que ja exista, o contato existente sera substituido.

Fique atento as seguintes situagdes de erro:

1. O sistema deve permitir apenas posicdes validas (entre 1 e 100, inclusive). O sistema deve
exibir a mensagem “POSICAO INVALIDA” e exibir novamente o menu de opgdes caso uma
posicao invalida seja colocada.

2. Caso o usuario tente cadastrar um contato com nome e sobrenome ja existente no sistema, o
cadastro deve ser negado, e a mensagem "CONTATO JA CADASTRADQ" deve ser exibida.
Isto deve acontecer mesmo que o usuario tente cadastrar em uma posicao diferente daquela
de onde o contato de mesmo nome e sobrenome ja esta.

3. Caso o usuario tente cadastrar um contato com nome vazio, o cadastro deve ser negado e a
mensagem “CONTATO INVALIDO” deve ser exibida.

4. Caso o usuario tente cadastrar um contato com telefone vazio, o cadastro deve ser negado e
a mensagem “CONTATO INVALIDO” deve ser exibida.

Implementando Contato

Existem diferentes formas de estruturar e implementar os contatos do sistema. Na disciplina de LP2
vocé deve pensar mais nas diferentes alternativas que existem entre as diferentes implementacgoées e
escolher aquela que seja mais adequada (mais legivel, mais facil de manter, mais barata a curto e
longo prazo). Por exemplo, para implementar contatos, vocé poderia:
- Ter 5 arrays String[100], um para nomes, outro para sobrenomes e outros para telefones
- Ter uma matriz String[100][5], onde cada linha é um contato e as colunas representam nome,
sobrenome e telefones
- Ter um String[500], onde para o contato N, a posicdo 5*N representa o nome, 5*N+1
sobrenome, 5*N+2 telefone para cada contato na posi¢ao
- Criar a classe Contato. Nessa alternativa, a Agenda tem um array de contatos (Contato[100])
e o0 Contato passa a ser o responsavel por ter o seu proprio nome, sobrenome e demais
dados.

I, I 1 Cada uma dessas solugdes resolvem o problema, entretanto, é preciso escolher uma delas
e esse é o maior desafio de programar grandes sistemas. De acordo com o conteldo trabalhado na
disciplina até o momento, esperamos que vocé ja leve em consideragdo os conceitos estudados de
orientacao a objetos e opte pela quarta alternativa =). 1\ 1\ 1

Uma vez decidido como representar os contatos, resta implementar o cadastro em si dos contatos
quando solicitado pelo usuario.

Um método importante a ser considerado para contato é o equals, que permitira que verifiquemos se
dois contatos cadastrados sao iguais. Para essa atividades vamos considerar que dois contatos sao
iguais se tiverem o mesmo nome (nome e sobrenome). Por exemplo, caso a classe Contato tenha o
método equals, esse método deveria funcionar como descrito no cédigo abaixo:

https://emojipedia.org/warning/

Contato meuContatoUfcg = new Contato(“Livia”, "Campos", “2101-9999”7);
Contato meuContatoCel = new Contato(“Livia”, "Campos", “9973-2999");
Contato outroContatoCel = new Contato (“Matheus”, "Gaudencio",
“9973-1999") ;
1if (meuContatoUfcg.equals (meuContatoCel) {

System.out.println("Sou eu, Livia!"™);
}
if (meuContatoUfcg.equals (outroContatoCel) {

System.out.println("Nao eh Livia!");
}
1if (meuContatoUfcg.equals ("Oi....") {
System.out.println ("Definitivamente nao eh Livia!");

3. Exibir Contato

A opcéo de exibir o contato deve exibir o contato desejado com todos os seus detalhes que tiverem
algum dado associado. Caso ndo haja contato na posicdo em questdo, deve apenas exibir a
mensagem “POSICAO INVALIDA!” e exibir novamente o menu de opcdes.

)adastrar Contato
yistar Contatos

)xibir Contato
yair

Opgcao> E
Contato> 1

Ouvidoria UFCG
(83) 21011585

yadastrar Contato
)istar Contatos

)xibir Contato
)

C
L
E
S)air

(
(
(
(

Opgcao>

Implementando exibicdo do Contato

Aqui, novamente, vocé deve escolher entre diferentes possibilidades de implementacbes:

- O coédigo do main usa os atributos do contato para gerar a mensagem a ser imprimida

- O contato passa a ter um método que imprime na saida a mensagem adequada representado
0 contato

- O contato passa a ter um método que retorna o que deve ser imprimido e o menu imprime o
que foi retornado pelo contato

- Uma nova classe sera criada. Objetos dessa classe recebem um contato e imprimem a saida
desejada.

I I 1 Qual a solugdo mais adequada? Quais as vantagens e desvantagens de cada solugao?
Existem outras solugdes melhores? Quando estiver desenvolvendo um codigo, sera bastante comum
ter diferentes alternativas de implementacado. A melhor solugdo geralmente é a que vai oferecer uma
manutencado mais facil. Por exemplo, se o usuario decidir mudar a mensagem impressa, onde seria
mais facil modificar? Uma regra boa é nao imprimir nada com System.out dentro das classes que nao
sdo o main. Dessa maneira passamos a ter mais flexibilidade uma vez que podemos usar o valor
retornado tanto para ser impresso quanto para qualquer outra operagao necessaria. I\ |\ /1

4. Listar Contatos

Seu sistema deve listar todos os contatos existentes na agenda.

(C)adastrar Contato
(L) istar Contatos
(E)xibir Contato
(S)air

Opcao> L

1 - Ouvidoria UFCG

2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L) istar Contatos
(E)xibir Contato
(S)air

Opcao>

Implementando a listagem dos contatos

Todo objeto em Java pode gerar uma representagdo em String através da implementagcdo do método
public String toString(). Se sua classe implementa esse método, todo objeto pode ser convertido para
String naturalmente pela linguagem Java. Por exemplo, caso a classe Contato tenha o método
toString, esse método sera naturalmente invocado ao realizarmos uma operagdo como descrita no
cédigo abaixo:

Contato meuContato = new Contato (“Matheus”, "Rego", “2101-99997);
System.out.println (“Contato “ + meuContato);

// a linha acima é equivalente a:

System.out.println (“Contato “ + meuContato.toString()):;

5. Adicionar Favoritos

Considere agora que é possivel favoritar contatos em uma lista rapida de acesso em 10 posigdes. A
lista de favoritos permite outra forma de acessar seus contatos. Quando vocé exibe um contato que
esta na lista de favoritos, é preciso informar que aquele contato é favorito com um coracéao.

Para permitir a adicao de favoritos, & preciso:
e Adicionar a funcionalidade adicionar favorito
e Adicionar a funcionalidade de listar favoritos
e Alterar a funcao de exibicao de contato

Veja o exemplo abaixo de funcionamento:

adastrar Contato
istar Contatos
xibir Contato
avoritos

dicionar Favorito
air

(C)
(L)
(E)
(F)
(A)
(S)
Opcao> L

1 - Ouvidoria UFCG

2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L) istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opgcao> E
Contato> 1

Ouvidoria UFCG
(83) 21011585

yadastrar Contato
)istar Contatos
)xibir Contato
)avoritos
ydicionar Favorito
)

(C
(L
(E
(F
(A
(S)ai

Opcao> A

Contato> 1

Posicao> 1

CONTATO FAVORITADO NA POSICAO 1!

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato

(F)avoritos
(A)dicionar Favorito
(S)air

Opgcao> F
1 - Ouvidoria UFCG

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(S)air

Opgcao> E
Contato> 1

Q’ Ouvidoria UFCG
(83) 21011585

Fique atento a dois detalhes de uso da lista de favoritos:
e Se um novo contato for inserido na lista de favoritos em uma posi¢cdo que ja tenha um
contato, o antigo contato deixa de ser um favorito.
e O contato sé pode aparecer uma vez na lista de favoritos, ou seja, ndo é possivel cadastrar
um contato que ja exista em alguma posi¢ao na lista de favoritos.

6. Aplicar tags aos contatos

E possivel adicionar tags a um ou mais contatos. A edigdo deve considerar a posi¢do das tags na
lista, entdo, se ja existir uma tag na posicao informada, havera uma sobrescrita. Lembre-se que sao
permitidas apenas 5 tags por contato. A mesma tag pode ser adicionada a mais de um contato por
vez, basta que as posi¢coes sejam fornecidas pelo usuario.

Para permitir a adi¢do de tags aos contatos:
e Adicionar a funcionalidade tags

e Alterar a funcao de exibicao de contato

Veja o exemplo abaixo de funcionamento:

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags

(S)

Opgdao> L

1 - Ouvidoria UFCG
2 - Coordenacao Computacao UFCG

10 - MC Pedrinho
22 - Fabio Morais

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(S)air

Opgao> T
Contato(s)> 1 2
Tag> ufcg
Posicao tag> 1

)adastrar Contato
yistar Contatos
) xibir Contato
)avoritos
) ags

)

C
L
E
F
T
S)air

(
(
(
(
(
(

Opgcao> E
Contato> 1

Q’ Ouvidoria UFCG
(83) 21011585
ufcg

)adastrar Contato
)istar Contatos
)xibir Contato

)avoritos
) ags
yair

Opcao> T
Contato(s)> 2
Tag> ccc
Posicao tag> 3

(C)adastrar Contato
(L)istar Contatos
(E)xibir Contato
(F)avoritos
(A)dicionar Favorito
(T)ags
(S)air

Opgcao> E
Contato> 2

Coordenacao Computacao UFCG
(83) 2101 1027

ufcg ccc

/. Remover contato

E possivel remover um ou mais contatos. A operacdo de remog&o de contato é feita pela posicdo do
contato na agenda, tornando essa posi¢cdo vazia. Caso ndo haj ntato n icdo em qu

deve apenas exibir a mensagem “POSICAO INVALIDA!” e exibir novamente o menu de opgdes.
Outro ponto importante € que a remogéao de um contato da agenda implica em sua remogéo da lista
de favoritos também.

Para permitir a remog&o de contatos:
e Adicionar a funcionalidade remover contato

e Remover o contato da lista de favoritos, se for o caso

Veja o0 exemplo abaixo de funcionamento:

adastrar Contato
istar Contatos
xibir Contato
avoritos

dicionar Favorito

Opgdo> E
Contato> 1

¥ ouvidoria UFCG
(83) 21011585

Opcao> R
Contato(s)> 1

Opgao> L

2 - Coordenacao Computacao UFCG
10 - MC Pedrinho
22 - Fabio Morais

yadastrar Contato
)istar Contatos
)xibir Contato
)avoritos
ydicionar Favorito
)
)
)

Contato> 1

POSICAO INVALIDA!

8. Testar Agenda

Nosso sistema tem 3 funcionalidades basicas: cadastrar, exibir e listar contatos. Para garantir que
vocé implementou o programa corretamente, € preciso garantir que cada uma dessas
funcionalidades faga o que foi especificado (validagao) e garantir que tudo que o software procura
fazer, ele faz corretamente (verificagao).

I I 1 Testar o software € uma das maneiras de garantir a sua corretude. Testar um software &
verificar se o software a ser executado com determinadas entradas produz a saida esperada. Até
agora costumamos sempre receber essas entradas prontas, mas um bom desenvolvedor deve ser
capaz de produzir testes adequados para seu programa. I\ 1\ /1

Um bom teste & aquele que:
- E capaz de encontrar erros no programa;
- E simples;
- Nao é redundante.

Para testar a Agenda, nés podemos criar um plano de testes. O plano de testes deve ter: casos de
testes, as entradas a serem usadas em cada caso e as saidas esperadas. Um testador desse
sistema que esteja focando nos testes de uma classe Agenda que tivesse as funcionalidades sobre
controle de contatos. Vejamos um caso de teste para o cadastro de um contato na agenda:

Especificacdo do Teste Exemplo de cddigo de teste

1. Cadastrar um novo contato | Agenda agenda = new Agenda();
em posi¢ao vazia

o Cadastrar o usuario | // © método abaixo ndo langa excec¢des
agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83)

na posicao 1 (vazia
PosIe () 99999-0000");

o Colocar nome
“Matheus”,
sobrenome
"Gaudencio" e
telefone “(83)
99999-0000”

o A agenda deve ter
cadastrado com
sucesso

Essa nao é a unica forma de testar esse cédigo. Caso o cadastroContato retorne um valor booleano
ou um inteiro indicando sucesso, & possivel ter outras maneiras de testar a especificacao acima, veja
os exemplos abaixo que faz uso do assert para essa verificacao.

Agenda agenda = new Agenda();

/I considerando que o método cadastraContato retorna true caso bem sucedido
assert agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83) 99999-0000");

Agenda agenda = new Agenda();

/I considerando que o método cadastraContato retorna a posi¢éo do contato em caso de sucesso
assert agenda.cadastraContato(1, "Matheus", "Gaudencio", “(83) 99999-0000") == 1;

I 1 1 O assert € um comando reservado em java para verificar se uma expressao é verdadeira.
Caso nao seja, o codigo ira falhar. No entanto, 1) o assert s6 é verificado se foi verdadeiro ou falso
quando a jvm é executada com o parametro -ea; 2) testar cddigos apenas usando asserts € bem
complicado e ndo é uma pratica comum! I\ I\ 1

Com um codigo pronto assim, o desenvolvedor nao precisa interagir com a linha de comando,
colocar comandos, ou algo do tipo para garantir que seu cddigo estd funcionando. Se o
desenvolvedor testar o cddigo acima ele consegue, rapidamente, identificar que o cédigo funciona ou
ndo. Se ele fizer alguma alteracdo nos atributos de Agenda, o desenvolvedor sabe onde esta o erro.
TESTES SAO EXTREMAMENTE IMPORTANTES PARA IDENTIFICAR PROBLEMAS., E

GARANTIR QUE O QUE FOI FEITO FUNCIONA COMO VOCE ESPERAVA!

Vejamos agora um exemplo de uma boa descricdo de casos de teste para o Cadastrar contato
focados na classe Agenda. Vocé vai precisar colocar esses testes em codigo!

e Para fazer os testes, considere os dados do contato MATHEUS como:
o Nome: Matheus
o Sobrenome: Gaudencio
o Telefone: (83) 99999-0000

1. Cadastrar um novo contato em posi¢ao vazia
o Cadastrar os dados de MATHEUS na posicao 1 (vazia)
o A agenda deve ter cadastrado com sucesso
2. Cadastrar um novo contato em posicao existente
o Cadastrar os dados de MATHEUS na posigéo 1 (vazia)
o Cadastrar os dados "Pedro", "Silva", “(84) 98888-1111" na posi¢ao 1
o A agenda deve ter cadastrado com sucesso
3. Cadastrar um novo contato com nome e sobrenome ja cadastrados em outra posi¢ao
o Cadastrar os dados de MATHEUS na posigéo 1 (vazia)
o Cadastrar os dados de MATHEUS na posicao 3 (vazia)
o A agenda nao deve ter cadastrado com sucesso
4. Cadastrar um novo contato na posicao limite
o Cadastrar os dados de MATHEUS na posigéo 100 (vazia)
o A agenda deve ter cadastrado com sucesso
5. Cadastrar um novo contato em uma posi¢ao acima do limite
o Cadastrar os dados de MATHEUS na posi¢cao 101
o A agenda nao deve ter cadastrado com sucesso
6. Cadastrar um novo contato em uma posi¢ao abaixo do limite
o Cadastrar os dados de MATHEUS na posig¢ao 0

o A agenda nao deve ter cadastrado com sucesso

7. Cadastrar um novo contato com telefone vazio

o Cadastrar os dados “Matheus”, sobrenome "Gaudencio" e telefone
o A agenda nao deve ter cadastrado com sucesso

na posigao 1

8. Cadastrar um novo contato com nome vazio

o Cadastrar os dados “’, sobrenome "Gaudencio" e telefone “(83) 99999-0000” na
posicao 1
o A agenda nao deve ter cadastrado com sucesso

E importante observar que, para uma funcionalidade simples como “Cadastrar um novo contato na
agenda", temos pelo menos 7 casos de teste diferentes! Algumas observagdes importantes:

TESTE APENAS AQUILO QUE FOI ESPECIFICADO! Precisa testar se o sobrenome for
vazio? Se ha letras no telefone? Nao. Se a especificacdo nao dita, ndo € um comportamento
que precisa existir.

TODO TESTE E INDEPENDENTE! Sempre comece cada teste do zero. E teste apenas
aquilo que é propodsito do teste. Nao tente testar 4 funcionalidades diferentes em um unico
caso de teste pois, em caso de falha, pode dificultar identificar onde é o erro.

Veja agora exemplos de casos de testes esperados da funcionalidade de exibir contato ainda da
classe Agenda:

1.

Exibir um contato cadastrado com todos os dados
a. Cadastrar os dados de MATHEUS na posi¢ao 1 (vazia)
b. A representacido do contato obtido da agenda na posi¢ao 1 deve ser:
Matheus Gaudencio
(83) 99999-0000
Exibir um contato cadastrado sem o telefone
a. Cadastrar os dados de MATHEUS na posigao 1 (vazia)
b. A representagdo do contato obtido da agenda na posigéo 1 deve ser:
Matheus Gaudencio
Exibir um contato em uma posi¢cao sem contato
a. Ao pegar a representagdo da agenda na posig¢ao 100, o sistema deve dar um erro (ou
retornar nada).
Exibir um contato em uma posicao invalida (limite inferior)
a. Ao pegar a representacdo da agenda na posi¢ao 0, o sistema deve dar um erro (ou
retornar nada)
Exibir um contato em uma posicao invalida (limite superior)
a. Ao pegar a representagdo da agenda na posi¢ao 101, o sistema deve dar um erro (ou
retornar nada)
Exibir um contato favoritado
a. Cadastrar os dados de MATHEUS na posi¢ao 1 (vazia)
b. Favoritar o usuario da posigao 1
c. Arepresentacao do contato obtido da agenda na posig¢ao 1 deve ser:
¥ Matheus Gaudencio
(83) 99999-0000
Exibir um contato com tags
a. Cadastrar os dados de MATHEUS na posi¢ao 1 (vazia)
b. Adicionar a tag professor-ufcg na posicao 1 da lista de tags, ao contato da posicao 1
c. Arepresentacao do contato obtido da agenda na posig¢ao 1 deve ser:
Matheus Gaudencio

(83) 99999-0000
professor-ufcg

Importante: estes sdo apenas alguns testes para a classe Agenda. Ainda existem outras
funcionalidades que poderiam ser testadas, como adicionar favoritos e aplicar tags. Além disso,
mostramos testes de uma Unica classe Agenda. Vocé ainda precisa testar cada classe
individualmente. Seria necessario bolar casos de teste para uma classe Contato, por exemplo. Isto
€ importante pois, se o teste da agenda falhar, pode ser dificil identificar se o erro existe na classe
Agenda, ou uma classe usada por Agenda (como a classe Contato). Se Contato tiver seus préprios
testes, e eles estiverem passando, provavelmente o problema estara em Agenda. Isto significa que
pode ser necessario testar algo ja testado em Agenda, mas agora para Contato. Por exemplo, é
interessante testar a exibigdo/toString de um Contato, mesmo que isso seja o valor retornado pela
Agenda ao exibir contato.

Resumo:
o Teste todas as unidades (classes) do seu sistema!
e Teste cada funcionalidade de uma classe, mesmo que ela tenha sido usada (e
testada) em outra classe!

Um bom caso de teste é o que testa as situagdes que podem revelar um erro no programa. Um bom
testador € aquele que é capaz de identificar as situagdes de codigo que podem gerar erros no
programa. Sao exemplos dessas situagdes no cadastro: “O cadastro normal de um contato”, “A
substituicdo de um contato ja existente”, “O cadastro em posic¢ao invalida”.

I\ I I\ Nos desenvolvemos testes que operam nas posi¢cdes 0, 1, 100 e 101. Essas posicdes
representam VALORES LIMITE da especificagcdo. Um valor limite € aquele que esta na borda e
representa situagcbes extremas da execugdo do programa. Pense da seguinte forma: “se o programa
funciona para posigao 1, ele vai funcionar para posicao 2, 3, 4, 5...”. Da mesma forma, as situagoes
que ele provavelmente poderia ter erros seriam aquelas situagdes limite (posi¢cdes como 100, 101..
para o nosso programa). Pense em quantas vezes vocé confundiu o operador “>=" com “>". I\ I\ |

Programas, mesmo que simples, podem ter 10 ou mais casos de teste por funcionalidade! Nossa
agenda poderia ter facilmente 40 casos de teste. Toda vez que alteramos o programa, mesmo que
seja para alterar o nome de uma variavel, estamos potencialmente inserindo um erro. E é importante

executar todos os testes cada vez que o programa ¢é alterado.

Felizmente vocé nao precisa testar manualmente cada um dos casos de teste. Existem bibliotecas e
programas que permitem que o programa seja automaticamente testado!

Criando testes com o JUnit

O Junit € uma biblioteca (conjunto de cdodigos) que permite a execugcdo automatica de testes de
classes. Esses testes mais basicos sao conhecidos como testes de unidade.

-- USE SEMPRE O JUNIT 5 --

https://www.baeldung.com/junit-5

Preparando o ambiente

O primeiro passo é definir onde no projeto vao ficar os nossos testes. Tipicamente, as classes de
teste (chamado de cdédigo de teste) ficam em um diretério diferente dos usados para armazenar as
classes com o codigo da aplicagdo (também chamado de cédigo de produgdo). Digamos que o
programa que vocé esta fazendo esta na pasta “agenda” e que o diretério com os pacotes e classes
do programa esteja em uma pasta chamada “src” dentro de “agenda” (ou seja, agenda/src). Seria
natural colocar os testes em uma pasta testes (ou seja: agenda/testes).

Para isso, no eclipse, clique com o botdo direito no projeto e selecione New > Source Folder.
Nomeie seu novo diretdrio fonte para “testes”. O ideal € que a mesma hierarquia de pacotes que
existe no pacote do seu projeto exista também no seu diretério de testes. Se, por exemplo, vocé tem
0 pacote principal, com a classe Menu, entdo o teste dessa classe se chamara MenuTest e ficara no
pacote principal dentro da pasta testes. (Nao crie esta classe agora.)

Configurando o JUnit

V& em "build path" do projeto criado (clicando com o botado direito do mouse sobre o projeto, escolha
a opgao "Build path > Add libraries". Adicione a biblioteca JUnit. Vocé vai precisar escolher a verséo
do JUnit. Trabalhe sempre com a versao estavel mais recente do JUnit, que no caso é a 5. Finalize
esta configuracdo. O “build path” define o classpath a ser utilizado na compilagdo do projeto.

Escrevendo o primeiro teste (Classe Contato)

1. I I Clicando com o botéo direito sobre o diretério de testes, escolha "New > JUnit Test Case".
Vocé vai ter que oferecer informagcao para que o esqueleto da sua classe de teste seja criado com
pouco esforgo. A sua classe sob teste (class under test) é a classe Contato. A boa pratica de
programacado sugere que o nome de sua classe de teste seja o0 mesmo nome da classe sendo
testada seguido do nome Test: ContatoTest. Clique em "Next" para continuar a configuragao de seu
esqueleto de teste. Vocé vai agora definir que métodos da classe Contato vocé quer testar. Vocé
quer testar todos os métodos que ndo sejam muito triviais (exemplo: um método getNome que
retorna nome ou métodos gerados automaticamente pelo eclipse). I\ I\ 1

Vocé ja pode rodar o teste que vocé escreveu clicando com o botéo direito do mouse sobre a classe
e selecionando "Run as > JUnit Test". O esqueleto da classe de teste criada automaticamente vai
sempre falhar. Falhas sao representadas por uma barra vermelha no término da execucgao do teste.
O préximo passo é implementar os testes para testar cada método da classe.

Entendendo um pouco mais sua classe de teste

Cada método de teste na sua classe de teste comega com uma anotagcao @Test. Essa anotacgao diz
a JVM que cada método da classe de teste deve testar um aspecto "pequeno” da classe sob teste.
Por exemplo, deve haver um método de teste para testar cada método da classe Contato
separadamente. Cada método de teste deve ser pequeno e especifico.

Os métodos de teste JUnit se utilizam de asser¢des ("assertions"), que séo declaragdes que checam
se uma condicao é verdadeira ou falsa. Se a condicdo é falsa, o teste falha. Quando todas as

assercoes feitas em um método de teste sdo verdadeiras, vai aparecer uma barra verde ao final da
execucao do caso de teste. “Passar” e “Falhar” sao veredictos de um caso de teste.

JUnit oferece muitos métodos de assertion.

Criando o objeto a ser usado no teste

Em todo teste (método anotado com @Test) que exercita uma classe, um ou mais objetos da classe
sob teste precisam ser criados. E com base nesse(s) objetos que as assercdes sdo avaliadas. E
comum ter um método que cria esses objetos. E o método anotado com @BeforeEach. Veja a seguir:

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertNotEquals;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

public class ContatoTest {

private Contato contatoBase;

@BeforeEach
void preparaContatos () {
this.contatoBase = new Contato ("Matheus", "Gaudencio", "555-5551");
}
@Test
void testNomeCompleto () {
String msg = "Esperando obter o nome completo";

assertEquals ("Matheus Gaudencio",
this.contatoBase.nomeCompleto (), msg);

}

Antes de executar cada método anotado com o @Test, o JUnit executa o método anotado com
@BeforeEach de forma que o contatoBasico é criado a cada teste executado.

Agora é a sua vez de implementar seus testes!

Faca testes para as classes Contato e Agenda.

Di - nao preci r ?

getAtributo Em geral, esses métodos ndo tem légica complexa (sé retornam valor), entdo ndo
precisam ser testados diretamente.

Métodos Nao sao testados diretamente, nem devem se tornar métodos publicos para que
privados possam ser testados.

https://junit.org/junit5/docs/5.0.3/user-guide/#writing-tests-assertions

Dicas - Varios casos de testes pressupoem a existéncia do método equals

O equals em ; Considere que dois contatos sao iguais se tiverem o mesmo nome (nome e
Contato sobrenome).

Bonus 1. Tratar Entradas Invalidas

Até agora permitimos que o usuario possa colocar qualquer nome, telefone e qualquer entrada.
Entretanto, nunca devemos confiar que o usuario sempre vai usar o sistema da maneira correta.
Essa afirmacao é forte, mas significa que, independente do sistema, ha grande chance do usuario
fazer bobagem, entdo devemos tomar cuidado de validar os dados recebidos.

Por exemplo, o usuéario pode acabar nao colocando um nome para o contato (nome vazio).
Considerando essa situacdo, vocé pode pensar em diferentes designs para impedir que isso

acontecga:
- Na classe principal, ao receber a entrada de nome, vocé verifica se o0 nome é vazio e, se for,

nao se deve criar o objeto contato;
- Na classe Contato, ao construir o objeto, devemos verificar se 0 nome é vazio. Se for, o

objeto ndo deve permitir sua criagao.

Para saber o que fazer nessa situagao, vamos ver primeiro o que é feito em Java.

Parametros Nulos

Veja a saida da execucao do cédigo abaixo quando criamos um objeto Scanner com um parametro
nulo:

import java.util.Scanner;

public class ExemploConstrutorInvalido {

public static void main (String[] args) {
Scanner sc = new Scanner (null);
System.out.println("O programa vai fechar...");

}

Saida:

/I Error: /I Uncaught Exception: Typed variable declaration : Object constructor : at Line: 3 : in file:
<unknown file> : new Scanner (null)

Target exception: java.lang.NullPointerException
java.lang.NullPointerException

at java.io.StringReader.<init>(StringReader.java:50)
at java.util.Scanner.<init>(Scanner.java:702)

Ao construir um objeto Scanner com o parametro null, o Java INTERROMPE a execugéo e “lang¢a”
uma excecdo. Observe que a mensagem “O programa vai fechar...” ndo aparece pois o0 programa
ndo chega a executar essa linha de codigo.

E muito comum encontrar no cédigo do Java o seguinte codigo em construtores e métodos:

public String next (Pattern pattern) {
if (pattern == null) {
throw new NullPointerException () ;

1. 1 1. Uma excecgao representa uma situagcéo de erro no sistema. O throw é a palavra chave em
Java que “langa” uma excecdo. Quando uma excecio dessa natureza acontece, é porque o usuario
tentou fazer algo com o sistema que, caso ele continuasse executando, apenas ocasionaria mais
erros ao sistema. O sistema, ao langar uma excegao, para de executar e imprime uma mensagem
com esse erro. E importante observar que uma excecdo também é um objeto (new
NullPointerException()). 1. I 1

Altere seu programa de forma que o0 mesmo nao aceite argumentos null no construtor de Contato.
Caso um argumento null seja passado, seu programa deve lancar uma excecgao
NullPointerException. Crie o teste associado para garantir que a excegao esta sendo de fato langada.
Para isso, basta usar uma notacéo especial do JUnit, como mostra o cédigo abaixo:

@Test
public void testNomeNull () {
try f
Contato contatoInvalido = new Contato(null, “Gaudencio”,
“210100007) ;

fail ("Era esperado excecdo ao passar cédigo nulo");
} catch (NullPointerException npe) {

Vocé pode melhorar a mensagem que aparece durante uma exceg¢éao, bastando para isso criar o
objeto NullPointerException com a mensagem como pardmetro. Exemplo: “throw new
NullPointerException(“Nome nulo”);”.

Parametros Invalidos

Entretanto, existem parametros invalidos além de nulos. Por exemplo, e se o nhome do contato for
criado com uma string vazia? Ou se for uma string s6 composta por espacos? Nesta situagao, o
objeto em questao nao é nulo! Entretanto, esse pardmetro ndo representa um nome de uma pessoa.

Nesta situagdo, os objetos em Java costumam Ilangar uma excegcdo chamada
lllegalArgumentException. Por exemplo, no método abaixo, utilizado durante a selecdo de um
intervalo de um array (classe Arrays), o Java verifica se o indice inicial (fromlndex) € menor ou igual
ao indice final do intervalo (tolndex). Quando esta situagdo ndo € respeitada, uma excegao é
langada.

private static void rangeCheck(int length, int fromindex, int tolndex) {
if (fromIndex > tolndex) {
throw new lllegalArgumentException(
"fromindex(" + fromIndex + ") > tolndex(" + tolndex + ")");

Faga que seu programa lance lllegalArgumentException quando os contatos forem construidos com
objetos Strings nao-nulos, porém invalidos (nessa situacao, strings vazias ou composta apenas por
espacos).

E a posicao invalida...?

Observe que quando o usuario coloca uma posicao invalida, ndés nao interrompemos a execugao do
programa! Ou seja, o sistema n&o para sua execugao quando o usuario coloca uma posigao invalida.

Essa é uma situacao esperada e que permite recuperacdo. Nessa situacdo, ndo langamos uma
excecao, mas simplesmente inserimos essa situacdo dentro do fluxo do programa (condi¢do a ser
tratada num else, por exemplo).

Existem ainda situagcbes que parte do codigo pode langar excegbes, mas que o programador nao
quer que o programa pare de executar. Nestas situagdes, nOs precisamos capturar e tratar as
excecgoes langadas. Exploraremos isto em situagdes futuras.

Dicas - Algumas outras excecdes de Java e seus significados...

ArithmeticException Operacéo aritmética invalida (divisdo por zero)
ClassCastException O objeto nao é da classe adequada
lllegalArgumentException O parametro do método/construtor n&o é valido
IndexOutOfBoundsException O indice utilizado foi maior ou menor que os limites do array
NoSuchElementException O elemento desejado nao existe

NumberFormatException O formato do numero em questéo € invalido
UnsupportedOperationException | A operacao desejada ndo é suportada/permitida.

Bonus 2. Novas Funcionalidades.

Vamos deixar a brincadeira mais divertida...
e Incrementando a classe Contato
o O telefone pode ser editado agora (Mudar Telefone)
o Vocé pode remover uma tag de um contato
e Incrementando Agenda
o Vocé pode agora remover um contato da lista de favoritos

m A remogdo do contato da lista de favoritos, ndo apaga o contato
o Vocé pode ter outras formas de consultar um contato na agenda

m Pelo nome: retorna uma representacao textual de todos os contatos que
apresentam o mesmo nome que o especificado

m Pelo sobrenome: retorna uma representacéo textual de todos os contatos que
apresentam o mesmo sobrenome que o especificado

m Pela tag: retorna uma retorna uma representagao textual de todos os contatos
que contém, em sua lista de tags, a mesma tag especificada

Entrega

Faga um programa de Agenda que:

- Cadastre contatos

- Exiba detalhes de um contato

- Imprima a lista de contatos

- Adicione e imprima favoritos
conforme o que esta descrito nas secdes 1-5 da especificagdo acima e tenha testes de unidade feitos
com JUnit.

Bbnus: Seu programa deve parar de executar e langar uma excegao quando o contato for criado com
uma entrada invalida (nulo ou espago vazio para qualquer um dos campos).

E importante que todo cédigo esteja devidamente documentado, & excecdo das classes de testes
(mas se quiser documentar, e recomendamos, pode ficar a vontade).

Ainda, vocé deve entregar um programa com testes para as classes com ldgica testavel (todas as
classes menos a classe de interface com o usuario). IMPORTANTE! NOS IREMOS AVALIAR SEU
CODIGO A PARTIR DOS TESTES! N6s ndo executaremos a sua interface por linha de comando
varias vezes, mas pelo contrario, avaliaremos se vocé fez bons testes, e qual o resultado da

execucao desses testes!
Facga bons testes, que explorem as condigdes limite.

Para a entrega, faca um zip da pasta do seu projeto. Coloque o nome do projeto para:
LAB3_SEU NOME e o nome do zip para LAB3_SEU_NOME.ZIP. Exemplo de projeto:
LAB3_MATHEUS_GAUDENCIO.ZIP. Este zip deve ser submetido pelo Canvas.

Seu programa sera avaliado pela corretude e, principalmente, pelo DESIGN do sistema. E
importante:
- Usar nomes adequados de variaveis, classes, métodos e parametros.
- Fazer um design simples, legivel e que funciona. E importante saber, apenas olhando o nome
das classes e 0 nome dos métodos existentes, identificar quem faz o que no cédigo.

	Laboratório 03
	Acompanhe o seu aprendizado
	Conteúdo sendo exercitado
	Objetivos de aprendizagem
	Perguntas que você deveria saber responder após este lab
	Para se aprofundar mais...

	
	Agenda de Contatos
	1. Exibir Menu
	2. Cadastrar Contato
	Implementando Contato

	3. Exibir Contato
	Implementando exibição do Contato

	4. Listar Contatos
	Implementando a listagem dos contatos

	5. Adicionar Favoritos
	6. Aplicar tags aos contatos
	7. Remover contato
	8. Testar Agenda

	Criando testes com o JUnit
	Preparando o ambiente
	Configurando o JUnit
	Escrevendo o primeiro teste (Classe Contato)
	Entendendo um pouco mais sua classe de teste

	Criando o objeto a ser usado no teste
	

	Bônus 1. Tratar Entradas Inválidas
	Parâmetros Nulos
	Parâmetros Inválidos
	E a posição inválida…?

	
	Bônus 2. Novas Funcionalidades.
	
	Entrega

