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Abstract: This study delves into an in-depth analysis of Microsoft (MSFT) stock price 
data extracted from Vayu Financials, focusing on a 30-day span with 1-minute price 
intervals, totaling 391 intervals per day. Various financial factors such as Effective 
Bid-Ask Spread, Order Imbalance, Auto Correlation of Stock Returns, Kyle's Lambda, 
Volatility, and PIN (Probability of Informed Trading) are examined over the selected 
period. The data undergoes meticulous preprocessing, including addressing missing 
values and introducing categorical variables to capture different phases of the trading 
day. Utilizing Python programming language, data visualization techniques, and 
machine learning algorithms such as Q-Learning, RandomForestRegressor, and LSTM, 
predictive models are developed to forecast stock prices. The study concludes by 
providing insights into market dynamics, trade imbalances, and predictive capabilities, 
contributing to a deeper understanding of stock market behavior and trends. 

 

 

 

 

 

 

 

 

 

 

 

 



We extract stock price data for Microsoft (MSFT) from the Vayu Financials website, 
covering a span of 30 days. Each day's data consists of 1-minute price intervals, totaling 
391 intervals per day. 

 

We've gathered 30 days of data for the Effective Bid-Ask Spread, which is determined 
as the difference between the last trade price and the midpoint of the bid-ask spread for 
buys, as well as the difference between the midpoint of the bid-ask spread and the last 
trade price. Each day's data comprises 403 values per minute, with duplicate values 
recorded at intervals of 10:00 am, 10:30 am, 11:00 am, 11:30 am, 12:00 pm, 12:30 pm, 
1:00 pm, 1:30 pm, 2:00 pm, 2:30 pm, 3:00 pm, and 3:30 pm from our data source. 

 



We took the mean of these two values to obtain the average bid-ask spread for these 
datapoints.  

 

We've collected 30 days of data for various financial factors: 

1. Effective Bid-Ask Spread: The difference between the last trade price and the 
midpoint of the bid-ask spread for buys, and vice versa. Recorded at 12 intervals 
throughout the trading day. 

2. Order Imbalance: The difference between the bid size and ask size, indicating an 
imbalance between buyers and sellers. Values were averaged at 12 intervals to 
estimate the order imbalance. 

3. Auto Correlation of Stock Returns: The auto-correlation coefficient of one-minute 
returns over different time periods (1hr, 45min, 30min, 15min). Some data points were 
missing for the 45min and 30min intervals. 

4. Kyle's Lambda: The price impact of a trade measured as the regression coefficient 
obtained from regressing returns over signed volumes at 15-minute non-overlapping 
intervals. Recorded at 27 intervals throughout the trading day. 



5. Volatility: The standard deviation of one-minute returns over different time periods 
(1hr, 45min, 30min, 15min). Some data points were missing for the 45min, 30min, and 
15min intervals. 

6. PIN (Probability of Informed Trading): The ratio of the elasticity of buy volume to the 
sum of the elasticities of buy and sell volumes. Values were averaged at 12 intervals 
from 10:30 am to 3:30 pm to estimate the PIN. 

 

After extracting all the data and conducting data analysis, including determining the 
number of missing data points, averaging additional data points for specific times, and 
organizing the data into different Excel files, we utilized Python programming language 
for further analysis. These factors offer valuable insights into market dynamics, trade 
imbalances, price impacts, and trading probabilities, facilitating a deeper understanding 
of market behavior and trends over time. 

 

 

We opted to focus our analysis on 8 days of data specifically for the 15-minute interval 
for Microsoft stock. Accordingly, we extracted data from October 18, 2023, to October 
27, 2023, using Python and saved it into another Excel file named "MSFT_15min.xlsx". 



 

 

 

 

 

 



In this file, we've organized the data for the 15-minute interval with the following 
columns: 'Date', 'Time', 'Stock_Price', 'Effective Bid-Ask Spread', 'Order Imbalance', 
'Auto Correlation', 'Kyle's Lambda', 'PIN', and 'Volatility'. 

 

 

 

We find the missing percentages of each column using python, and there are no 
missing values.  

 

 

Recognizing that all existing columns are numerical, we aimed to introduce a new 
categorical column named 'Time_of_Day'. This column distinguishes between different 
phases of the trading day: 'A' for the start (9:30), 'B' for the trading hours (9:45-15:45), 
and 'C' for the end (16:00). To achieve this, we utilized StandardScaler for normalization 
of numerical columns and OneHotEncoder for encoding categorical columns.  



 

We utilized Seaborn and Matplotlib libraries to plot the data and visualize trends 

 



Additionally, we generated a correlation matrix to examine the relationships between 
different variables 

 

 

 

 

 

 

 

 

 



Employing various machine learning techniques, we conducted further analysis of the 
data to gain insights and make predictions. 

We train the model using 75% of the data for training and 25% for testing. We used 
Q-Learning, a Reinforcement Learning algorithm, RandomForestRegressor and LSTM. 

 

 

Q-Learning​
This code implements a Q-learning algorithm for stock price prediction using 
reinforcement learning. Here's a brief explanation of the key components: 

1. Initialization: The code initializes the Q-table with zeros, which stores the expected 
cumulative rewards for each state-action pair. 

2. Training: The algorithm iterates through a fixed number of episodes and updates the 
Q-values based on observed rewards. Within each episode, it iterates through each 
state and selects actions according to an epsilon-greedy policy, balancing exploration 
and exploitation. The reward is calculated based on the difference between the 
predicted and actual stock price changes. The Q-values are updated using the Bellman 
equation. 

3. Testing: After training, the algorithm is tested on unseen data. For each state, it 
selects the action with the highest Q-value and predicts the next stock price change. 
The predicted stock prices are compared with the actual stock prices to evaluate the 
performance of the model. 

4. Results: The predicted and actual stock prices are stored in a DataFrame for 
comparison and analysis. 

Overall, this code demonstrates a basic implementation of Q-learning for stock price 
prediction, where the agent learns to make decisions based on historical stock price 
data and updates its strategy over time to maximize cumulative rewards. 



 

 

 

 

 



 

 

The provided code trains a RandomForestRegressor model for predicting stock prices 
and evaluates its performance using the R-squared (R2) score. Here's a brief 
explanation of each section: 

 

Without Grid Search: 

1. Train RandomForestRegressor: The RandomForestRegressor model is instantiated 
and trained using the training data (`X_train_rf`, `y_train_rf`), where `X_train_rf` 
contains the feature columns and `y_train_rf` contains the target variable (stock prices). 

2. Testing RandomForestRegressor: The trained model is used to make predictions on 
the test data (`X_test_rf`). The actual stock prices from the test data are compared with 
the predicted prices (`y_predicted_rf`). 

3. Evaluate the Model: The R2 score is calculated to evaluate the performance of the 
RandomForestRegressor model. The R2 score measures the proportion of the variance 
in the dependent variable (stock prices) that is predictable from the independent 
variables (features). 

 



 

 

With Grid Search (Second Part): 

1. Split Data: The data is split into training and testing sets using the `train_test_split` 
function from `sklearn.model_selection`. This split allows for model evaluation on 
unseen data. 

2. Train RandomForestRegressor with GridSearchCV: The RandomForestRegressor 
model is trained with hyperparameter tuning using GridSearchCV. Hyperparameters like 
the number of estimators, maximum depth, minimum samples split, minimum samples 
leaf, and maximum features are tuned to optimize the model's performance. 

3. Testing RandomForestRegressor: The best model obtained from GridSearchCV is 
used to make predictions on the test data (`X_test_rf`). The actual stock prices from the 
test data are compared with the predicted prices. 

4. Evaluate the Model: The predictions are stored in a DataFrame (`result_df`) along 
with the actual values. This DataFrame allows for comparison between the predicted 
and actual stock prices.In summary, the code demonstrates how to train and evaluate 
RandomForestRegressor models for stock price prediction, both with and without 
hyperparameter tuning using GridSearchCV. 



 

 

 

 

 

 

 



This code implements a Long Short-Term Memory (LSTM) neural network model for 
predicting stock prices using historical price data and additional features. Here's a 
summary of the key steps: 

 

1. Data Preprocessing: 

   - Feature columns and the 'Stock_Price' column are extracted from the DataFrame 
'data'. 

   - The data is normalized using Min-Max scaling to ensure all features and stock prices 
are within the range [0, 1]. 

2. Prepare Data for LSTM: 

   - The data is transformed into sequences of features and corresponding stock prices, 
with a defined look-back window (number of previous time steps to consider). 

   - Each sequence is flattened and concatenated with the corresponding stock prices to 
create the input data for the LSTM model. 

3. Model Building: 

   - A Sequential model is initialized. 

   - An LSTM layer with 50 units is added as the input layer, specifying the input shape. 

   - A Dense layer with 1 unit (output layer) is added to predict the next stock price. 

   - The model is compiled using the Adam optimizer and Mean Squared Error (MSE) 
loss function. 

4. Model Training: 

   - The model is trained on the training data (X_train, y_train) for 50 epochs with a batch 
size of 32. 

5. Prediction: 

   - The trained model is used to make predictions on the test data (X_test). 

   - The predicted stock prices are transformed back to the original scale using the 
inverse Min-Max scaler. 

6. Evaluation: 



   - Mean Squared Error (MSE) could be calculated to evaluate the performance of the 
model by comparing the predicted stock prices with the actual stock prices. 

Overall, this code demonstrates the implementation of an LSTM neural network for 
stock price prediction, incorporating additional features alongside historical stock prices. 
The model learns patterns in the data to make predictions about future stock prices. 

 

 

 

 



 

 


