Al/ML Methods in the Stock Market
Teja Vuppu (Pace University MS in CS)

Kadiyala Padma (Pace University Professor)

Abstract: This study delves into an in-depth analysis of Microsoft (MSFT) stock price
data extracted from Vayu Financials, focusing on a 30-day span with 1-minute price
intervals, totaling 391 intervals per day. Various financial factors such as Effective
Bid-Ask Spread, Order Imbalance, Auto Correlation of Stock Returns, Kyle's Lambda,
Volatility, and PIN (Probability of Informed Trading) are examined over the selected
period. The data undergoes meticulous preprocessing, including addressing missing
values and introducing categorical variables to capture different phases of the trading
day. Utilizing Python programming language, data visualization techniques, and
machine learning algorithms such as Q-Learning, RandomForestRegressor, and LSTM,
predictive models are developed to forecast stock prices. The study concludes by
providing insights into market dynamics, trade imbalances, and predictive capabilities,
contributing to a deeper understanding of stock market behavior and trends.

We extract stock price data for Microsoft (MSFT) from the Vayu Financials website,
covering a span of 30 days. Each day's data consists of 1-minute price intervals, totaling
391 intervals per day.

import pandas as pd
import numpy as np

stock_price = pd.read_excel("/Users/teja/Desktop/MSFT.x1sx",sheet_name="'Stock_Price_MSFT')
stock_price

Date Time Stock_Price

0 2023-10-27 09:30 33112
1 2023-10-27 09:31 33142
2 2023-10-27 09:32 33184
3 2023-10-27 09:33 332.15
4 2023-10-27 09:34 33166
11725 2023-09-18 15:56 328,55
11726 2023-09-18 15:57 32862
11727 2023-09-18 15:58 32885
11728 2023-09-18 15:59 329.32
11729 2023-09-18 16:00 32979

11730 rows x 3 columns

We've gathered 30 days of data for the Effective Bid-Ask Spread, which is determined
as the difference between the last trade price and the midpoint of the bid-ask spread for
buys, as well as the difference between the midpoint of the bid-ask spread and the last
trade price. Each day's data comprises 403 values per minute, with duplicate values
recorded at intervals of 10:00 am, 10:30 am, 11:00 am, 11:30 am, 12:00 pm, 12:30 pm,
1:00 pm, 1:30 pm, 2:00 pm, 2:30 pm, 3:00 pm, and 3:30 pm from our data source.

Find duplicates based on 'DateTime' column
duplicates = my_bid_ask_spread[my_bid_ask_spread.duplicated(subset=['DateTime'], keep=False)

duplicates
Date Time Effective_bid_ask_spread DateTime
30 2023-10-27 10:00 9.00 2023-10-27 10:00:00
31 2023-10-27 10:00 8.00 2023-10-27 10:00:00
61 2023-10-27 10:30 5.06 2023-10-27 10:30:00
62 2023-10-27 10:30 0.00 2023-10-27 10:30:00
92 2023-10-27 11:00 0.00 2023-10-27 11:00:00
3131 2023-10-18 14:30 0.00 2023-10-18 14:30:00
3161 2023-10-18 15:00 1.00 2023-10-18 15:00:00
3162 2023-10-18 15:00 0.00 2023-10-18 15:00:00
3192 2023-10-18 15:30 198 2023-10-18 15:30:00
3193 2023-10-18 15:30 2.00 2023-10-18 15:30:00

192 rows x 4 columns

We took the mean of these two values to obtain the average bid-ask spread for these
datapoints.

Calculate the average of 'Effective_bid_ask_spread' for each set of duplicates

averages = duplicates.groupby('DateTime')['Effective_bid_ask_spread'].mean()
averages

DateTime

2023-10-18 10:00:00 1.20

2023-10-18 10:30:00 2.00

2023-10-18 11:00:00 0.50

2023-10-18 11:30:00 1.20

2023-10-18 12:00:00 3.50

2023-10-27 13:30:00 12.95
2023-10-27 14:00:00 0.52

2023-10-27 14:30:00 0.32
2023-10-27 15:00:00 4.99
2023-10-27 15:30:00 1.99

Name: Effective_bid_ask_spread, Length: 96, dtype: float64

Replace the original duplicates with the calculated averages
my_bid_ask_spread. loc[my_bid_ask_spread|'DateTime'].isin(averages.index), 'Effective_bid_ask_spread'] = my_bid_ask_spread.loc[my_bid_ask_sprea

my_bid_ask_spread

Date Time Effective_bid_ask_spread DateTime

0 2023-10-27 09:30 6.00 2023-10-27 09:30:00

1 2023-10-27 09:31 1.00 2023-10-27 09:31:00

2 2023-10-27 09:32 11.00 2023-10-27 09:32:00

3 2023-10-27 09:33 13.00 2023-10-27 09:33:00

4 2023-10-27 09:34 6.00 2023-10-27 09:34:00
3219 2023-10-18 15:56 1.00 2023-10-18 15:56:00
3220 2023-10-18 15:57 1.00 2023-10-18 15:57:00
3221 2023-10-18 15:58 1.00 2023-10-18 15:58:00
3222 2023-10-18 15:59 2.00 2023-10-18 15:59:00
3223 2023-10-18 16:00 4.68 2023-10-18 16:00:00

3224 rows x 4 columns

We've collected 30 days of data for various financial factors:

1. Effective Bid-Ask Spread: The difference between the last trade price and the
midpoint of the bid-ask spread for buys, and vice versa. Recorded at 12 intervals
throughout the trading day.

2. Order Imbalance: The difference between the bid size and ask size, indicating an
imbalance between buyers and sellers. Values were averaged at 12 intervals to
estimate the order imbalance.

3. Auto Correlation of Stock Returns: The auto-correlation coefficient of one-minute
returns over different time periods (1hr, 45min, 30min, 15min). Some data points were
missing for the 45min and 30min intervals.

4. Kyle's Lambda: The price impact of a trade measured as the regression coefficient
obtained from regressing returns over signed volumes at 15-minute non-overlapping
intervals. Recorded at 27 intervals throughout the trading day.

5. Volatility: The standard deviation of one-minute returns over different time periods
(1hr, 45min, 30min, 15min). Some data points were missing for the 45min, 30min, and
15min intervals.

6. PIN (Probability of Informed Trading): The ratio of the elasticity of buy volume to the
sum of the elasticities of buy and sell volumes. Values were averaged at 12 intervals
from 10:30 am to 3:30 pm to estimate the PIN.

After extracting all the data and conducting data analysis, including determining the
number of missing data points, averaging additional data points for specific times, and
organizing the data into different Excel files, we utilized Python programming language
for further analysis. These factors offer valuable insights into market dynamics, trade
imbalances, price impacts, and trading probabilities, facilitating a deeper understanding
of market behavior and trends over time.

my_price_data

Date Time Stock_Price
0 2023-10-27 09:30 331120
1 2023-10-27 09:31 331420
2 2023-10-27 09:32 331840
3 2023-10-27 09:33 332150
4 2023-10-27 09:34 331660

3123 2023-10-18 15:56 330135
3124 2023-10-18 15:57 330.276
3125 2023-10-18 15:58 330.340
3126 2023-10-18 15:59 330.560
3127 2023-10-18 16:00 33010

3128 rows x 3 columns

We opted to focus our analysis on 8 days of data specifically for the 15-minute interval
for Microsoft stock. Accordingly, we extracted data from October 18, 2023, to October
27, 2023, using Python and saved it into another Excel file named "MSFT_15min.xIsx".

Assuming 'Date' is a datetime column in your DataFrame
stock_price['Date'] = pd.to_datetime(stock_price['Date'])

Define your date range
start_date = pd.to_datetime('2023-10-18') # Replace with your start date
end_date = pd.to_datetime('2023-10-27") # Replace with your end date

Extract rows within the specified date range
my_price_data = stock_price[(stock_price['Date’'] >= start_date) & (stock_price['Date'] <= end_date)]

my_price_data.dtypes

Date datetime64[ns]
Time object
Stock_Price float6d

dtype: object

8 days data
my_price_data

Date Time Stock_Price
0 2023-10-27 09:30 331120
1 2023-10-27 09:31 331.420
2023-10-27 09:32 331.840
2023-10-27 09:33 332150

awWoN

2023-10-27 09:34 331.660

3123 2023-10-18 15:56 330.135
3124 2023-10-18 15:57 330.275
3125 2023-10-18 15:58 330.340
3126 2023-10-18 15:59 330.560
3127 2023-10-18 16:00 330110

3128 rows x 3 columns

my_price_data_15min = my_price_data.groupby('Date').apply(lambda x: x.iloc[::15]).reset_index(drop=True)

my_price_data_15min
Date Time Stock_Price

0 2023-10-18 09:30 333.500
1 2023-10-18 09:45 334.080

2 2023-10-18 10:00 334.950
3 2023-10-18 10:15 333.820
4 2023-10-18 10:30 333.580
211 2023-10-27 15:00 329140
212 2023-10-27 1515 329.785
213 2023-10-27 15:30 329.786

214 2023-10-27 15:45 329.084
215 2023-10-27 16:00 329.920

216 rows x 3 columns

In this file, we've organized the data for the 15-minute interval with the following
columns: 'Date’, 'Time', 'Stock_Price', 'Effective Bid-Ask Spread', 'Order Imbalance’',
'‘Auto Correlation', 'Kyle's Lambda’, 'PIN', and 'Volatility'.

[1]: dimport pandas as pd
import numpy as np

my_15min_data = pd.read_excel("/Users/teja/Desktop/MSFT_15min.x1sx",sheet_name='15min")

my_15min_data

B W N = O

n
212
213
214
215

Date
2023-10-18
2023-10-18
2023-10-18
2023-10-18
2023-10-18

2023-10-27
2023-10-27
2023-10-27
2023-10-27
2023-10-27

Time Stock_Price Effective_bid_ask_spread Order_Imbalance Auto_Correlation

09:30
09:45
10:00

10:15
10:30

16:00
15:15
16:30
15:45
16:00

216 rows x 10 columns

333.500
334.080
334.950
333.820
333.580

329140
329.785
329.786
329.084
329.920

10.00
6.98
1.20
1.00
2.00

499
4.00
199
2.98
6.00

3700
0

50
-100
-50

-50
-100
-100

100

50.950

-42.084

49.979
30.344
-7.225

-35.999

5.925

-14.224

-30.680

-54.243

Kyle's_lambda
0.000
0.006
0.006
0.004
0.004

0.003
0.002
0.002
0.004
0.003

[c} ¥

Pin Volatility Time_of_Day

39.6720
94.2030
35.4135
17.5000
156.2176

70.0000
50.0000
6.3490
-2.3200
0.0000

13.898
11.768
8.986
7.595
6.313

5.045
4.549
7.374
5.481
4.105

A

B
B
B
B

0O m W W w i

We find the missing percentages of each column using python, and there are no
missing values.

missing_percentages = data.isnull().mean() * 100

print(missing_percentages)

Date
Time
Stoc

Effective_bid_ask_spread
Order_Imbalance

k_Price

Auto_Correlation

Kyle
Pin

Vola
Time

dtype: float64

Recognizing that all existing columns are numerical, we aimed to introduce a new
categorical column named 'Time_of Day'. This column distinguishes between different
phases of the trading day: 'A’ for the start (9:30), 'B' for the trading hours (9:45-15:45),
and 'C' for the end (16:00). To achieve this, we utilized StandardScaler for normalization

's_lambda

tility
_of_Day

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

of numerical columns and OneHotEncoder for encoding categorical columns.

0+

40
(1]

categorical_columns = ['Time_of_Day']
numeric_columns = ['Effective_bid_ask_spread', 'Order_Imbalance', 'Auto_Correlation', "Kyle's_lambda", 'Pin', 'Volatility']

from sklearn.preprocessing import StandardScaler, OneHotEncoder

Normalize numeric columns
numeric_scaler = StandardScaler()
datalnumeric_columns] = numeric_scaler.fit_transform(data[numeric_columns])

Encoding categorical columns

categorical_encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')

encoded_time_of_day = pd.DataFrame(categorical_encoder.fit_transform(datalcategorical_columnsl),
columns=categorical_encoder.get_feature_names_out(categorical_columns))

data = pd.concat([data, encoded_time_of_day], axis=1)

Drop the original categorical column
data.drop(['Time_of_Day'], axis=1, inplace=True)

Drop the 'Date' and 'Time' column
data = data.drop(columns=['Date’, 'Time'])

[111: data

[11]: stock_Price Effective_bid_ask_spread Order_imbal Auto_Correlati Kyle's_lambd. Pin Volatility Time_of_Day_A Time_of_Day_B
333.500 1.083581 9.405514 2.279085 -2.113473 -0.050553 1.049544 1.0 0.0
334.080 0.623197 0.018208 -1.379706 19145568 0.814298 0.721615 0.0 1.0
334.950 -0.257936 0.145062 2.240898 1.914558 -0.118092 0.296840 0.0 1.0
333.820 -0.288425 -0.235505 1.468703 0.571881 -0.402196 0.083686 0.0 1.0
333.580 -0.135980 -0.108649 -0.008790 0.571881 -0.438396 -0.112765 0.0 1.0
329.140 0.319831 -0.108649 -1.140399 -0.099458 0.430443 -0.307070 0.0 1.0
329.785 016891 -0.235505 0.508366 -0.770796 0.113247 -0.383076 0.0 1.0
329.786 -0.137504 -0.235505 -0.284043 -0.770796 -0.579049 0.049821 0.0 1.0
329.084 0.013417 0.271917 -0.931216 0571881 -0.716538 -0.240258 0.0 1.0
329.920 0.473801 0.018208 -1.857889 -0.099458 -0.679743 -0.451113 0.0 0.0

~s x 10 columns
We utilized Seaborn and Matplotlib libraries to plot the data and visualize trends

21t import matplotlib.pyplot as plt
import seaborn as sns

EDA

sns.pairplot(datal['Stock_Price', 'Effective_bid_ask_spread', 'Order_Imbalance',
'Auto_Correlation', "Kyle's_lambda", 'Pin', 'Volatility'l])

plt.show()

Correlation matrix

correlation_matrix = datal['Stock_Price', 'Effective_bid_ask_spread', 'Order_Imbalance',
'Auto_Correlation', "Kyle's_lambda", 'Pin', 'Volatility'll.corr()

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')

Time_of_Day_C
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
1.0

plt.show()
.
345
. .
g %0 . . é; Ll i F .%'- - . E{o .
g
£
¥as e . . &, -
; , : i)
Sy * i E H . .
330 . R . . I : . . -
i HIR . .
125 ‘ ' . *Te .
.

pread
5 K

®

ﬁ: .

RN
i -
2. .
%

5
.
.
.
.
.
.

w

. . -qulzsifi-s. .

Order_imbalance
s

'
@

Additionally, we generated a correlation matrix to examine the relationships between

different variables

Stock_Price

Effective_bid_ask_spread

Order_Imbalance

Auto_Correlation

Kyle's_lambda

Pin

Volatility - 0.25

Stock_Price -

0.029 0.0092

-0.026 -0.0016 0.011

-0.026 1 0.0024 -0.0033

-0.0016 0.0024 1 0.15

0.011 -0.0033 -0.15

0.079 -0.06 -0.037 -0.016

_spread -

Kyle's_lambda

Auto Correlation -

Order Imbalance

Effective bid ask s

Pin
Volatility

1.0

0.8

- 0.6

-0.4

- 0.2

0.0

Employing various machine learning techniques, we conducted further analysis of the
data to gain insights and make predictions.

We train the model using 75% of the data for training and 25% for testing. We used
Q-Learning, a Reinforcement Learning algorithm, RandomForestRegressor and LSTM.

Q-Learning
This code implements a Q-learning algorithm for stock price prediction using
reinforcement learning. Here's a brief explanation of the key components:

1. Initialization: The code initializes the Q-table with zeros, which stores the expected
cumulative rewards for each state-action pair.

2. Training: The algorithm iterates through a fixed number of episodes and updates the
Q-values based on observed rewards. Within each episode, it iterates through each
state and selects actions according to an epsilon-greedy policy, balancing exploration
and exploitation. The reward is calculated based on the difference between the
predicted and actual stock price changes. The Q-values are updated using the Bellman
equation.

3. Testing: After training, the algorithm is tested on unseen data. For each state, it
selects the action with the highest Q-value and predicts the next stock price change.
The predicted stock prices are compared with the actual stock prices to evaluate the
performance of the model.

4. Results: The predicted and actual stock prices are stored in a DataFrame for
comparison and analysis.

Overall, this code demonstrates a basic implementation of Q-learning for stock price
prediction, where the agent learns to make decisions based on historical stock price
data and updates its strategy over time to maximize cumulative rewards.

Initialize Q-table with zeros
Q = np.zeros((num_states, num_actions), dtype=float)

learning_rate =
discount_factor
epsilon = 0.2

num_episodes = 1000

1.0
= 0.2

def epsilon_greedy_ policy(Q, state_index, epsilon):
if np.random.rand() < epsilon:
Exploration: Choose a random action
return np.random.randint(len(Q[state_index, :1))
else:
Exploitation: Choose the action with the highest Q-value
return np.argmax(Q[state_index, :1)

Training
for episode in range(num_episodes):

for state_index in range(num_states - 1):
state = state_index # Use the index as the state
action = epsilon_greedy_policy(Q, state, epsilon)
next_state = state_index + 1

stock_price_2 = data.iloc[next_state] ['Stock_Price']

stock_price_1 = data.iloc[state_index] ['Stock_Price']
actual_stock_price_change = stock_price_2 - stock_price_1
percent_stock_price_change = (actual_stock_price_change / stock_price_1) *x 100

Calculate reward based on the difference between predicted and actual stock price change
predicted_stock_price_change = (action - 1) # Assuming actions are -1, 0, 1
predicted_stock_price = stock_price_1 + predicted_stock_price_change

Calculate reward
if predicted_stock_price <= stock_price_2:

reward = actual_stock _price_change — abs(predicted_stock_ price_change)
else:

reward = —actual_stock_price_change

Update Q—-value using the Bellman equation
Qlstate_index, action] = (1 - learning_rate) * Qlstate_index, action] + \
learning_rate * (reward + discount_factor * np.max(Q[next_state, :1))

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

Assuming 'actual_values' and 'predicted_stock_prices' are your actual and predicted values
actual_values = result_df['Stock Price'].values

predicted_stock_prices = result_df['Predicted Stock_Price'].values

mae = mean_absolute_error(actual_values, predicted_stock_prices)

mse = mean_squared_error(actual_values, predicted stock_prices)

rmse = np.sqrt(mse)

r2 = r2_score(actual_values, predicted_stock_prices)

print(f'MAE: {mae}')
print(f'MSE: {mse}')
print(f'RMSE: {rmse}')
print(f'R2: {r2}')

MAE: 2.188300000000002
MSE: 7.280401490000006
RMSE: 2.698221912667675
R2: 0.14302324855540582

[14]: # Visuvalize the results B ™ v & F
plt.figure(figsize=(12, 6))
plt.plot(data.iloc[162:]['Stock_Price'].values, label='Actual Stock Price', color='blue')
plt.plot(predicted_stock_prices, label='Predicted Stock Price', color='red')
plt.title('Stock Price Prediction')
plt.xlabel('Time")
plt.ylabel('Stock Price')
plt.legend()
plt.show()

Stock Price Prediction

342 A —— Actual Stock Price

— Predicted Stock Price

340 A

338

336 4

3349

Stock Price

3321

3301

328 1

Time

The provided code trains a RandomForestRegressor model for predicting stock prices
and evaluates its performance using the R-squared (R2) score. Here's a brief
explanation of each section:

Without Grid Search:

1. Train RandomForestRegressor: The RandomForestRegressor model is instantiated
and trained using the training data ("X_train_rf", 'y _train_rf’), where "X _train_rf’
contains the feature columns and 'y_train_rf contains the target variable (stock prices).

2. Testing RandomForestRegressor: The trained model is used to make predictions on
the test data ("X _test_rf'). The actual stock prices from the test data are compared with
the predicted prices ('y_predicted rf’).

3. Evaluate the Model: The R2 score is calculated to evaluate the performance of the
RandomForestRegressor model. The R2 score measures the proportion of the variance
in the dependent variable (stock prices) that is predictable from the independent
variables (features).

Split the data into training and testing sets
train_data, test_data = train_test_split(data, test_size=0.25, random_state=42)

Step 1: Train RandomForestRegressor for initial prediction
rf_model = RandomForestRegressor()

X_train_rf = train_datalfeature_columns

y_train_rf = train_datal'Stock_Price'
rf_model.fit(X_train_rf, y_train_rf)

Testing RandomForestRegressor

X_test_rf = test_datalfeature_columns
y_test_actual = test_datal'Stock Price'
y_predicted_rf = rf_model.predict(X_test_rf)

Evaluate the RandomForestRegressor model
r2_rf = r2_score(y_test_actual, y_predicted_rf)
print(f'R2 Score (Random Forest): {r2_rf}"')

With Grid Search (Second Part):

1. Split Data: The data is split into training and testing sets using the “train_test_split’
function from “sklearn.model_selection’. This split allows for model evaluation on
unseen data.

2. Train RandomForestRegressor with GridSearchCV: The RandomForestRegressor
model is trained with hyperparameter tuning using GridSearchCV. Hyperparameters like
the number of estimators, maximum depth, minimum samples split, minimum samples
leaf, and maximum features are tuned to optimize the model's performance.

3. Testing RandomForestRegressor: The best model obtained from GridSearchCV is
used to make predictions on the test data ("X_test_rf'). The actual stock prices from the
test data are compared with the predicted prices.

4. Evaluate the Model: The predictions are stored in a DataFrame (‘result_df’) along
with the actual values. This DataFrame allows for comparison between the predicted
and actual stock prices.In summary, the code demonstrates how to train and evaluate
RandomForestRegressor models for stock price prediction, both with and without
hyperparameter tuning using GridSearchCV.

Step 1: Train RandomForestRegressor with fine-tuning using GridSearchCV
param_grid = {

'n_estimators': [50, 100, 200],

'max_depth': [None, 10, 201,

'min_samples_split': [2, 5, 1@],

'min_samples_leaf': [1, 2, 4],

'max_features': [1.0] # Explicitly set max_features to 1.0

rf_model = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(estimator=rf_model, param_grid=param_grid, cv=5, scoring='r2"', n_jobs=-1)
grid_search.fit(train_data[feature_columns], train_datal'Stock_Price'])

Get the best RandomForestRegressor model
best_rf_model = grid_search.best_estimator_

Step 2: Testing RandomForestRegressor
y_test_actual = test_datal'Stock Price']

y_predicted_rf = best_rf_model.predict(test_datalfeature_columns])

Create a DataFrame with actual and predicted values
result_df = pd.DataFrame({'Actual': y_test_actual, 'Predicted': y_predicted_rf})

Stock Price Prediction

—— Actual Stock Price

345.0 A — Predicted Stock Price

342.5 A1

340.0 A

337.5 A

Stock Price

335.0 A1

332.5 A

330.0 A

327.5 1

Time

This code implements a Long Short-Term Memory (LSTM) neural network model for
predicting stock prices using historical price data and additional features. Here's a
summary of the key steps:

1. Data Preprocessing:

- Feature columns and the 'Stock_Price' column are extracted from the DataFrame
'data’.

- The data is normalized using Min-Max scaling to ensure all features and stock prices
are within the range [0, 1].

2. Prepare Data for LSTM:

- The data is transformed into sequences of features and corresponding stock prices,
with a defined look-back window (number of previous time steps to consider).

- Each sequence is flattened and concatenated with the corresponding stock prices to
create the input data for the LSTM model.

3. Model Building:
- A Sequential model is initialized.
- An LSTM layer with 50 units is added as the input layer, specifying the input shape.
- A Dense layer with 1 unit (output layer) is added to predict the next stock price.

- The model is compiled using the Adam optimizer and Mean Squared Error (MSE)
loss function.

4. Model Training:

- The model is trained on the training data (X_train, y_train) for 50 epochs with a batch
size of 32.

5. Prediction:
- The trained model is used to make predictions on the test data (X_test).

- The predicted stock prices are transformed back to the original scale using the
inverse Min-Max scaler.

6. Evaluation:

- Mean Squared Error (MSE) could be calculated to evaluate the performance of the
model by comparing the predicted stock prices with the actual stock prices.

Overall, this code demonstrates the implementation of an LSTM neural network for
stock price prediction, incorporating additional features alongside historical stock prices.
The model learns patterns in the data to make predictions about future stock prices.

Split the data into training and testing sets
train_size = int(len(X) % 0.75)

X_train, X_test = X[:train_sizel, X[train_size:!
y_train, y_test = yl[:train_sizel, yltrain_size:]

Build the LSTM model

model = Sequential()

model.add(LSTM(units=50, input_shape=(X_train.shape[l], X_train.shape(2])))
model.add(Dense(units=1))

model.compile(optimizer="adam', loss='mean_squared_error')

Train the model
model.fit(X_train, y_train, epochs=50, batch_size=32)

Make predictions on the test data
y_pred = model.predict(X_test)

Stock Price Prediction using LSTM

— Actual Stock Price
— Predicted Stock Price

338 A

336 1

334 1

Stock Price

332 1

330 A

328 A

Time

