Practice Session-07:- CI/CD with
GitLab

Make sure that you have already gone through Lab-06.

In this session you're going to learn the basic building blocks of the GitLab CI/CD pipeline
and create the CI/CD pipelines to automatically deploy your custom code on the k8s.

Shared Runner

GitLab Registry
ocker

Private Runner
GitLab CI/CD

Pipeline

Understanding the communication among GitLab CICD, runneres and the registry.

Prerequisite

Basic knowledge on Python, pandas library, csv file format
Basic knowledge on YAML

Familiar with Dockerfile

Familiar with Git

https://docs.google.com/document/d/1KGTPdi1pI41cRYnWDoiZqkYx3lyjO6rW/edit

What are you going to do?

udent'sTab wor

8 (deployment with Gitlab CICD) _J
2! ¥
&
% Dpod
@? Weather_api -E g 5
o N aj° Data T
% S Acquis@tion g https://openweathermap.org
= @ sve Container 2| Push wegther data
2 3
P 3
] Flask PV: Weather data < . Weather
EI weba_pp I—) volume (student's 8 ety 7| data
8: container vol.) olum
S ~
é : s Docker Engine
-~ gitlab-runner - - --- -)‘ Ansible [K3S Kubernets
{ WM)i
{VMA: controller] { VM B: worker1][VM C: workerQ] |
[Student's VPC] { Course VPC } :
UT Private Cloud l :

In the practice session, you will work with gitlab CI/CD. Using gitlab CI/CD, you're going to
create pipelines to deploy the flask web application using ansible and gitlab runner, when
code is modified. Further, you will work with image versioning and sync the images in the

deployment.

Exercise 1: Setting up of gitlab project and runners

In this exercise you will create a project and set up GitLab Runner and configure the runner, configure
pipeline, etc. In this lab we are going to use the flask application code from Lab 02 and k8s
deployment files and ansible playbooks from Lab 06.

1.1 Create a gitlab project and add necessary files

e Create a project in the gitlab with name prac07-gitlab-cicd under group

devops2023-fall/students/devops2023Fall-<lastname>-<studyCode>

e Clone the projectto microk8scontroller VM and go to the project cd

pracO7-gitlab-cicd

e Copy flask-app directory from prac02-docker (flask web application code

used in Lab 02). It should include the following files (!! Please don’t add venv- you

can delete it if needed)

o

o

o

Dockerfile
templates/home.html

app.-py
requirements.txt

https://docs.google.com/document/d/1N3-SR6at9NAACqU1wtLHU1MNSr8IJpE6/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1KGTPdi1pI41cRYnWDoiZqkYx3lyjO6rW/edit#heading=h.gjdgxs

Copy the flask deployment.yaml, hosts.yaml and
flask-deployment-ansible.yaml frompracO6-ansible (Lab 06 files)
and files should be copied outside the flask-app directory.

The final directory of prac07-gitlab-cicd should look like
README . md
Dockerfile

app.py
requirements.txt

L— home.html
flask-deployment-ansible.yaml
flask-deployment.yaml
hosts.yaml

Commit with the message “Added the required code and deployment files”

and push the code.

1.2 Installation and registration of Gitlab runners

In this task, we are going to set up a runner with shel1l as executor. The shell executor

based runner used for building the docker images and to deploy the application on the

kubernetes cluster using ansible.

Make sure that you are logged in to your microk8scontroller VM.
Install the gitlab-runner on k8s-controller virtual machine
o Add the gitlab runner package - curl -L
"https://packages.gitlab.com/install/repositories/runner
/gitlab-runner/script.deb.sh" | sudo bash

o Install the runner sudo apt-get install gitlab-runner
o Add the gitlab-runner to docker, microk8s group
m sudo usermod -aG docker gitlab-runner
m sudo usermod -aG microk8s gitlab-runner
Get the token for Gitlab runner registration for shell runner
m Gotoyour pracO7-gitlab-cicd Gitlab project
m Goto Setting --> CI/CD » Expand Runner
m Clickon New Project Runner
e Platform(Operating systems)--> Linux
Tags--> build,deploy
Details--> shell
Clickon Create runner
Now copy the command mentioned in Step 1

For example: sudo gitlab-runner register --url
https://gitlab.cs.ut.ee --token glrt-...sp
Paste the command (make sure to use sudo)in microk8scontroller VM and it
asks for input as described below :
o Enter the GitLab instance URL: https://gitlab.cs.ut.ee/
o Enter a name for the runner: shell
o Enter an executor: shell
o Press enter and gitlab runner is registered
Now you can see the registered runner in your gitlab accountin Settings -
CI/CD = Runners
You should see your registered runner: (If you see your runner without green symbol,
then run the command sudo gitlab-runner run shell inthe
microk8scontroller VM)

Assigned project runners i

' @ #1252 (nACB5KHNX) 4k Remove runner [

shell I
! build deploy !

1.3 Creating an access token and creating k8s secret for gitlab registry

Next, we need to create an access token for authentication when reading and writing
to the GitLab container registry. This access token is required in later exercise, and
please note it down carefully (& Please copy the access token and save it in a
text file at some place)
o Go to Settings —» Repository — Depoy tokens and Expand it.

m Name: k8s

m Expiration date: Choose some date

m Username (optional): Your Gitlab Username

m Scopes (select at least one): read_registry,write_registry

m Click on Create deploy token

m Copy the access token and save it in a text file someplace.

Create k8s secret for docker registry to access the gitlab registry in the
microk8scontroller VM using the command (Change the values of red coloured
marked text, YOUR ACCESS TOKEN is noted in the previous step). It would be nice
to copy the text file and modify it, before running the command.

microk8s kubectl create secret docker-registry

registry-credentials

https://gitlab.cs.ut.ee/

—-—-docker-server=https://gitlab.cs.ut.ee:5050

--docker-username=YOUR GITLAB USERNAME
--docker-password=YOUR ACCESS TOKEN
-—docker-email=YOUR GITLAB EMAIL ID -n ex3

1.4 Check for the prerequisites in the microk8scontroller VM

e Make sure ansible is running ansible --version
Make sure the influxdb database is running and have the data in weather_data
bucket
Make sure influxdbdata pod is running
Check your configmap (studhost) and secret (influx) are present and correct.

Exercise 2: Building your first pipeline

In this exercise, you're going to create the .qit1an-ci.ym1 Cl file, a YAML file containing a
specific set of jobs, stages, tags, etc., for the GitLab CI/CD pipeline. For information on the

keywords used in this Cl file can be found at https://docs.qitlab.com/ee/ci/yaml/

In this file, you define

e The structure and order of jobs that the runner should execute.
e The decisions the runner should make when specific conditions are encountered.

From now onwards, you will work most of the time in gitlab Ul under the
pﬁﬂectjpraCO7—gitlab—cicd

At this point, you already have registered one GitLab runner.

Points to Remember,

1. In this exercise, you will very frequently commit the changes and push the code to
your repo (you may use Gitlab Web IDE to modify the files). How to find Gitlab Web
IDE is here:

https://gitlab.cs.ut.ee:5050
https://docs.gitlab.com/ee/ci/yaml/

P prac07-gitlab-cicd & O~ || trstr| o] ¥ros |0

Project ID: 3

- 3Commits § 18ranch <7 0Tags [7 KiB Project Storage

Added the required code and deployment files 59396056 | [

main ~ pracO7-gitlab-cicd / | 4+ ~ History Find fi »
[f] README Add LICENSE H Add CHANGELOG \ Add CONTRIBUTING \ | Enable Auto DevOps | ‘ Add Kubernetes cluster H Set up O VQ"E_" B 1 et o fres
i by edit muttiple files in your

| 8 Configure Integrations

Name Last commit Last update
B flask-app Added the required code and deployment files 2 hours ago
+ README.md nitial commit 2 hours ago
@ envlist Added the required code and deployment files 2 hours ago
B flask-deployment.yam Update file flask-deployment.yam 2 hours ago
A README.md

prac07-gitlab-cicd

2. Atthe end of this exercise, we may go through the commits history. So make sure
that you have followed and implemented each step one after another.
e After each commit, you can see pipeline status in c1/co - pipelines, as below

1

DevOps2023-Fall > Al Solutions-Internal > prac07-gitlab-cicd > Pipelines :

1

Al 4 Finished Branches Tags Clear runner caches | | Cllint | [EILESRTIS :

: P prac07-gitlab-cicd v T :
' [Filter pipelines Q| | Show Pipeline ID v 1
1 @ Project overview J 1
' '
1 1
1 X Pinned 2 Status Pipeline Triggerer Stages '
L} 1
1 Issues 0 1
' © passed Update file .gitlab-ci.ym| % Q’) . 1
k Merge requests 0 & 00 #26789 ¥ main o 22f6405d & Y = !
1 1 8 minutes ago latest 1
1 88 Manage v 1
L} 1
: Plan v ® failed Update file .gitlab-ciyml 53 oy :
1 & 000010 #26788 ¥ main © e76f70c0 & g 1
: <> Code v £ 12 minutes ago :
1 & Build N '
k ® eanceled Update file gitlab-ciyml @& ® Al !
.| Pipelines £2 12 mintes 200 #6787 ¥ main - 6b8bobca & - ~l e 1
1 . 1
' Jobs 1
L} 1

. . 32

I Pipeline editor O canceled Added job-1 in stage-1 32 ® I
' £ 13 minutes ago #26786 ¥ main o 90b972c8 &b w '
: Pipeline schedules :
L} 1
o a

e Click on the Pipeline ID to see the list of Jobs. for example, when | click on Pipeline
ID #26789, | see the following list and status of jobs:

& C B gitlab.cs.ut.ee/devops2023-fall/all-solutions/prac07-gitlab-cicd/-/pipelines/26789

DevOps2023-Fall » All Soluticns-Internal » pracO7-gitlab-cicd Pipelings . #26789

Update file .gitlab-ci.yml

P | prachi-gritab-cicd - (vJpassed poojara triggered pipeline for commit 22f6405d [& finished 10 minutes ago

[]'_ Project overview For main

» Blnned latest. €0 1.Jobs @ @ 15 seconds, queued for 4 secands
lssues 4] Pipeline MNeeds Jobs 1 Tests O
Merge requests 0

B8 Manage v

B Plan v

¢f> Code w

@ Build

I Pipelines

Jobs

Pipeline editor

Fipeline schedules

e Now, if you click on the job (e.g. iov1 in the above figure), you can see the logs of
gitlab runner. For example, when | click on the above job1, | see the following output:

DevOps2021 > students * lot-Usecase-Lab03-DevOps J:b:

Initialized empty Git repositery in /b
tf

From htt

* I

* [new branch]

I am inside the jobl job.

This job is i

Note!! You will commit and push the code several times in further exercises.

Remember that, we may see the commit history while grading your submission. So, please
specify the commit messages as prescribed.
Let's move ahead and prepare our first pipeline.

2.1: Single stage pipeline

e Create .git1ap-ci.ym1 Clfile (You may use GitLab Ul/Web IDE to create this file) and
add only one stage stage-1 as below:

I= Welcome X gitlab-ciyml X

.gitlab-ci.yml
variables:
IMAGE_HUB : gitlab.cs.ut.ee:5050/poojara/
stages:
- stage-1
jobl:
stage: stage-1
script:
- echa

Here the first and only job is jon1, which will run in stage-1 stage and tag is shei1.
Commit with the message “Added job-1 in stage-1” and push the above changes.
Commit using Web IDE

SOURCE CONTROL

Commit to ‘main’

v Changes

.gitlab-ci.yml|

I welcome

.gitlab-ci.yml
variables:
IMAGE_HUB :
stages:
- stage-1
jobl:

stage:

stage-1

gitlab-ciyml X

gitlab.cs.ut.ee:5050/poojara/

script:

e See the newly created pipeline and job.(You can check how to see the pipelines
here)

2.2 : Lets print some predefined and custom variables

e To modify the .git1an-ci.ym1 in further steps, you may use Pipeline Editor in GitLab
ul.

& _gitlab-ciyml [} 152bytes

stages:

- echo "I am in job"
- echo "This job is jobl"
- echo $CI_J0B_STAGE

Edit in pipeline editor n Replace | Delete B

e Modify the script section and =cno the following predefined variables:
Cl_JOB_STAGE
CI_COMMIT_BRANCH
CI_COMMIT_AUTHOR
CI_COMMIT_DESCRIPTION
CI_COMMIT_MESSAGE
CI_CONFIG_PATH
Cl_JOB_NAME
CI_JOB_ID
Cl_JOB_STATUS
CI_PIPELINE_ID
o CI_RUNNER_ID
e To print a predefined variable, you can use the following command in scripc section:

o O O 0O 0O 0O o O o0 ©°O

O echo $<variable name>

o E.g.echo scT J0B STAGE
Commit with the message “Printing predefined variables” and push the above
changes.

e To see all the available variables, you can use - cxport OR - env in the script
section.

script:
- echo "I am inside the jobl job."

- echo "This job is inside stage-1 stage."
- export

Define your own variables in the configuration file as below. This variable is
accessible to all jobs. Create the rvzce #us as your custom variable (sample given in
the below figure)

variables:
IMAGE HUB: gitlab.cs.ut.ee:5858/poojara/

stages:
- stage-1
jobl:
stage: stage-1
script:
- echo "I am in job"
- echo "This job is jobl™
11 - echo $IMAGE_HUB

Add an <cho statement to print the above 1vzce rus custom variable.
Commit with the message “Printing the user defined variables inside .gitlab-ci.yml”
and push the above changes.
The other way to define variables is by the use of the varianies feature in GitLab. The
variables feature can be found in settings —» c1/co - Expand variznies. These
variables can be used in other pipelines as well.

o Add a variable ‘myi;crojectiwideivariable’ with value <your name> in settings —

CI/CD — Expand Variables.

o echo the variable in the pipeline under the script section.

Create a variable to store the GitLab access token using Variable feature

o Add a variable git1abpassword with value of access token created in exercise
1

Commit with the message “Printing the user variables” and push the above changes.

: Let the pipeline run on a specific gitlab-runner.

At this moment, you have already registered your specific gitlab-runner with the tags

build and deploy.

You will use the above tags to run your jobs in your runner in the k8s-controller VM.

Modify the configuration file again, so that all the jobs will run in your specific runner.
= 0O I_-' 1 -

_ build

Commit with the message “Added the tags” and push the above changes.
See the newly created pipeline and job.

2.4: Working with GitLab job artifacts, “before_script”, “script”, and
“after_script”

e Artifacts are used to specify which files to save as job artifacts. Jobs can output an
archive of files and directories. This output is known as a job artifact.
o Artifacts can be mentioned as shown below. Update your .git1ab-ci.ym1 file
as shown below

gitlab-cLym
variables:
IMAGE_HUB : gitlab.cs.ut.ee:5050/poojara/
stages:
- stage-1
jobl:
stage: stage-1
script:
o "I am inside the jobl job"
0 "This job is insi
_HUB=\"$(
2 ariables.[txt
artifacts:
paths:
| - variables.ftxt|

o Commit with the message “Added artifacts for job1” and push the above
changes.
o You can download your job artifacts, after the pipeline is executed

Job job1 triggered just now by &8 poojara job1 i)

Search job log | ¢ Duration: 16 seconds

Finished: just now

Running with gitlab-runner 12.7.1 (003fe500)
on Docl Docker r6pdcx67
Using Docke tor with image docker:stable ...

Pulling docker image docker:stable

Queued: 0 seconds

Timeout: 1h (from project) @
Runner: #15 (rép4cx67) Docker-in-
Docker

Using dox sha256: be757c55a1fd 8fd34dde3e12bd25f68094dd69546 cF5ca@ddbaa7a33 for
Runni. r6pAcx67-project-1928-concurrent-@ via gitlab.cs.ut.ee.novalocal. ..

Job artifacts

These artifacts are the latest. They will

Reinitialized existing Git repository in /builds/devops2022-fall/students/shiva-labo7/.git/ ot be deleted (even if expired) unti

From https://gitlab.cs.ut.ee/devops20822-fall/students/shiva-labo7 newer artifacts are available.
* [new ref] refs/pipelines/15252 -> refs/pipelines/15252

355af6a..5f25ada main -> origin/main Keep Browse
Removing variables. txt Commit 525adad [

Update gitlab-ciyml file
I am inside jobl job

(© Pipeline #15252 for main (2

This job inside stage-1 stage stage-1 e

- @jobl

variables. txt: found 1 matching files

Uploading artifacts to coordinator... ok id=25447 responseStatus=201 Created token=mXKbxKax

e The before script, and arter script are used to define an array of commands
that should run before and after all the jobs under script tag,
o Add the code as shown below

https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html

variables:
IMAGE_HUB: gitlab.cs.ut.ee:5858/poojara/

stages:
- stage-1
jobl:
stage: stage-1
before_script:

- echo "Execute this command before any 'script:' commands.”

script:

- echo "I am inside jobl job"

- echo "This job inside stage-1 stage"

- echo "IMAGE_HUB=\"$(echo $IMAGE_HUB)\"" »>> variables.txt

- echo "BRANCH=\"$(echo $BRANCH)\"" »> variables.txt
after_script:

- echo "Execute this command after any 'script:' commands."”
artifacts:

paths:

- variables.txt

o Commit with the message “Added before and after script references” and
push the above changes.

Exercise 3: Working with gitlab container registry

In this task, you modify the flask web application, create its docker image, and push it to the
gitlab container registry. Further, you are going to deploy it on k8s cluster.

In this step, we will prepare a flask web application. So at this point, you have a
flask-app/Dockerfile and flask-app/templates/home.html files in the gltlab pl'OjeCt.

e Modify an nome.ntmi file inside /tenpiates directory.
o Add (inside <body> tag) the following content to your html file to display the
message

‘Hi I am <your name> !! This is to demonstrate the

gitlab image build”

e Now, you need to update the .gitian-ci.ym1 file with two stages: vuiid and run. At
this point, we can remove the previous stage stage-1

- run

e Create an 1vzce nzue variable with the value under variables.
o Here, nane space could be your gitlab project path
m Example,

devops2023-fall/students/devops2023fall-<lastname>-<st
udyCode>

O image name could be prac07

O project name could be pracO7-gitlab-cicd

IMAGE NAME: gitlab.cs.ut.ee:5050/<name space>/<project name>/<image name>

Ex: IMAGE NAME:
gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-oxxn-cl8xx
39/prac07-gitlab-cicd/prac?

Now let's create two jobs:
o build image to build the image
o run image to run the image
Define build image JOb in .gitlab-ci.yml file
This job should run in the vuiia stage.
Under script:
o Login to gitlab. Make sure that the git1avpasswora variable is defined in your

Gitlab project. (Change username poojara to your github username)
docker login -u poojara -p Sgitlabpassword $CI REGISTRY

o Build the docker image using nockersile present in the project directory.
docker build -t $IMAGE NAME -f ./flask-app/Dockerfile ./flask-app

o Push the docker image to the container registry.
docker push S$IMAGE NAME

o Add the tags

The update .cit1ab-ci.ynl file should look similar to below. Below image is just for reference
purpose.

-gitlab-ciyml
variables:
IMAGE_HUB : gitla
\ IMAGE_NAME : git .) [3 11/students/devops2023fal /p itlab-cicd/prac@7

stages:
- build
- run

build_image:
stage:

- build

o Commit with the message “Added build_image job” and push the above
changes.

o Once the pipeline is executed, you should see the container image in the
gitlab registry.

Package Registry

| ontainer Registy

o T e e e e e @ = e -
1
v D+ Q& Al Sol prac07-gitlab-cicd > Container Registry :
1
D1 3! 1 . .
| Container Registry Cli Commands v [ES3N
. o B
1 L&) prachi-gitlab-cicd < 1image repository (© Cleanup is not scheduled '
1 @ Project overview '
| . 5 [
! % Pinned A ter re Q| | Updated v [4=|
1
: Issues 0 !
1
1
| Merge requests 0 «++) prac07-gitlab-cicd/prac07 [(6 ,
1) 1
tag
1 85 Manage v '
! '
' Plan v 1
' 1
! <> Code v 1
! '
1
1 & Build v !
!]
1 O Secure v '
L 1
k Deploy A '
1
! '
1 Releases :
' 1
1 Feature flags :
I
' :
' 1
!]
! '
L 1
' 1
-

o If you have errors in the job execution related to docker and gitlab runner,
than please make sure you executed the following commands in the
k8s-controller node

m sudo usermod -aG docker gitlab-runner
m sudo service docker restart

o If your pipeline failing due to error like this "dial tcp: lookup docker on
193.40.5.39:53: no such host", than please disable the shared runner in
Settings-->CICD-->Runners

° Defining run_image JOb in .gitlab-ci.yml file .

o This job should run in the run stage.
Under script:
m Add a command to run the ansible playbook with host.yaml file

ansible-playbook flask-deployment-ansible.yaml -i hosts.yaml

The updated .git1an-ci.ym1 file after defining run inace job should look like below:

run_image:
stage: run
script:
- a ok f 1t-ansible

tags
- deploy

e Modify the flask deployment.yml with two things mentioned as below

o Update image with value of $IMAGE NAME Ex:image:
gitlab.cs.ut.ee:5050/devops2022-fall/students/shiva-labo7/prac07

o Add property imagePullSecrets under container spec Which is required to
pull the image from gitlab repo and it should look like

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

containers:

- name: myfl
image: gitlak N: p/ -fall/all-solutions
imagePullPolicy

ports:
- containerPort: 5000
env:
- name: INFLUX_HOST_ADD
valueFrom:
configMapKeyRef:
name:
key:
name: INFL
value: "UT_
name: INFLUX
valueFrom:
secretKeyRef:
name: influx
key:
imagePullSec
=-name: re

Commit with message “added the run_image stage”and push above changes.
See the newly created pipeline and jobs.
Login and check the deployment running in microk8scontroller node using
command microk8s kubectl get po,svc -o wide -n ex3
Get the nodePort address under service

e At the end, you should be able to see the web page at
http://microk8scontroller _EXT_IP:NODEPORT_ADDRESS

e If you don't see the change in the flask deployment with new pods and service, then
you can add command in ansible script to delete the existing deployment and re-run
the pipeline.(flask-deployment-ansible.yaml)

- name: Delete the deployment by running the kubectl command if 1t exists
command: "microk8s kubectl delete -f flask-deployment.yaml"

- name: create the deployment by running the kubectl command
command: "microk8s kubectl create -f flask-deployment.yaml"

Screenshot - 1

Take a screenshot of a webpage and IP address are clearly seen.

Exercise 4: Working with image build versioning and
updating the application

In this task, you're going to update the flask web application to display the minimum and
maximum temperature values on the web page. Further, you learn about container image
versioning.lts not good practice to tag the images always with tag “latest” for every pipeline
execution. This is because, you may run in to the following problems
e If you re-execute an older ClI job (or if you run the same ClI job in multiple testing /
feature Git branches), the CI jobs will keep overwriting the latest tag. “latest” loses its

https://www.augmentedmind.de/2022/05/15/docker-image-tag-best-practices/

meaning. Your production environment will most likely become unstable if you
configure it to use the latest tag of your image.

e |t would become impossible to use some older version of your image on purpose in
some of your deployments.

e To overcome this issue, you can use or tag the build version using GitLab CI/CD
environment variables mentioned below:

Git tag CI_COMMIT TAG
Git commit SHA-256 hash CI_COMMIT_SHA
Shortened Git commit hash CI_COMMIT_SHORT SHA
Git branch name CI_COMMIT_BRANCH
date + timestamp CI _JOB_STARTED AT
unique build number CI_JOB_ID

4.1 : Modify the flask application

Now, let us modify the flask application code under directory f1ask-app in the gitlab project
and to modify/edit the code,you may use the gitlab Web IDE.

Devops 2022 fall > Students > shiva-labo?

main shiva-labo7 / webapp-flask / app.py Find file | | Blame | | History | | Permalink
3? Update webapp-flask/app.py @ 7616973 | [
W% poojara authored 6 hours ago

@ app.py [& 140k Open in Web IDE Replace | Delete | | & B | &
from flask import Flask, render_template, send_file, make_response, url_for

from flask import Response

import datetime

import pandas as pd

impe

impe

ort
ort
ort
import

df = pd.read_csv("C02.csv",error_bad_lines=False)

app = Flask(__name_)

and add the code snippet should be added inapp.py
o Import the datetime inport datetime
o You can add the following code soon after this line

df=result[result.columns[4:]]

Get today's date today = datetime.date.today ()

Extract the rows belongs to today data = (df[' time'].dt.date == today)
Get the today’s data today data = df[data]

Get minimum temperature data minTemp = today data[' value'].min()
Get maximum temperature data maxTemp = today data[' value'].max ()

o Finally need to pass the minTemp and maxTemp values to html as shown
below (minTemp=minTemp, maxTemp=maxTemp)

def GKQ):
return render_template('home.html',

PageTitle = "weather", table=[df.to_html(classes='data', index = False)], titles=df.columns.values,

o Add the duration, min value, and max value to the nome.ntn file presentin
/templates/home.html directory.
The final code look like

e Now, modify the ccmplates/none.hem1 to display min and max temp as shown below:
<h2>Today's minimum temperature:{{minTemp}}<hi>

<h2>Today's maximum temperature:{{maxTemp}}<hl>

4.2 : Edit .gitlab-ci.yml file

Here basically you will update .gitlab-ci.yml to tag a container image while building.

e Update IMAGE_NAME: as IMAGE NAME:
gitlab.cs.ut.ee:5050/<name space>/<project name>/<image name>:$CI
~JOB_ID

e Example:
gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-xx-c
1xx9/pracO07-gitlab-cicd/prac7:$CI JOB ID

o You may use different variables as image tag, e.g. $CI_ COMMIT_SHORT_SHA
o You can use any of the gitlab environment variables to tag the image as mentioned in
the introduction of Exercise 4.

e Add one more variable as
RELEASE_IMAGE:
gitlab.cs.ut.ee:5050/<name space>/<project name>/<image name>:latest

e Add two more lines under build_image’s script

NAM ELEASE_IMAGE

e Commit the project with message as “Updated the app.py and home.html to display min, max
temp values”

4.3 : Checking the output of the flask application and container registry

e Once, you commit in 4.2 the pipeline is executed and you can see the build_image job output
in container registry as shown below

Interna ontainer Registry / prac0?
prac07
T Cleanup disabled % Created Oct 23, 2023 14:45

Q Name v | iz

3 tags

7af49953 [13 Published 5 minutesago |
1M stbc79s2f

€757e343 (3 (oo Published 3 minutes ago

e You can check flask application running by using microk8scontroller external IP address and
NodePort address

http://gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-ontin-c18639/prac07-gitlab-cicd/prac7
http://gitlab.cs.ut.ee:5050/devops2023-fall/students/devops2023fall-ontin-c18639/prac07-gitlab-cicd/prac7

e The final flask application output is displayed as:

r
' & C A Notsecure | 172.17.88.243:30446 1
1

EHi I am Shivananda Poojara !! This is to demonstrate the gitlab image build

1P address:172.17.88.243 :

1 1
1 Today's minimum temperature:274.22
E Today's maximum temperature:275.29 '

\ Weather data of Tartu City from Student Database! ,

1
1 _time||_value| field| measur i 1

‘
1 2023710 24 14:16:20-00:00]275 20 temp [weather [Tart :
! [2023-10-24 14-26:20+00:00]274 98 remp [weather [Tartu !
1 [2023-10-24 14:36:20-00:00]274.59]temp [weather [Tar '
1 [2023-10-2 13:36:21-00:00274 22 emp [weather [Tar i
1 [2023-10-24 14:56:21+00:00[274 22temp [weather [Tartu ,
' '

'

If your unable to see the changes in the flask web application, than you can add the
command in flask-deployment-ansible.yaml to delete the deployment, for example:

[¢] @ gitlab.cs.ut.ee/-/ide/project/devops2023-fall/all-sclutions/prac07-gitlab-cicd/edit/main/-/

EXPLORER flask-deployment-ansible.yaml X

~ PRACO7-GITLAB-CICD flask-deployment-ansible.yaml

- name
host
gath
become: true
become_user: gitlab-runner

- name: Creating
command: "micr f flask-deployment.yaml"

Screenshot - 2

Take a screenshot of a webpage and IP address are clearly seen.

Try out!! (Not compulsory task):

You may also want to consider experimenting with the deployment of the
InfluxDB, InfluxDBData, and Flask microservice application for personal
exploration and learning. This isn't a formal requirement for the lab;
rather, it's an opportunity to explore these technologies for your own
interest and enjoyment.

Deliverables

1- Gather all the screenshots

e Screenshot 1
e Screenshot 2

2- Download code of your GitLab project

3- Zip the code, screenshot and Upload the zip file to the
course wiki page.

4- You may Stop the Virtual Machines and you can start using
the same in the next practice session.

Don’t delete your VMs

	Practice Session-07:- CI/CD with GitLab
	Make sure that you have already gone through Lab-06.
	Prerequisite
	What are you going to do?
	Exercise 1: Setting up of gitlab project and runners
	1.1 Create a gitlab project and add necessary files
	1.2 Installation and registration of Gitlab runners
	1.3 Creating an access token and creating k8s secret for gitlab registry
	1.4 Check for the prerequisites in the microk8scontroller VM

	
	Exercise 2: Building your first pipeline
	2.1: Single stage pipeline
	2.2 : Lets print some predefined and custom variables
	2.3 : Let the pipeline run on a specific gitlab-runner.
	2.4: Working with GitLab job artifacts, “before_script”, “script”, and “after_script”

	Exercise 3: Working with gitlab container registry
	In this task, you modify the flask web application, create its docker image, and push it to the gitlab container registry. Further, you are going to deploy it on k8s cluster.

	Exercise 4: Working with image build versioning and updating the application
	4.1 : Modify the flask application
	4.2 : Edit .gitlab-ci.yml file
	4.3 : Checking the output of the flask application and container registry

	 Deliverables

