
Sets
Date: Oct 14, 2024

Sets

Sets are an unordered collection of immutable
values.

●​ no duplicates
●​ mutable

Note (PRO): Sets are more efficient than lists
because they are only allowed to contain
immutable values.

This is because sets store items in memory using
hashing and storing immutable values is much
more efficient for look up.

Note (CON): Sets are unordered so therefore
you cannot index into them or slice them based
on index start and end positions.

What operations can we do on sets that are
the same as lists?

●​ len()
●​ in operator
●​ iterate/traverse
●​ accumulator pattern

To create a set, one option is to use {} and put
the values you want in the set inside the {}
separated by commas.

Note: If you try to add a value multiple times, the
duplicate values will be removed because sets
can only have unique values!

Another way you create a set is using the built-in
function set() which takes in an iterable data
type as an argument.

Examples of iterable data types to pass into the
set() function to create a set:

●​ string -> set of unique characters
●​ list -> set of unique values
●​ dictionary -> set of (unique) keys

Note: Dictionary keys are already unique, so
calling set() on a dictionary just gives you a set
of the keys in the dictionary!

Keep in mind that if you were to create an empty
set and tried to do new_set = {} the
computer is going to think that you are creating
an empty dictionary in Python!

SO in order to create an empty set in Python, do
new_set = set()!

To add an item to a set, use .add()!

Note that this function returns None because
the job of this function is to mutate the set, so it
doesn’t really need to return anything!

To remove an item from a set, use .remove()!

Note that this function returns None because
the job of this function is to mutate the set, so it
doesn’t really need to return anything!

To remove an item at random from a set use
.pop()!

Because there are cases we probably want that
element that gets removed, it makes sense that
this function returns that item!

If we want to get information about how two
different sets are related to each other, we can
use these built-in methods that allow us to do
“math” on these sets!

●​ union()
●​ intersection()
●​ difference()

You’ve probably seen these words before like
union, intersection, and difference when it
comes to VENN DIAGRAMS!

Sets are an unordered collection of unique
immutable values!

To mutate the set, we can use built-in set
methods like add(), remove(), pop()!

If we want to store data that is unique (and order
does not matter), we should use a set!

Using the set() method helps us to easily
identify and remove duplicates in iterable data
types!

TODOs
​ Project 1 (EXTRA CREDIT) - Multiplayer Blackjack!

○​ Due Wednesday at 4:00pm (end of my OH that day)!
​ Project 2 (pt. 1) - Search Engine

○​ Due next Monday at 11:59pm!
​ HW 7 - 2D Lists

○​ Due Friday!
​ Quiz 7 - Dictionaries, Sets

○​ This Friday!

​ Midterm Exam 2 - less than 2 weeks from today!

○​ It will cover EVERYTHING we have learned so far.

​ STEP Internship @ Google
○​ Applications open and close on !! Sep 30, 2024 Oct 25, 2024

■​ For 1st year and 2nd year students, applications will be available at
g.co/jobs/step!

■​ All of the available intern opportunities can be found at
google.com/students!

http://g.co/jobs/step
http://google.com/students

	Sets
	TODOs

