
Practice Session-07:- CI/CD with
GitLab

Make sure that you have already gone through Lab-06.

In this session you're going to learn the basic building blocks of the GitLab CI/CD pipeline
and create the CI/CD pipelines to automatically deploy your custom code on the k8s.

Understanding the communication among GitLab CICD, runneres and the registry.

Prerequisite
●​ Basic knowledge on Python, pandas library, csv file format
●​ Basic knowledge on YAML
●​ Familiar with Dockerfile
●​ Familiar with Git

https://docs.google.com/document/d/1KGTPdi1pI41cRYnWDoiZqkYx3lyjO6rW/edit

What are you going to do?

In the practice session, you will work with gitlab CI/CD. Using gitlab CI/CD, you're going to
create pipelines to deploy the flask web application using ansible and gitlab runner, when
code is modified. Further, you will work with image versioning and sync the images in the
deployment.

Exercise 1: Setting up of gitlab project and runners
In this exercise you will create a project and set up GitLab Runner and configure the runner, configure
pipeline, etc. In this lab we are going to use the flask application code from Lab 02 and k8s
deployment files and ansible playbooks from Lab 06.

1.1 Create a gitlab project and add necessary files

●​ Create a project in the gitlab with name prac07-gitlab-cicd under group

devops2023-fall/students/devops2023Fall-<lastname>-<studyCode>

●​ Clone the project to microk8scontroller VM and go to the project cd

prac07-gitlab-cicd

●​ Copy flask-app directory from prac02-docker (flask web application code

used in Lab 02). It should include the following files (!! Please don’t add venv- you

can delete it if needed)

○​ Dockerfile

○​ templates/home.html

○​ app.py

○​ requirements.txt

https://docs.google.com/document/d/1N3-SR6at9NAACqU1wtLHU1MNSr8IJpE6/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1KGTPdi1pI41cRYnWDoiZqkYx3lyjO6rW/edit#heading=h.gjdgxs

●​ Copy the flask_deployment.yaml, hosts.yaml and

flask-deployment-ansible.yaml from prac06-ansible (Lab 06 files)

and files should be copied outside the flask-app directory.

●​ The final directory of prac07-gitlab-cicd should look like

●​ Commit with the message “Added the required code and deployment files”

and push the code.

1.2 Installation and registration of Gitlab runners

In this task, we are going to set up a runner with shell as executor. The shell executor

based runner used for building the docker images and to deploy the application on the

kubernetes cluster using ansible.

●​ Make sure that you are logged in to your microk8scontroller VM.
●​ Install the gitlab-runner on k8s-controller virtual machine

○​ Add the gitlab runner package - curl -L
"https://packages.gitlab.com/install/repositories/runner
/gitlab-runner/script.deb.sh" | sudo bash

○​ Install the runner sudo apt-get install gitlab-runner
○​ Add the gitlab-runner to docker, microk8s group

■​ sudo usermod -aG docker gitlab-runner
■​ sudo usermod -aG microk8s gitlab-runner

●​ Get the token for Gitlab runner registration for shell runner
■​ Go to your prac07-gitlab-cicd Gitlab project
■​ Go to Setting --> CI/CD → Expand Runner
■​ Click on New Project Runner

●​ Platform(Operating systems)--> Linux
●​ Tags--> build,deploy
●​ Details--> shell
●​ Click on Create runner
●​ Now copy the command mentioned in Step 1

For example: sudo gitlab-runner register --url
https://gitlab.cs.ut.ee --token glrt-...sp

●​ Paste the command (make sure to use sudo) in microk8scontroller VM and it
asks for input as described below :

○​ Enter the GitLab instance URL: https://gitlab.cs.ut.ee/
○​ Enter a name for the runner: shell
○​ Enter an executor: shell
○​ Press enter and gitlab runner is registered

●​ Now you can see the registered runner in your gitlab account in Settings →
CI/CD → Runners

●​ You should see your registered runner: (If you see your runner without green symbol,
then run the command sudo gitlab-runner run shell in the
microk8scontroller VM)

1.3 Creating an access token and creating k8s secret for gitlab registry

●​ Next, we need to create an access token for authentication when reading and writing

to the GitLab container registry. This access token is required in later exercise, and

please note it down carefully (Note!! Please copy the access token and save it in a

text file at some place)

○​ Go to Settings→Repository→Depoy tokens and Expand it.

■​ Name: k8s

■​ Expiration date: Choose some date

■​ Username (optional): Your Gitlab Username

■​ Scopes (select at least one): read_registry,write_registry

■​ Click on Create deploy token

■​ Copy the access token and save it in a text file someplace.

●​ Create k8s secret for docker registry to access the gitlab registry in the

microk8scontroller VM using the command (Change the values of red coloured

marked text, YOUR_ACCESS_TOKEN is noted in the previous step). It would be nice

to copy the text file and modify it, before running the command.
microk8s kubectl create secret docker-registry

registry-credentials

https://gitlab.cs.ut.ee/

--docker-server=https://gitlab.cs.ut.ee:5050

--docker-username=YOUR_GITLAB_USERNAME

--docker-password=YOUR_ACCESS_TOKEN

--docker-email=YOUR_GITLAB_EMAIL_ID -n ex3

1.4 Check for the prerequisites in the microk8scontroller VM

●​ Make sure ansible is running ansible --version
●​ Make sure the influxdb database is running and have the data in weather_data

bucket
●​ Make sure influxdbdata pod is running
●​ Check your configmap (studhost) and secret (influx) are present and correct.

Exercise 2: Building your first pipeline
In this exercise, you're going to create the .gitlab-ci.yml CI file, a YAML file containing a
specific set of jobs, stages, tags, etc., for the GitLab CI/CD pipeline. For information on the
keywords used in this CI file can be found at https://docs.gitlab.com/ee/ci/yaml/
In this file, you define

●​ The structure and order of jobs that the runner should execute.
●​ The decisions the runner should make when specific conditions are encountered.

From now onwards, you will work most of the time in gitlab UI under the
project prac07-gitlab-cicd

At this point, you already have registered one GitLab runner.

Points to Remember,
1.​ In this exercise, you will very frequently commit the changes and push the code to

your repo (you may use Gitlab Web IDE to modify the files). How to find Gitlab Web
IDE is here:

https://gitlab.cs.ut.ee:5050
https://docs.gitlab.com/ee/ci/yaml/

2.​ At the end of this exercise, we may go through the commits history. So make sure

that you have followed and implemented each step one after another.
●​ After each commit, you can see pipeline status in CI/CD → Pipelines, as below

●​ Click on the Pipeline ID to see the list of Jobs. for example, when I click on Pipeline
ID #26789, I see the following list and status of jobs:

●​ Now, if you click on the job (e.g. job1 in the above figure), you can see the logs of

gitlab runner. For example, when I click on the above job1, I see the following output:

Note!! You will commit and push the code several times in further exercises.

Remember that, we may see the commit history while grading your submission. So, please
specify the commit messages as prescribed.
Let's move ahead and prepare our first pipeline.

2.1: Single stage pipeline
●​ Create .gitlab-ci.yml CI file (You may use GitLab UI/Web IDE to create this file) and

add only one stage stage-1 as below:

○​ Creating a file using Web IDE

●​ Here the first and only job is job1, which will run in stage-1 stage and tag is shell.
●​ Commit with the message “Added job-1 in stage-1” and push the above changes.

Commit using Web IDE

●​ See the newly created pipeline and job.(You can check how to see the pipelines

here)

2.2 : Lets print some predefined and custom variables
●​ To modify the .gitlab-ci.yml in further steps, you may use Pipeline Editor in GitLab

UI.

●​ Modify the script section and echo the following predefined variables:
○​ CI_JOB_STAGE
○​ CI_COMMIT_BRANCH
○​ CI_COMMIT_AUTHOR
○​ CI_COMMIT_DESCRIPTION
○​ CI_COMMIT_MESSAGE
○​ CI_CONFIG_PATH
○​ CI_JOB_NAME
○​ CI_JOB_ID
○​ CI_JOB_STATUS
○​ CI_PIPELINE_ID
○​ CI_RUNNER_ID

●​ To print a predefined variable, you can use the following command in script section:
○​ echo $<variable_name>
○​ E.g. echo $CI_JOB_STAGE
○​ Commit with the message “Printing predefined variables” and push the above

changes.

●​ To see all the available variables, you can use - export OR - env in the script
section.

●​ Define your own variables in the configuration file as below. This variable is
accessible to all jobs. Create the IMAGE_HUB as your custom variable (sample given in
the below figure)

●​ Add an echo statement to print the above IMAGE_HUB custom variable.
●​ Commit with the message “Printing the user defined variables inside .gitlab-ci.yml”

and push the above changes.
●​ The other way to define variables is by the use of the Variables feature in GitLab. The

Variables feature can be found in settings → CI/CD → Expand Variables. These
variables can be used in other pipelines as well.

○​ Add a variable ‘my_project_wide_variable’ with value <your_name> in settings →
CI/CD → Expand Variables.

○​ echo the variable in the pipeline under the script section.
●​ Create a variable to store the GitLab access token using Variable feature

○​ Add a variable gitlabpassword with value of access token created in Exercise
1

●​ Commit with the message “Printing the user variables” and push the above changes.

2.3 : Let the pipeline run on a specific gitlab-runner.
●​ At this moment, you have already registered your specific gitlab-runner with the tags

build and deploy.
●​ You will use the above tags to run your jobs in your runner in the k8s-controller VM.
●​ Modify the configuration file again, so that all the jobs will run in your specific runner.

​
●​ Commit with the message “Added the tags” and push the above changes.
●​ See the newly created pipeline and job.

2.4: Working with GitLab job artifacts, “before_script”, “script”, and
“after_script”

●​ Artifacts are used to specify which files to save as job artifacts. Jobs can output an
archive of files and directories. This output is known as a job artifact.

○​ Artifacts can be mentioned as shown below. Update your .gitlab-ci.yml file
as shown below

○​ Commit with the message “Added artifacts for job1” and push the above
changes.

○​ You can download your job artifacts, after the pipeline is executed

●​ The before_script, and after_script are used to define an array of commands

that should run before and after all the jobs under script tag,
○​ Add the code as shown below

https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html

○​ Commit with the message “Added before and after script references” and
push the above changes.

Exercise 3: Working with gitlab container registry

In this task, you modify the flask web application, create its docker image, and push it to the
gitlab container registry. Further, you are going to deploy it on k8s cluster.
In this step, we will prepare a flask web application. So at this point, you have a
flask-app/Dockerfile and flask-app/templates/home.html files in the gitlab project.

●​ Modify an home.html file inside /templates directory.
○​ Add (inside <body> tag) the following content to your html file to display the

message

“Hi I am <your_name> !! This is to demonstrate the
gitlab image build ”

●​ Now, you need to update the .gitlab-ci.yml file with two stages: build and run. At
this point, we can remove the previous stage stage-1

●​ Create an IMAGE_NAME variable with the value under variables.

○​ Here, name_space could be your gitlab project path
■​ Example,

devops2023-fall/students/devops2023fall-<lastname>-<st
udyCode>

○​ image_name could be prac07
○​ project_name could be prac07-gitlab-cicd

IMAGE_NAME: gitlab.cs.ut.ee:5050/<name_space>/<project_name>/<image_name>

Ex: IMAGE_NAME:
gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-oxxn-c18xx
39/prac07-gitlab-cicd/prac7

●​ Now let's create two jobs:
○​ build_image to build the image
○​ run_image to run the image

●​ Define build_image job in .gitlab-ci.yml file
This job should run in the build stage.
 Under script:

○​ Login to gitlab. Make sure that the gitlabpassword variable is defined in your
Gitlab project. (Change username poojara to your github username)
docker login -u poojara -p $gitlabpassword $CI_REGISTRY

○​ Build the docker image using Dockerfile present in the project directory.
docker build -t $IMAGE_NAME -f ./flask-app/Dockerfile ./flask-app

○​ Push the docker image to the container registry.
docker push $IMAGE_NAME

○​ Add the tags

The update .gitlab-ci.yml file should look similar to below. Below image is just for reference
purpose. ​

○​ Commit with the message “Added build_image job” and push the above
changes.

○​ Once the pipeline is executed, you should see the container image in the
gitlab registry.

○​ If you have errors in the job execution related to docker and gitlab runner,

than please make sure you executed the following commands in the
k8s-controller node

■​ sudo usermod -aG docker gitlab-runner
■​ sudo service docker restart

○​ If your pipeline failing due to error like this "dial tcp: lookup docker on
193.40.5.39:53: no such host", than please disable the shared runner in
Settings-->CICD-->Runners

●​ Defining run_image job in .gitlab-ci.yml file .

○​ This job should run in the run stage.
 ​ Under script:

■​ Add a command to run the ansible playbook with host.yaml file
ansible-playbook flask-deployment-ansible.yaml -i hosts.yaml

The updated .gitlab-ci.yml file after defining run_image job should look like below:

●​ Modify the flask_deployment.yml with two things mentioned as below

○​ Update image with value of $IMAGE_NAME Ex:image:
gitlab.cs.ut.ee:5050/devops2022-fall/students/shiva-labo7/prac07

○​ Add property imagePullSecrets under container spec which is required to
pull the image from gitlab repo and it should look like

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

○​
●​ Commit with message “added the run_image stage”and push above changes.
●​ See the newly created pipeline and jobs.
●​ Login and check the deployment running in microk8scontroller node using

command microk8s kubectl get po,svc -o wide -n ex3
●​ Get the nodePort address under service
●​ At the end, you should be able to see the web page at

http://microk8scontroller _EXT_IP:NODEPORT_ADDRESS
●​ If you don't see the change in the flask deployment with new pods and service, then

you can add command in ansible script to delete the existing deployment and re-run
the pipeline.(flask-deployment-ansible.yaml)

Screenshot - 1

Take a screenshot of a webpage and IP address are clearly seen.

Exercise 4: Working with image build versioning and
updating the application

In this task, you're going to update the flask web application to display the minimum and
maximum temperature values on the web page. Further, you learn about container image
versioning.Its not good practice to tag the images always with tag “latest” for every pipeline
execution. This is because, you may run in to the following problems

●​ If you re-execute an older CI job (or if you run the same CI job in multiple testing /
feature Git branches), the CI jobs will keep overwriting the latest tag. “latest” loses its

https://www.augmentedmind.de/2022/05/15/docker-image-tag-best-practices/

meaning. Your production environment will most likely become unstable if you
configure it to use the latest tag of your image.

●​ It would become impossible to use some older version of your image on purpose in
some of your deployments.

●​ To overcome this issue, you can use or tag the build version using GitLab CI/CD
environment variables mentioned below:

Git tag CI_COMMIT_TAG

Git commit SHA-256 hash CI_COMMIT_SHA

Shortened Git commit hash CI_COMMIT_SHORT_SHA

Git branch name CI_COMMIT_BRANCH

date + timestamp CI_JOB_STARTED_AT

unique build number CI_JOB_ID

4.1 : Modify the flask application
Now, let us modify the flask application code under directory flask-app in the gitlab project
and to modify/edit the code,you may use the gitlab Web IDE.

●​ Let us modify the app.py to calculate today’s minimum and maximum temperature

and add the code snippet should be added in app.py
○​ Import the datetime import datetime
○​ You can add the following code soon after this line

df=result[result.columns[4:]]

■​ Get today's date today = datetime.date.today()
■​ Extract the rows belongs to today data = (df['_time'].dt.date == today)
■​ Get the today’s data today_data = df[data]
■​ Get minimum temperature data minTemp = today_data['_value'].min()
■​ Get maximum temperature data maxTemp = today_data['_value'].max()

○​ Finally need to pass the minTemp and maxTemp values to html as shown
below (minTemp=minTemp, maxTemp=maxTemp)

○​ Add the duration, min value, and max value to the home.html file present in
/templates/home.html directory.
The final code look like

●​ Now, modify the templates/home.html to display min and max temp as shown below:

4.2 : Edit .gitlab-ci.yml file
Here basically you will update .gitlab-ci.yml to tag a container image while building.

●​ Update IMAGE_NAME: as IMAGE_NAME:
gitlab.cs.ut.ee:5050/<name_space>/<project_name>/<image_name>:$CI
_JOB_ID

●​ Example:
gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-xx-c
1xx9/prac07-gitlab-cicd/prac7:$CI_JOB_ID

○​ You may use different variables as image tag, e.g. $CI_COMMIT_SHORT_SHA
○​ You can use any of the gitlab environment variables to tag the image as mentioned in

the introduction of Exercise 4.
●​ Add one more variable as

RELEASE_IMAGE:
gitlab.cs.ut.ee:5050/<name_space>/<project_name>/<image_name>:latest

●​ Add two more lines under build_image’s script

●​ Commit the project with message as “Updated the app.py and home.html to display min, max

temp values”

4.3 : Checking the output of the flask application and container registry
●​ Once, you commit in 4.2 the pipeline is executed and you can see the build_image job output

in container registry as shown below

●​ You can check flask application running by using microk8scontroller external IP address and

NodePort address

http://gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-ontin-c18639/prac07-gitlab-cicd/prac7
http://gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-ontin-c18639/prac07-gitlab-cicd/prac7

●​ The final flask application output is displayed as:

If your unable to see the changes in the flask web application, than you can add the
command in flask-deployment-ansible.yaml to delete the deployment, for example:

Screenshot - 2

Take a screenshot of a webpage and IP address are clearly seen.

Try out!! (Not compulsory task):

You may also want to consider experimenting with the deployment of the
InfluxDB, InfluxDBData, and Flask microservice application for personal
exploration and learning. This isn't a formal requirement for the lab;
rather, it's an opportunity to explore these technologies for your own
interest and enjoyment.

 Deliverables

1- Gather all the screenshots

●​ Screenshot 1
●​ Screenshot 2

2- Download code of your GitLab project

3- Zip the code, screenshot and Upload the zip file to the
course wiki page.

4- You may Stop the Virtual Machines and you can start using
the same in the next practice session.

​ Don’t delete your VMs

	Practice Session-07:- CI/CD with GitLab
	Make sure that you have already gone through Lab-06.
	Prerequisite
	What are you going to do?
	Exercise 1: Setting up of gitlab project and runners
	1.1 Create a gitlab project and add necessary files
	1.2 Installation and registration of Gitlab runners
	1.3 Creating an access token and creating k8s secret for gitlab registry
	1.4 Check for the prerequisites in the microk8scontroller VM

	
	Exercise 2: Building your first pipeline
	2.1: Single stage pipeline
	2.2 : Lets print some predefined and custom variables
	2.3 : Let the pipeline run on a specific gitlab-runner.
	2.4: Working with GitLab job artifacts, “before_script”, “script”, and “after_script”

	Exercise 3: Working with gitlab container registry
	In this task, you modify the flask web application, create its docker image, and push it to the gitlab container registry. Further, you are going to deploy it on k8s cluster.

	Exercise 4: Working with image build versioning and updating the application
	4.1 : Modify the flask application
	4.2 : Edit .gitlab-ci.yml file
	4.3 : Checking the output of the flask application and container registry

	 Deliverables

