Name:	_Date:
Purpose:	
Hypothesis:	
Procedure:	
Materials:	
Oofst ::	
Safety:	

Name:	Date:
	Assignment: Answer the following questions in complete sentences using the information
from th	e lab handout to support your learning.
1.	Identify the manipulated, responding, and controlled variables in this investigation.
	a. Manipulated variable
	b. Responding variable
	c. Controlled variables
2.	How will the mass of the rolling bottle affect its speed when it collides with the plastic cup? (Hint : The bottle accelerates much like a falling body.)
3.	How do you expect the mass of the bottle to affect the distance the cup moves?
4	How is work related to the distance that the cun moves?

Name:	Date:
5.	State a hypothesis about how the kinetic energy of the rolling bottle affects the amount of
	work done on the cup and the distance the cup moves.

I				
		Volume of \	Nater (ml)	
	100 ml	200 ml	300 ml	400 ml
		Mass of Bottle	and Water (g)	
Distance Moved by Cup (cm)				
Trial 1				
Trial 2				
Trial 3				
Trial 4				
Trial 5				
Total Distance (cm)				
Average Distance (cm)				
Observations				•

Name:	e:Dat	e:
Calcula	lations and Graph:	
•	Use Google Sheets to create a graph of Mass of Bottle and Water Distance the cup moved on the y-axis .	on the x-axis and the
•	Determine the equation of the line and the slope of the line.	
	o Equation of the line:	
	Slope of the line:	
	laboratory Questions: Answer the following question in complete se	ntences using the data
trom the	he lab to support your answers.	
1.	a. What procedure was followed to make sure that the bottle woul speed each time it collided with the cup? Explain your answer.	d be moving at the same
	b. Does this method work? Explain your answer.	
2.	Why is it important that the bottle have approximately the same spewith the cup in order to measure the effect of mass on energy?	eed each time it collides

Name:	Date:
3.	As the mass of the bottle increased, what happened to the distance that the bottle moved the cup?
4.	Why did the cup eventually come to a complete stop? Explain.
5.	How was the distance that the cup moved related to the bottle's kinetic energy?
6.	Did your experimental results agree with your hypothesis about how the kinetic energy of the bottle affects the amount of work done on the cup? Explain your answer.

Name:	Date:
7.	This investigation assumes that the rolling bottle experiences only a small frictional force. How accurate is this assumption? Could this assumption affect the results of the investigation? Explain your answer.

8. In this investigation, you examined the relationship between the mass of a rolling bottle and its kinetic energy. Design a procedure to measure how the height of a ramp affects the kinetic energy of a bottle rolling down the ramp. Have your teacher approve your procedure before you carry out the investigation. Propose an explanation for what you find.