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1. Introduction  
One major topic of computer architecture is strategies to improve performance for 

general-purpose processors. The execution time of a program is determined by the following 
equation: where i denotes the instructions in total, cpi denotes the cycles per 𝑇 = 𝑖 × 𝑐𝑝𝑖 × 𝑡
instruction, and t denotes cycle time. Our goal is to improve the performance by reducing t and 
maintaining a cpi of approximately 1. The cycle time of the processor is determined by the 
critical path so one effective way to break the critical path into balanced stages is to insert 
registers in between, also known as pipelining. We intend to divide the well-known 5-stage 
processor further based on datapath characteristics and therefore achieve superpipelining. One 
rudimentary example discussed was splitting the M/memory stage into 2 stages, M0 and M1. 
Since memory operations take a long time due to the cache/memory delay, the critical path can 
be shortened and clock frequency can be raised, and throughput can be greatly improved as a 
result. 

 On the other hand, superscalar and VLIW processors exploit instruction-level parallelism 
and decrease cpi by running multiple instructions in parallel. In theory, a superpipelined design 
that doubles its pipeline stages and a superscalar design that issues two commands can both 
achieve a throughput two times higher than a normal pipelined processor under ideal conditions 
(no hazards/dependencies). However, superscalar and VLIW have their disadvantages. 
Superscalar processors need to either replicate their hardware units or limit how instructions can 
be combined to be processed in parallel. VLIW processors have multiple instructions in one 
word for different functional units but compilers have to decide that at compile time. If the 
program cannot be broken into parallel instructions that operate on different function units, the 
parallelism is rendered useless and much of the code size is wasted. Also, both suffer from 
dependencies between instructions as well as extra logic required for those dependencies and 
require extra help from smart compilers. They also lack extensibility and compatibility as 
increasing the level of parallelism means having to alter the machine code for the same program. 
Therefore, we believe that superpipelining is our best approach to improve performance.  

 After deciding on superpipelining, we start measuring how throughput is affected by the 
number of stages. Compared to the simple single-cycle processor, our baseline, a bypassing 
5-stage pipelined processor, divides the main datapath into five stages: fetch, decode, execute, 
memory, and writeback, and thus reduce the critical path. However, as we increase the number of 
stages, we need to take care of more hazards caused by the dependencies among stages as they 
cause stalling or squashing, increasing the cpi and decreasing the processor performance. In 
response, we developed direct, unit and random tests to make sure each instruction works and 
then a sequence of mixed instructions to examine our processor under a variety of hazards. 

Now we see the increase in the number of stages helps us reduce the cycle time by 
reducing the critical path and eventually improve program execution time, a question arises: 
what is the optimal number of stages for a pipelined processor? This question involves the 
exploration of the relationship between the number of stages and the number of hazards that 
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cannot be solved by bypassing. Under such motivation, our team decides to explore the 
super-pipelined processor capable of running the tinyRV2 instruction set as our alternative 
design. We apply the same tests from baseline design and develop specific tests to examine the 
newly emerged hazards. 

As discussed in section II, we will use Fan-out of 4 (FO4) delay as a standard time unit to 
measure the propagation delay of our critical path so we can study our processors regardless of 
technology constraints. We will calculate FO4 delay for both of our designs and examine the 
difference. FO4 delay is also used to measure the processor cycle time trend across history so we 
can compare our designs with others by adopting this standardized unit.  
 

1.​  
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2. FO4 Spice Simulation  
To measure the propagation delay of a path, we use the propagation delay of a minimum 

size inverter (3RC) as a relative delay unit. Similarly, to reduce the critical path length and build 
a high-frequency superpipelined processor, we need a unit that makes our processor cycle time 
comparable to processors built with different technologies. In this section, we introduce a 
technology-agnostic metric: Fan-out of 4 (FO4) delay.  

For most technologies, the optimal fanout of buffers driving large loads is generally 
between 2.7 to 5.3, which makes FO4 a good delay measurement unit as tools try to select gates 
that fit into the fanout range. As a delay metric, one FO4 is the delay of an inverter, driven by an 
inverter four times smaller, and driving an inverter four times larger. Both conditions are 
necessary since the rise and fall time of the input signal affect the delay as well as the output 
load. The FO4 delays of various technologies are shown in figure 1. 
 

 
Figure 1: FO4 Delay Characteristics for a Variety of Processes (Weste and Harris p.312 Table 8.5) 

 
To estimate the FO4 delay of the NanGate 45nm standard-cell library we are using, we 

used ngspice to simulate the inverter circuit. To gain more understanding of the characteristics of 
nMOS and pMOS, we first built our own inverters with nMOS and pMOS in the first spice deck. 
We created a scaling factor so transistor sizes can be expressed as multiples of the minimum 
width of an NMOS transistor. Since the nMOS of INV_X1 in the standard cell library has a 
width of 415nm and a length of 50nm, we used a scale factor such that a width of 1 is equal to 
450nm and the length is approximately 0.1 unit. To get a fanout of 4, we used a parameter H=4 
to increase the width of the inverter. In this model, we used 5 inverters, each 4 times larger than 
the inverter before it in the path. As seen in figure 2, the first two inverters shape the input 
waveform, the third one is used for the FO4 delay measurement, and the last two are loads of the 
path. Using transient analysis, we measured the rising and falling edge propagation delay and 
average these two to get an inverter FO4 delay of 16.74ps.  
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Figure 2: FO4 Simulation Model (Inverter built with nMOS and pMOS, Weste and Harris p.295 Fig. 8.9) 

 

 
Figure 3: ngspice Waveform (Inverters built with nMOS and pMOS) 

 

 
Figure 4: ngspice Transient Analysis (Inverters built with nMOS and pMOS) 

 
As we use cells from the NanGate 45nm library when pushing our designs through the 

ASIC flow, we also built another spice stack using standard inverter cells. Since there are only 
inverters of size X1, X2, X4, X8, X16, and X32, we used INV_X1, INV_X4, and INV_X16 to 
build a three-stage path with the first inverter shaping the input, the second as the device under 
test, and the third as the load. By inspecting the library we find both standard cells and standard 
cells with parasitic delays. Comparing results in figure 4, figure 5, and figure 6, we conclude that 
the standard cell library includes optimizations on the layout as well as the relative sizes of 

6 



nMOS and pMOS transistors so it has a smaller FO4 delay. By adding parasitic delay to the 
standard cell, the model more accurately reflected the delay which is longer than the ideal model. 
Our estimated FO4 is slightly below the FO4 delay of the IBM 65nm process, which is very 
reasonable. 

 

 
Figure 5: ngspice Transient Analysis (Inverters from stdcells.spi) 

 
Figure 6: ngspice Transient Analysis (Inverters from stdcells-lpe.spi) 

 
The FO4 delay gives us a relatively accurate metric to assess how well our superpipelined 

processor divides the stages. According to Hrishikesh et al. [4], the optimal depth for each 
pipeline is 6-8 FO4 delays. Our baseline 5-stage bypassing processor has a cycle time of 1.2ns, 
which is around 82 FO4 delays. By comparing with other processors of different technologies 
and eras in figure 7, we find our baseline processor at a similar position as the Power/PowerPC 
processor in 1994, which also had about five stages. The FO4 delay provides a metric for 
processor cycle time and helps us set goals and evaluate performance of our superpipelined 
processor optimization. 

 
Figure 7: Microprocessor Cycle Time Trends (Weste and Harris p.175 Fig 4.38)
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3. Baseline Design 
The baseline design focuses on implementing a five-stage pipelined processor with 

hardware stall and bypass to handle data hazards. One of the most important features of the 
processor design is the separation of the datapath and control unit: such implementation 
corresponds to the actual separation between microarchitecture and ISA. Control unit translates 
the program into hardware language - signals and datapath understands the instruction semantics 
and performs the executions. We can easily change the instructions and control tables without 
changing the datapath design - a strategy creating an interface between software and hardware 
and ensures the safety of the design. This baseline design is a good start for alternative design 
since this  five-stage pipelined processor divides the stages in a somewhat balanced manner, 
based on datapath characteristics and state functionality. 
 

3.1 Datapath 
As shown in ​Figure 8,​ the datapath is split into five stages: fetch, decode, execution, 

memory, and writeback. Right before the fetch stage, the program counter (PC) is sent to 
instruction memory. There is an imem drop unit if the requested instruction is not used, which 
happens due to a squash. Fetch stage increases the PC and reads the instruction pointed by the 
PC in the memory. A PC mux is used to select multiple PC targets, which can be generated from 
a branch or a jump. In the decode stage, instruction fetched in the previous cycle is sent to the 
control unit, which will interpret the 32-bit instruction into different control signals and send 
them back to the datapath; besides, the decode stage is also responsible for sending input data 
into the arithmetic logic unit (ALU) and the multiplier. The execution stage takes input from the 
decode stage, executes the instruction with ALU or multiplier, and outputs the data to the next 
stage; memory request is also sent if needed by the instruction. In the memory stage, memory 
response data is sent from the memory and the control unit sends the signal to decide whether to 
use memory data or use ALU data. The last stage, write back stage writes data into the register 
file, and whether the stage is useful depends on the instruction type.  

Between pipeline stages there exist registers. They store the results of each stage and pass 
it onto the next stage if there are no stall signals. If there are they will hold the values until the 
stall is finished. These registers are critical as they are how we make a single-cycle processor 
into a pipelined processor. 
 

3.2 Control Unit 
As illustrated in the previous paragraph, the control unit determines all the signals that 

select mux inputs and controls pipeline register timing. The most important part, the decode 
stage, defines a control table that interprets instructions into signals and outputs them to the 
datapath. These signals include mux control signals, register enable signals, and data type 
signals. These different signals are passed to different stages accordingly, which maximizes the 
processor’s performance. Another important function of the control unit is to issue stall and 
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Figure 8: Baseline Processor Datapath 

(https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-lab2-xcel.pdf)
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squash signals to avoid data hazards. With all the signals interpreted by the control unit, it is easy 
to know what instructions are being executed in different stages so that we can implement stall 
and squash signals to prevent the pipeline from proceeding until data hazards are resolved. 
 

3.3 Implementation Details 
As we are following the Tiny RISC-V 2 processor ISA, we implemented 34 instructions 

that the processor supports by taking an incremental approach. The first set of instructions that 
we implemented is the register-register type instructions: add, mul, and, or, xor, slt, sltu, 
sra, srl, sll. For those instructions, we declared new ALU function types in the D stage and 
added them to the control table. The difference between those instructions is their ALU function 
type. However mul is very different. We had to add an execute result mux in the X stage. This 
mux can select from PC increment output, ALU output, or the single stage multiplier output. We 
also had to set the multiplier request and response in the control table for stall and squash signals. 
The second set of instructions we implemented is the register-immediate type instructions: 
addi, andi, ori, xori, slti, sltiu, srai, srli, slli, auipc. Those instructions are 
very similar to their corresponding register-register instructions except that they use immediate 
for operand 2 mux selection and have an immediate type select.  

The third set of instructions we implemented is the memory instructions lw and sw. Load 
and store involves sending memory request messages and waiting for memory responses in the 
M stage. Memory access address is calculated in the X stage. If it is a sw instruction, data is read 
from the register and passed into the memory request message; otherwise if it is a lw instruction, 
we send a read type memory request and wait for the data from the memory response. The fourth 
set of instructions we implemented is the jump instructions jal and jalr. In the F stage, the 
PC selection logic is designed such that if a jump instruction is interpreted in D stage, we would 
use the PC from D stage. In the D stage, we first declare the new jump types, and then we check 
if the instruction is jal to redirect the PC if necessary. For jalr instructions, we calculate the 
target branch in the X stage with a new ALU function. If instruction is jalr, we need to use the 
jalr target as the next PC. The fifth and final set of instructions we implemented is the branch 
instructions: bne, beq, blt, bltu, bge, and bgeu. We first declare those branch types in D 
stage and fill the control table accordingly. Then we check if the branch is taken in the X stage 
and redirect the PC if it is taken.  

Some efforts are put into creating correct stall, squash, and bypass logics to handle 
hazards that appear in a pipelined processor, including read-after-write data hazard and control 
hazard brought by branch and jump instructions. Bypassing allows us to avoid hazards without 
having to stall for every single instruction; as a result, the overhead for load-use data hazard 
becomes only one cycle. We only have to stall for load word instruction since the data needed to 
be bypassed is ready at M stage instead of D stage, so the load-use latency is two cycles.  
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As bypassing data is used to replace the original data output of the register file and we 
still want the immediate and the PC signals to be potential operands for the ALU unit, we choose 
to place the bypassing muxes between the register file and the select mux for its corresponding 
operand. Each bypass mux has four inputs, outputs from the bypassing paths of X, M and W 
stage and the output of the register file. The output of each bypass mux is connected to an input 
of its corresponding operand select mux in stage D. If bypassing is needed for resolving the 
hazard, the bypassing mux select signal will choose the bypassed data and the operand select 
mux will use the output from the bypassing mux. 

As for the control units, we have six bypassing signals and two ostall signals for load 
use dependency. The bypassing signals indicate if a bypass is needed and, if needed, from which 
stage among X, M or W does the bypass path come from, and which operand, ​op1​ or ​op2​, will 
use the data. The load-use dependency is an exception because loaded data is available at the end 
of the M stage and we have to bypass data back to the D stage to resolve this hazard. To correctly 
handle stalls and squashes for branches and jump, we have additional status and control signals. 
jal needs to be resolved in the D stage and branches and jalr in the X stage. We change the 
PC target mux selection signal based on the instruction type and originate squashes from the 
stage if the PC is redirected. 

The separation of the datapath and control unit is a clear example of modularity and 
encapsulation. It prevents other modules from being modified while changes are made. 
Modularity is also shown in the datapath design. As we instantiate registers, muxes, ALU, and 
the multiplier from existing modules, we create a hierarchy of modules with the processor design 
at the top, datapath, and control unit in the middle, and other basic components at the bottom. 
This adds simplicity to the design, makes it more extensible, and decreases the chance of 
corrupting other functionalities during implementation. As the stall strategy is purely hardware, 
bringing convenience to the programmers who don’t need to worry about adding extra operations 
to avoid data hazards. 
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4. Alternative Design 
To implement a superpipelined processor based on the original baseline design, we 

decided to take an incremental approach, splitting the critical path of the previous design and 
then push the asic flow again to decide the constrainting path of the new design. The best timing 
we can achieve for the 5-stage bypassing processor is 1.2 ns, which is approximately 82 FO4 
delays. The critical path starts from the register for operand 2 in the X stage, goes into the ALU, 
enters the control logic from ALU’s branch prediction signal, and ends at the instruction memory 
request register. The gate level list for the critical path is shown in figure 9 and figure 10.  So the 
first step we take is to split the X stage. 

 

 
Figure 9. Gate Level Critical Path for 5-stage processor 
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Figure 10. Critical Path for 5-stage Processor (Based on 

https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-lab2-xcel.pdf) 
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4.1 Splitting X Stage into X0/X1 
​ As the Arithmetic Logic Unit (ALU) is the main component of the X stage, we decide to 
split the ALU into two different parts: the operation of the lower 16 bits of the operands are 
finished in X0 stage and the remaining necessary data are passed into X1 to finish the higher 16 
bits computation. With additional logic described in 4.1.2, this design is possible to avoid stalling 
due to read-after-write dependencies between X0 and X1 by bypassing data from X0 back to D 
and from X1 back to X0. Instructions do not need to wait until the instructions they depend on to 
finish computing at X1 stage. 
 
4.1.1 Stalling Without Additional Bypassing 
 

4.1.1.a Datapath 
​ There are 14 instructions we need to support: arithmetic operations (add, sub), logical 
operations (and, or, xor, nor), shift operation (sll, srl, sra), comparisons (lt, ltu), and 
special operations (cp0, cp1, and adz). To support arithmetic operation, we need to pass a 
carry_out bit between the lower-16-bit ALU and the upper-16-bit ALU. Like what we would 
do in a normal ripple carry adder, the carrry_out bit indicates whether we need to 
add/subtract 1 from the upper-16-bit addition/subtraction. The result of the lower-16-bit 
computation is also passed through a register into the X1 to generate the final result. The logical 
operation and the two copy instructions are the easiest to implement as they do not have any 
dependencies between the upper and lower 16 bits so we keep the original implementation and 
pass the output from X0 to X1 stage.  

Even though shift operations take two 32-bit inputs, it only uses the lower 5 bits of 
operand 2 to indicate the shift amount, which means we need to pass the shift_op1 value to 
the X1 stage so that the upper 16 bits can shift with the right parameters. Instruction sll 
performs a logical left shift, meaning there are 0 to 16 bits to be shifted into the upper 16 bit 
position. So we pass the shift_out bits into the upper-16-bit ALU together with the 
lower-16-bit ALU output. In X1 stage we shift the upper 16 bit of the original operand 0 and or 
the concatenated the results to generate the final output. Operation srl is a logical right shift, 
meaning the upper 16 bits will be shifted to the lower 16 bit position. So we set shift_out to 
0, zero-fill the lower 16 bit position of operand 0 of the X1 stage (which is the upper 16 bits of 
the actual operand 0), shift, and or the result with the output of X0 stage. Operation sra is the 
arithmetic right shift and thus we use a $signed operation to decide whether to zero-fill or 
one-fill the vacant bit-positions based on the sign of the original operand 0. Comparisons are first 
determined by the comparison in the upper 16 bits. If they are of equal value, then the result of 
the lower-16-bit ALU is used to decide the output. Operation adz is a special operation for the 
JALR instruction. It performs an addition but masks the lowest bit to 0. So its implementation is 
exactly the same as the add operation, but with the lowest bit connected to 0 in the 
lower-16-ALU. Besides the 14 operations, ALU also calculates flags used for branch redirection. 
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Figure 11. Datapath for X0/X1 Splitted Processor Without Additional Bypassing  
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Flag ops_lt and ops_ltu have exactly the same implementation as the lt and ltu 
operation, and ops_eq is implemented by doing comparison in both stages and output 1 if the 
two operands are the same in both X0 and X1.  

After fully testing the two components, we started the integration of ALU and the 
processor. X0 stage is also responsible for sending the accelerator request message as they are 
ready at the beginning of X0 stage. In the X1 stage, after the upper-16-bit ALU finishes 
computation, its output is connected to the jump-and-link-register target and the data memory 
request message address port. There is a mux after the ALU which is used to select the actual 
output of the X1 stage among ALU results, multiplier response message, and PC+4 result for 
jump-and-link based on the instruction type.  

 
4.1.1.b Control Logic 
As we add one more stage to the processor, we need to carefully consider the stall, 

bypass, and squash logic for the processor. As we are implementing a basic 6-stage processor 
that supports all of the functionality the baseline processor has, we did not have to include the 
bypassing logic from X0 to D and from X1 to X0. Instead, in the Decode stage, when the 
processor realizes that the destination register of stage X0 matches with the operand registers in 
stage D, we stall for one cycle to avoid hazard caused by read-after-write dependency; if the 
instruction in X1 stage is a lw, and its destination register matches with the operand register in 
the D stage, we stall until we get the data back from the memory. Besides, as we implement the 
processor to support the accelerator, we also need to stall at D stage if there is a csrrx 
instruction in-flight at X0/X1 stage since its value will not be returned from the accelerator until 
M stage. X0 stage only originates stall when the accelerator request is not ready; X1 stage 
originates stalls if its instruction is multiplication and the multiplier is not ready to respond yet; it 
also stalls if its instruction needs to send a data memory request but the memory is not ready to 
take requests. X1 also originates a squash if it needs to handle a PC redirect for branch or jump 
instruction. Same to our design in the baseline, one stage will be stalled if itself or any state after 
it originates a stall, and will be squashed only when a stage after it originates a squash. 

 
4.1.1.c Critical Path 
By pushing the design through the ASIC flow, we get a minimum cycle time of 1.3 ns 

and the critical path is at the D stage (illustrated in figure 12 and figure 13): it starts from the 
pipeline register for instruction, goes through the register file and the bypassing muxes, and ends 
at the operand register between D stage and X0 stage. This critical path shows that it might be 
necessary for us to insert pipeline registers in the D stage after the register file to reduce the cycle 
time.  
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Figure 12. Gate Level Critical Path for X0/X1 Splitted Processor Without Additional Bypassing 

(X1 in figure corresponds to X0 in report) 
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Figure 13. Critical Path for X0/X1 Splitted Processor Without Additional Bypassing
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4.1.2 Bypassing in X0/X1 Stage 
To avoid the extra bubble/stall introduced to the pipeline when executing back to back 

dependent arithmetic instructions, we plan to add extra bypass logic to our processor, namely 
from X0 to D and from X1 to X0. In the implementation described in 4.1, the pipeline inserts a 
bubble whenever the destination register of the instruction in X0 matches one of the two input 
registers in D as the full 32-bit output will not be ready until the end of X1. To eliminate this 
bubble, we can forward the lower 16-bit result from the end of X0 to the input muxes at the D 
stage. We also need to add two additional input muxes at X0 so that the upper-16 bits can be 
forwarded from the end of X1. This will retrieve some of the CPI as back-to-back dependent 
instructions are extremely common in assembly. However, the extra delay slot from load-use 
dependency cannot be resolved as the data from memory does not reach datapath until M.  

 
4.1.2.a Datapath 
Based on the above illustration, we add a bypassing path from X0 to the end of the D 

stage: if the destination register of the instruction in X0 matches with any of the two operands in 
D stage, the lower 16 bits of the X0 ALU computation result will be bypassed into the D stage; 
similarly, two additional muxes are added at the end of X0 stage to conditionally bypass data 
from X1 to X0. To make sure data is correctly stored into memory when there is a dependency 
between data of the sw instruction and previous instruction destination, X1 result is also 
bypassed to the memory request data port in X0.  

 
4.1.2.b Control Logic 
We still insert a bubble for the load-use dependency scenario as data loaded from 

memory cannot be returned until the end of the M stage. If there is a match between accelerator 
request instruction (csrw) operands and previous instruction destination, csrw waits until the 
computation result is bypassed from X1 back to D stage as the accelerator request is sent in X0 
stage. As there are dependencies between X0 and X1 stages, we add additional stall logic for 
multiplication, comparison, and right shift operation. As the multiplier is given two cycles to do 
the computation we wait until the end of the X1 stage to collect the result; comparison (lt, ltu) 
and right shift (srl, sra) result are not ready until X1 stage because the lower 16 bits of 
comparison operands are only useful when their higher 16 bits are the same and shifting right 
means higher 16 bits of the operand will be shifted to the lower 16 bit position of the result.  

 
​ 4.1.2.c Critical Path 

By pushing the design through the ASIC flow, we get a minimum cycle time of 1.25 ns 
and the critical path is the bypassing path from the X1 stage to the D stage (illustrated in figure 
15 and figure 16): it starts from the operand register in X1 stage, goes through the higher-16-bit 

19 



 
Figure 14. Datapath for X0/X1 Splitted Processor Without Full Bypassing  
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ALU, enters the execution result select mux, follows the bypassing path from X1 to D to the 
muxes in D stage, and ends at the operand register between D stage and X0 stage. Combining 
this critical path with the critical path we find for the non-bypassing 6-stage processor, we decide 
the next step is splitting the D stage into D0/D1.  

 

 
Figure 15. Gate Level Critical Path for Bypassing X0/X1 Splitted Processor (X1 in figure 

corresponds to X0 in report) 
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Figure 16. Critical Path for Bypassing X0/X1 Splitted Processor  
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4.2 Splitting D Stage into D0/D1 
​ The critical path in section 4.1.1 goes through the register file in stage D as the register 
file module that we use has sequential write but combinational read, which means everything 
from reading from the register file to choosing the source of different operands using large 
muxes has to fit in one cycle. As figure 15 and figure 16 shows, both demonstrate a substantial 
contribution to the critical path. Therefore, we decide to split the D stage right after the register 
file to reduce the length of the critical path. However, as the register file is physically larger than 
the area of the bypassing and data selection muxes, the unbalanced D0 and D1 stage might bring 
a new critical path through the register file. As we are not sure whether the ASIC flow optimizes 
the register-based design into latch-based design to enable timing-borrowing between stages, the 
plan is to implement pipeline registers between the register file and the muxes and treat this as an 
incremental approach to a latch-based balanced design if necessary. 

When we pushed the design in 4.1.2 through the ASIC flow, we discovered that the 
bypassing path from X1 to D becomes a critical path. We thought about rerouting the path to D0, 
but it achieves nothing as the bypassing path from M to D1 serves the same purpose. M stage 
also has less combinational logic than X1 so the path is less likely to be a problem. Not being 
able to come up with a better solution, we decided to erase this path and insert a bubble instead.  

Another problem with the new D0/D1 design is that if there is a dependency between 
instructions in W stage and D0 stage, the data read from the register file will not match the data 
being written into the register file. Thus we add a bypassing path from W stage to D0 stage 
specifically for this RAW hazard.  

 
4.2.1 Register-based Design 

4.2.1.a Datapath 
​ As seen in figure 17, we decided to insert registers right after op1_bypass_mux_D0 
and op2_bypass_mux_D1. The rationale behind this is that we are trying to balance the two 
stages. While time borrowing using latches might help relax the timing constraint, we still need 
to properly balance the logic for it to work. The bypassing path mentioned earlier from X1 to D1 
is deleted from the data path, and a new bypassing path from W to D0 appears with two muxes to 
select between register file outputs and bypassing results. 
​ One special case we discover makes it necessary to add a bypassing path from M stage to 
D0 stage. If dependencies between instructions force the instruction I2 to stall at D0 when I1, 
the instruction it depends on, is at M stage and stall at D1 until I1 writes back, it will read the 
wrong data from the register file and has no chance to read the data correctly bypassed from W 
to D1. Thus the bypassing mux in D0 has three inputs: one from the register file, one from M 
stage, and one from W stage. 
 

4.2.1.b Control Logic  
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Figure 17. Datapath for D0/D1 Splitted Processor  
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As we add yet another stage to the processor, we need to again carefully consider the 
stall, bypass, and squash logic for the processor. Since we eliminated the bypassing path from X1 
to D1, when the processor compares the destination register of stage X1 and the operand 
registers in stage D1 and find a match, it stalls to avoid hazard caused by read-after-write 
dependency; just like before, if the instruction in X1 stage is a lw, we stall until we the data is 
back from the memory. Stage D0 does not originate a stall as the instruction will go to D1 no 
matter what because there are no hazards between D0 and D1. The squash logic in D1 is 
inherited completely from the old stage D. 

The bypassing logic from M to D0 and from W to D0 are almost exactly the same as 
other bypassing logics. When the processor compares the destination register and the input 
registers, it enables the bypassing result to go through the mux. One modification we made, 
however, is that we determine this without considering whether the result will be used or not. 
There are two reasons for this. First, whether we are using results from the register file is 
determined by a control table that we placed in D1, and D0 has no access to it. Second, it does 
not matter whether the result would be used. As long as the correct register results are provided, 
D1 will correctly choose which inputs to use. 
 

4.2.1.c Critical Path 
After we tested the functionality of our implementation, we pushed the design through 

ASIC flow to see if we improved timing and which path we had to fix next. We get a minimum 
cycle time of 1.13ns and unexpectedly the critical path is from X1 to F, as shown in figure 18 and 
figure 19. The critical path originates from op2_reg_X1, through the upper-16 ALU and 
pc_sel_mux_F, and ends at a queue from imemreq. This is likely due to the extra logic inserted 
between the two stages affecting the place and route. The path is physically longer and creates a 
larger delay. Although not as much as we had hoped for, this is the first improvement in timing 
that we see. 
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Figure 18. Gate Level Critical Path for D0/D1 Splitted Processor (X2 in figure corresponds to 

X1 in report) 
 

4.2.2 Modification Related to the Instruction Memory Drop Unit 
 
​ By testing our 4.2.1 design, we found a special scenario that induces a bug not considered 
before. The error occurs in stage F. When a dependency causes a stall in the pipeline (in our case, 
the stall originates from D1) and a branch instruction that will be taken arrives at stage X1 the 
next cycle, the instruction memory request that needs to be squashed is not actually sent but the 
squash signal sets the imemresp_drop signal to 1. The imem drop unit incorrectly thinks that 
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the next instruction memory response is an instruction that needs to be dropped, and thus drops a 
valid instruction. We fix this by adding a comparison signal in the processor, which stops the 
imemresp_drop from being set to 1.  

By pushing the new design through the ASIC flow, we find that the additional logic 
changes the routing of the original design and hurts the timing significantly. The new critical 
path, shown in figure 20 and figure 21, originates from op2_reg_X1, through the branching flag 
ports in the upper-16 ALU and the control logic, and ends at the signal next_resp_addr that 
we used for instruction address comparison. The minimum cycle time is 1.26ns, worse than the 
previous design. Since in both 4.2.1 and 4.2.2 designs the critical path is related to the PC 
redirection, we decided to move branch resolution to stage M, eliminating the overhead brought 
by the ALU unit in the path. 

27 



 
Figure 19. Critical Path for D0/D1 Splitted Processor 
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Figure 20. Gate Level Critical Path for Processor with Modified imem Drop Unit (X2 in figure 
corresponds to X1 in report) 
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Figure 21. Critical Path for Processor with Modified imem Drop Unit  
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4.2.3 Potential Latch-based Design 
​ Since the critical path through the register file is no longer an issue, we decided to 
temporarily suspend the latch-based approach and focus on the new critical path. If this path 
resurfaces in the future, we will revisit the latch-based approach. 
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4.3 Dealing with PC Redirection  
 

As indicated in figure 19, the critical path is caused by the branch target from X1 stage to 
F stage for pc redirection. In figure 21, the critical path is also caused by the flags generated by 
the ALU. To reduce the critical path length, we plan to move the pc redirection path from X1 
stage to M stage, saving the time for the signal to pass through the ALU unit. This will bring one 
extra cycle to every branch or jump instruction that is taken. Most of the changes happen in the 
control logic, and some additional registers are needed to pass the PC target to the M stage. 
Besides, as data memory requests are sent in the X1 stage, we need to drop the data sent back 
from the memory if we are squashing the previous lw instruction. However, we need to stall sw 
instructions following a branching instruction, just so the incorrect memory request is never sent. 

As the modification brings a higher CPI to branch and jump instructions, we start to look 
for methods to reduce the CPI count. After examining the datapath diagram we realize that we 
can move the JAL resolution from D1 stage to D0 stage, saving one cycle for function calls in 
the microbenchmarks.  

Furthermore, the more stages we have before branch resolution, the higher branch 
misprediction penalty is. After splitting X stage and D stage and moving branch prediction to M 
stages, there will be five mis-fetched instructions for each mispredicted branch instruction. Thus 
improving branch prediction accuracy will significantly reduce CPI of the program and a simple 
four-entry branch target buffer is a reasonable choice. 

 
4.3.1 Branch Resolution in Stage M 

4.3.1.a Datapath 
To move branch resolution to M stage, we need to keep the data for branch target and 

jump-and-link-register target until M stage. Thus two pipeline registers are added between X1 
and M stage: one for the branch target calculated in D1 stage and the other for the ALU 
computation result used for jump-and-link-register target. The two target data are fed back into 
the PC select mux which is used to generate the instruction memory request address. As needed 
by the control logic, the flags output by ALU is also passed into M stage, adding two more 
pipeline registers to M stage.  

One other important change is related to data memory requests. If there is a lw 
instruction right after a PC redirection instruction (branch or jump) and the wrong result is 
predicted, by the time we resolve the misprediction in M stage, a memory read request has 
already been set in X1 stage and the processor is supposed to be waiting for a memory response 
data at data memory port. Thus we added a data memory drop unit, similar to the instruction 
memory drop unit used for dropping the next instruction in flight when squashing, to drop the 
data response.  

 
4.3.1.b Control Logic  
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Figure 22. Datapath for M-stage PC Redirect Processor  
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As we move the entire pc redirection to M stage, the control signal for branching and 

JALR is also moved to M stage as PC_redirect_M. The instruction branching type is 
determined by the decoding table in D0 stage, and is passed all the way through the pipeline into 
M stage to decide which ALU flag should be used as the branch condition. A dmemresp_drop 
signal is implemented as an input to the dmem drop unit. If the instruction in X1 is a valid 
memory instruction and is being squashed,  the response of the instruction will be dropped.  
 
​ 4.3.1.c Critical Path 
​ The critical path of the design, indicated in figure 23 and figure 24, has a length of 
1.27ns. The critical path goes through the accelerator, which is simply a placeholder, the 
writeback mux in M, back to the op2 bypass mux and op2 select mux in D1, and ends at the 
pipeline register between D1 and X0. As we can see in figure x, the accelerator itself creates a 
delay of about 0.4 ns. Since this is merely a placeholder, everything is combinational and we get 
an unintended critical path. This is likely due to the routing algorithm moving gates around due 
to the different logic and ended up increasing the length between these gates, resulting in a worse 
cycle time. 
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Figure 23. Gate Level Critical Path for M-stage PC Redirect Processor 
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Figure 24. Critical Path for M-stage PC Redirect Processor 
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4.3.2 JAL in D0 Stage 
4.3.2.a Datapath 
To resolve JAL in the D0 stage, the immediate generator and the PC_plus_imm adder 

are both moved to the D0 stage. The immediate generated is passed through a pipeline register to 
be used as a potential input operand for ALU in D1 stage. 
 

4.3.2.b Control Logic 
D0 stage originates a squash if the instruction decoded is JAL and PC_redirect_D0 

is set to 1. The PC select mux then chooses the correct PC to fetch and the processor starts 
another assembly sequence. 

 
​ 4.3.2.c Critical Path 

By pushing the design through the ASIC flow, we get a minimum cycle time of 1.26ns, 
and the critical path is indicated below in figure 26 and figure 27. The critical path penetrates 
through the multiplier and ends at the pipeline register between X1 stage and M stage. As 
illustrated in section 4.1, we purposely send the multiplication request at X0 stage and receive 
multiplication response at X1 stage, giving the multiplier two cycles to finish its task. However, 
we believe that the tool only gives the multiplier one cycle and thus makes it to be the longest 
path in the design. The plan is to modify the ASIC flow and enable register retiming feature for 
the multiplier so that the tool can auto-balance the stage by us simply adding a register before the 
output port of the multiplier unit. As this requires us to modify mflowgen, a lightweight modular 
flow specification and build-system generator for ASIC and FPGA design-space exploration 
built by Christopher Torng, we are going to look more in depth into the flow. 
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Figure 25. Datapath for 7-stage Processor with JAL in D0 
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Figure 26. Gate Level Critical Path for 7-stage Processor with JAL in D0 
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Figure 27. Critical Path for 7-stage Processor with JAL in D0 
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4.3.3 Branch Target Buffer 

To recover some of the CPIs we lost by moving branch resolution to stage M, we 
intended to implement a branch target buffer (BTB) with four entries. Each entry consists of a 
32-bit address, 1-bit valid flag and a 2-bit age field. In stage D0, our processor decodes the 
branch target and checks it against the four entries in the BTB. If there is a match, it squashes the 
instructions already fetched and redirects to the new PC. That prediction is propagated to stage 
M, where the actual resolution happens. If the prediction does not match the actual resolution, it 
has to squash again and redirect to the actual PC. Then, depending on the specific scenario, it 
would update the entries, maybe replacing the least recently used entry with age 3.  

A typical microbenchmark program such as vector-vector add has the assembly sequence 
shown in figure 28. The original design makes no branch prediction and simply fetches the next 
PC. For vector-vector add, the loop repeats for 100 iterations, and that means 5 instructions 
squashed for every iteration. With our BTB, the processor predicts the correct PC 98 out of those 
100 times, and saves close to 400 cycles, more than a third of the total cycles. This BTB 
correctly predicts all for loops except for the first and the last iteration. 

 
Figure 28. Assembly Snippet Compiled from vvadd.c 

​  
Unfortunately, we did not have enough time to actually implement this short but effective 

improvement. 
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5. Testing Strategy   
 
5.1 Baseline Testing 

The testing for the baseline design involves test-driven development methodology and 
directed testing on individual data sets associated with controlled input data and expected 
outputs. To test functionality, we have unit tests for the ALU as well as each instruction under 
one of the six categories: register-register, register-immediate, branch, jump, memory, and csr. 
There are a total of 685 tests written that all passed at the time of submission. With unit tests 
available, we could take an incremental approach to develop the processor. That is, after 
connecting the necessary datapath and control/status signals for one instruction, we could run the 
tests for that specific instruction. Upon failure, we would check our outputted line traces and 
waveforms to confirm proper pipelined execution and expected register/wire values. We faced 
many problems and corner cases when implementing the alternative design. The layout of the 
unit tests allows us to single in on error cases and pinpoint the exact location of the bug. 

There are numerous test cases, albeit repetitive, since FL, BaseRTL, and AltRTL run 
essentially the same tests. As mentioned above, the instructions fall under one of the six major 
categories. Register-register instructions are those that take two register values as operands and 
store the result in a register, such as add, mul, xor, or sra. Register-immediate instructions 
are those that take a register value and an immediate value as operands. Branch instructions are 
ones that either jump to a label or not based on the condition specific to the instruction. For 
instructions under this category, the helper functions from inst_utils.py such as 
gen_rr_dest_dep_test() are used. The helper functions are basically wrapper functions that 
generate an assembly program in string using the parameters provided. By using the wrapper 
functions, we could generate many tests of the same category easily and neatly. 
 ​ For each instruction, there are about 40 directed test cases, a random test, and a random 
delay test. A lot of the directed test cases are corner cases that could potentially fail. For 
example, how well does slt, the instruction that compares two signed numbers, handle 2’s 
complement. Can it compare 0x7fffffff and 0x80000000 correctly? By writing a lot of tests like 
this, we found a few bugs that could go unnoticed. Random value tests were conducted to ensure 
robustness of testing unachievable by manual number generation. Tests with random delay were 
also important as, for this design, the memory is not combinational and the imul takes more than 
one cycle to complete calculation. Therefore, there are a few different reasons, including data 
hazards, that could create stalls, which means our processor needs to be properly tested. In the 
end, we created just under 700 tests, and they all pass on our processor. 
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Figure 29. Load-use Dependency Code Snippet 

 
5.2 Alternative Design Testing 
5.2.1 Testing Methodology 

We reused all of the tests from the baseline design for the alternative design. Since the 
ISA remains unchanged, the expected behavior of every test is the same. We also added 
additional mixed-instruction tests that try to expose the structural hazards specific to our 
superpipelined processor. For example, to shorten the critical path through the ALU, we would 
break it into two stages, each handling half of the arithmetic. In stage X0, the ALU calculates the 
lower 16 bits of the operands, while the rest is calculated in stage X1. We must properly handle 
the stall and bypass logic between the two stages when there are data dependencies to avoid 
hazards shown in table 1. Therefore, back-to-back dependent additions are created to ensure the 
correctness, as shown in figure 30. Similarly, we would test additional stalling and bypassing 
logic in stages such as M0 and M1, as shown in figure 31. 
 

 
Table 1. Pipeline Diagram for X0-X1 Hazard 
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Figure 30. Add-after-Add Dependency Code Snippet 

 

    
Figure 31. Load-after-load Dependency Code Snippet 

 
5.2.2 Testing Separated ALUs 
​ As stated in section 4.1, we splitted the ALU to two components: lower-16-bit ALU and 
upper-16-bit ALU each handles the computation of 16 bits. To make sure our pipelined ALU 
works, we designed separate test cases. For both of them, we created unit tests for each 
arithmetic instruction of ALU: add, sub, sll, or, and, nor, xor, srl, sra. Besides the 
operational instructions, ALU also generates flags indicating the relationship between two inputs 
and even behave like a mux so comparison instructions: slt, sltu, eq and multiplexing 
instructions cp0, cp1 tests are designed accordingly.  

For lower-16-bit ALU, apart from the expected outputs from provided inputs, we also 
need to test the correctness of the carry out bit for add, sub, slt and sltu. When adding, 
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there might be an overflow. When subtracting, if operand 0 is smaller than operand 1, there will 
be a borrowed 1 from higher 16 bits. slt and sltu have carry-out outputs to higher 16 bits 
because it is possible that the higher 16 bits of two inputs are the same and we need the results 
from lower 16 bits. In sll, we need to pass extra shifted-out bits to higher-16-bit ALU so we 
have tests for those outputs as well.  

For higher 16-bit ALU, apart from similar tests associated with inputs and expected 
outputs, we need to take the results, carry out and shift out bits from lower 16 bits as inputs. For 
each instruction, we designed tests with various results from the lower 16-bit ALU.  In add, 
sub, slt and sltu, since we have carry out as an input, we have tests that set it as 0 or 1. In 
sll, we generate different shifted out bits from lower 16-bit ALU to test if higher 16-bit ALU 
calculates the output correctly. For all of the shift operations (sll, srl, sra), we also have test 
cases for both positive and negative numbers so that we make sure we handle arithmetic and 
logical shifts correctly. By looking into the failing negative sra test cases, we realized that we 
cannot or data with signed representation and unsigned representation together. So instead 
we unsigned the signed shifted upper 16 bits before or it together with the output from the 
lower-16-bit ALU.  

Since ALU also generates flags to control logic, we have corresponding test cases with 
ops_lt, ops_ltu, ops_eq designed to test these three flags. Higher 16-bit ALU will take 
carried flags from lower 16-bit ALU and generate final flags based on carried flags and higher 16 
bits; therefore, we include tests with different carried flags for slt, sltu and eq.  

After the testing individual components, we also created a wrapper module to directly 
connect them together and tested the fully functioning ALU with the original ALU operation 
tests. This integrated test guarantees that our ALU modules perform the operations exactly as we 
expected from the design specification. 
 
5.2.3 Testing the X0/X1 Splitted Processor Without Additional Bypassing 

After fully testing the splitted ALU, we put it into the processor with a splitted X stage. 
To ensure the functionality of the processor, we used the same testing as we have for the baseline 
processor. As the testing fully represents the design specification we have for the processor, the 
fact that our 6-stage processor with a splitted ALU passes those tests means our design meets the 
requirement. Besides the direct, random, and delay test we have for each of the 14 instructions, 
we also created dependency tests specifically for the ALU. As the extra execution stage creates 
an additional read-after-write hazard between X0 and X1, we used back-to-back addition 
sequences and load word sequences to examine if it performs as we expected. As indicated in 
figure 32 and figure 33, there are bubbles after each RAW add instruction, which matches with 
our stall signal implemented in the control logic. With the accelerator tests which use CSRR and 
CSRW to write data between register file and control register, we fixed a bug in our stall logic. As 
long as there is a CSRRX instruction in-flight in the X0/X1 stage, we need to stall in the D stage. 
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Otherwise the instruction dependent on the CSRRX instruction will receive wrong data since the 
value will not be returned by the accelerator until the M stage. 

By examining the line tracing for independent additions (figure 32), back-to-back 
dependent additions (figure 33), and load-use hazard assembly microbenchmarks (figure 34), it is 
clear how our 6-stage processor functions: it streams the addition if there is no dependency; for 
instructions with back-to-back dependency, there is one cycle of bubble between each 
instruction; for load word instruction sequence, each instruction comes with two bubbles for 
waiting memory response from M stage. As we not only want to improve the cycle time but also 
aim to improve the throughput of the entire processor, it is necessary for us to implement a 
6-stage processor with bypassing from X0 to D and from X1 to X0 so that there is only load-use 
hazard being stalled by memory access. 

 

                    
Figure 32. Independent ALU Instruction Line Tracing  

 

46 



 
Figure 33. Back-to-back RAW ALU Dependency Line Tracing (Stalling) 

 

 
Figure 34. Load-use Dependency Line Tracing 
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5.2.4 Testing the Bypassing X0/X1 Splitted Processor 
​ As we are taking an incremental approach to implement the superpipelined processor, we 
can incorporate our old unit and integrated tests with the new dependency tests to prove the 
functionality and the additional feature of the 6-stage bypassing processor.  
​ One important testing method we used in the line tracing of the pymtl testbench. Line 
tracing allows us to visualize the pipeline diagram of the test, making it easier to debug the 
design. As the major difference between a 6-stage bypassing processor and a 6-stage stalling 
processor is whether there are bubbles between two instruction with dependency, we add 
dependency tests on different instructions and use the line tracing to show that data is 
successfully bypassed from execution stages and there are less bubbles in the line tracing. 

 
Figure 35. Back-to-back RAW Add Dependency Line Tracing (Bypassing)  

 
Comparing the line tracing we get from the X0/X1 splitted processor with stalling 

execution stage in figure 33, line tracing in figure 35 shows that we get rid of the bubble between 
RAW add instructions by bypassing data from X0 to D and from X1 to X0. 

 

 
Figure 36. Back-to-back Right Shift Bubble Line Tracing (Bypassing)  
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Figure 37. Back-to-back RAW Mul Bubble Line Tracing (Bypassing)  

 
As stated in 4.1.2.b, the dependency between X0/X1 computation results in bubbles 

between back-to-back multiplication, right shift, and comparison. The line tracing in figure 36 
shows a back-to-back right shifting assembly sequence. For right shift instructions without RAW 
hazard, there are no bubbles between the instruction; otherwise, the shift instruction stalls in D 
stage for one cycle to wait to its operand coming back at the end of X1 stage. In figure 37 there 
are two bubbles between each pair of multiplication instructions brought by the two cycle latency 
multiplier and RAW dependency. 
​ After the pipelined processor design passes all of the directed, random, and delay tests, 
we run to further test our alternative design. These benchmarks provide non-trivial and realistic 
sequences of instructions, so passing this verification is a good sanity check that our processor is 
working as expected. In total there are 6 microbenchmarks being used for realistic testing and 
their detailed information are listed in table 2. In ummark-cmult we find a bug related to 
RAW dependency between ALU instruction and sw instruction (shown in figure 38). Instruction 
sub x15,x14,x15 stores data in register x15 and  sw x15,0xff8(x10) stores data in 
x15 to the memory. Thus for sw instruction we need data to be bypassed from register file to 
memory request data port. As we only implemented bypassing to instruction operand at that 
time, we passed computation result of the ALU into the operand register between X0 and X1, 
incorrectly modified the upper 16 bits of the memory address we are going to write to and caused 
a byte array access out of index error. To solve the problem, we added a bypass path from X1 to 
dmem_req_data port in X0 and fixed the control logic accordingly so that data can be 
bypassed correctly encountering a RAW dependency between ALU instructions and sw 
instruction. 
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ubmark-sort Quicksort algorithm 

ubmark-accum Integer accumulation 

ubmark-bsearch Binary search in a linear array of key/value pairs 

ubmark-vvadd Element-wise vector-vector add 

ubmark-mflit Masked convolution on a small image 

ubmark-cmult Element-wise complex multiplication 

Table 2. Six Microbenchmarks for Testing  
 

 
Figure 38. RAW Dependency for sw in ubmark-cmult 

 
By running ubmark-mflit, we fixed the bug that existed in our multiplication 

response enable logic. The bne x15,x12,39c always predict taken, meaning the next 
instruction fetched after it will be mul x12,x12,x12 at PC 388. If the program takes a 
branch after a multiplication instruction, all instructions in-flight in the pipeline are squashed. As 
we did not enable the multiplication response enable signal for such a scenario, the mul 
instruction result will stay in the multiplier, making it unable to receive the next request. If a 
multiplication comes after the squash, it will stall in D stage and the program will never continue 
running. Thus we enable the processor to receive multiplication response when there is a mul 
instruction in X1 stage and X1 is going to be squashed. The multiplier is then cleared and ready 
for the next mul instruction. 
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Figure 39. Multiplication after Squash in Ubmark-mfilt 

 
5.2.5 Testing the D0/D1 Splitted 7-Stage Processor 
​ As we splitted the D stage into D0/D1 and each stage handles different bypassing 
scenarios, we add more dependency tests to make sure our processor design can handle all kinds 
of hazards. In the gen_stall_test, we have multiple sequences of add and addi 
instructions each targeting at dependency between different stages. If there is no nop between 
instructions, our bypassing between X0 and D1 and between X1 and X2 successfully handles the 
hazard. If there is one nop, as shown in figure 40, the addi instruction in D1 stage will stall for 
one cycle until the addi in X1 reaches M stage. This is due to the fact that we remove the 
bypassing path from X1 to D stage and instead solve the hazard by bypassing from M to D1. If 
there are two nops between the additions, there is a RAW dependency between X1 stage and 
D0 stage, shown in figure 41. Instruction in D0 will stall for a cycle until data can be bypassed 
from M to D0. These are the two regular RAW hazards brought by splitting D stage and 
removing bypassing from X1 to D that we need to stall. When there are 4 nops between two 
dependent instructions, we realize that we cannot wait for the second instruction to reach D1 
because the first instruction writes back one cycle before and the second instruction has already 
read the wrong data in the register file. Thus we add a bypassing path from W to D0 stage to 
account for the RAW instructions with four instructions in between. 
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Figure 40. X1/D1 RAW Dependency 

 

 
Figure 41. X1/D0 RAW Dependency 

​ By running the microbenchmark tests on our design, we find an irregular dependency 
caused by instruction stalling due to other hazards. In ubmark_cmult, shown in figure 42 and 
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figure 43, as the multiplication in I5 is not ready to respond, I6 is forced to stall at cycle 10. 
Since we already have a bypassing path from W to D0, the data dependency hazard between I3 
and I6 is resolved at cycle 9. I4 returns x4 value at cycle 8 and writes back at cycle 9. 
However, I6 is only valid for data bypassing at cycle 11. At cycle 11 I4 has already written 
back to the register file, which causes I6 to read wrong data for x4. Thus we implement a 
bypassing path from M to D0 so that at cycle 9 both I3 and I4 can both bypass the valid data to 
D0. 

 
Figure 42. Dependency in ubmark_cmult 

 
Figure 43. Pipeline Diagram for the ubmark_cmult Dependency (Instruction Simplified) 

 
5.2.6 Testing the D0/D1 Splitted 7-Stage Processor with modified Unit Signal 
​ When testing our design in section 4.2.1, we noticed that some of the branching tests 
were failing by exceeding the maximum cycle number. After examining the waveform, we found 
the specific scenario that triggers the bug: stage F being stalled first and then squashed 
immediately after. This results in stage F waiting for an instruction dropped by the drop unit 
indefinitely. We resolved this bug by modifying the imem_resp_drop signal as described in 
section 4.2.2. 

 
5.2.7 Testing 7-Stage Pipeline Processor With M Stage Branch Resolution 
​ Even though moving the PC redirection unit from X1 stage to M stage is not a 
complicated change, we still test it thoroughly to make sure there is no unexpected dependency. 
We carefully look into the line tracing of ProcRTL_branch_test to make sure that every 
falsely predicted branching is resolved at M stage. By examining the microbenchmark test cycle 
count, we find a matching between the number of for loops inside the benchmark program and 
the increase of cycle count between 4.3.1 design and 4.2.2 design (result shown in table 3). This 
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proves that our design has one extra cycle of latency for every branch that is not correctly 
predicted. 

 
Table 3. Benchmark Cycle Count for 4.3.1 and 4.2.2 

 
​ When we test our design with gen_load_after_branch_test, we realize a bug 
caused by squashing a lw right after a branch instruction. As the branch is resolved in M stage, 
lw has already sent out a data memory request at X1. The data memory response writes back 
after the PC points to the valid instruction, corrupting the register file. Thus we add a dmem drop 
unit which has exactly the same functionality as the imem drop unit: dropping an invalid data 
memory response if the lw instruction is squashed. By carefully examining all dependency 
conditions, we realize that it is not possible to stall a lw instruction at X1 stage. Thus we don’t 
need to add more comparison signals for the dmem drop unit as there will not exist a lw 
instruction at X1 stage but did not send any data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

54 



 
5.2.8 Testing 7-Stage Pipeline Processor With JAL at D0 
​ Similar to the testing method we have in 5.2.7, the 4.3.2 design only involves moving 
JAL related components from D1 to D0. JALR, however, is still resolved at M stage since it 
needs the computation result from the ALU. By examining the line tracing for the 
ProcRTL_jump_test (shown in figure 44), it is clear that our design meets the specification 
and requirement as stage F is squashed when the instruction jal is at D0. 
 

 

 
Figure 44. JAL and JALR Line Tracing 

 
2.​  
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6. Evaluation 
 
6.1 Cycle Time 

 Baseline X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 
(4.1.2) 

D0/D1 
(4.2.1) 

D0/D1 
(4.2.2) 

Branch 
Resolution in 
W (4.3.1) 

JAL in 
D0 
(4.3.2) 

Cycle 
time/ns 

1.2  1.23 1.22 1.13 1.23 1.27 1.26 

     Table 4.  Minimum Cycle Time 

 
Figure 45. Cycle Time  

 
Looking at the cycle times (table 4 and figure 45), we noticed an initial increase in 4.1.1 

after we divide the X stage into X0 and X1 without bypassing. We took a look at our critical path 
and found out that it is not the critical path of our original baseline design and after comparing 
the components and routing, we realized that the placement of these components are influenced 
due to our additional logic for dividing X stage.  
​ Compared with 4.1.1, our 4.1.2 design has a relatively smaller cycle time. As we add 
additional control logic and bypassing muxes, the ASIC flow tool tries to optimize the placement 
of standard cells and somehow influences routing of the processor. This helps to reduce the 
critical path of our bypassing design. 
​ From 4.1.2 to 4.2.1, we first time achieve a cycle time smaller than the original baseline 
design. This is due to the fact that we divide the critical path in 4.2.1 (in D stage through register 
file) into two stages, significantly reducing the path length. This matches with our expectation 
for the incremental implementation approach: gradually dividing critical paths to eliminate the 
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longest path in the design. However, as we correct our design by adding control signals to the 
imem drop unit, the cycle time significantly increases from 1.13ns to 1.23ns for design 4.2.2. 
Taking into account that the critical path shifts from datapath to control logic, we believe the 
cause is the following: the additional control logic we add in design 4.2.2 completely changes the 
how Cadence Innovus, the place and route tool, place the components and route the control logic. 
The increased wiring distance between important components causes the change in critical path.  
​ In 4.3.1 design, we focus on moving the PC redirection unit from X1 stage to M stage, 
hoping we can save the 0.3ns overhead caused by the ALU unit. However, the cycle time 
significantly increases again from 1.23ns to 1.27ns, even through the critical path changes. By 
moving the JAL resolution from D1 stage to D0 stage in 4.3.2 design we also decrease the 
critical path length and change the critical path position. This change is supposed to be a 
functional improvement of the CPI, but such a minor change also causes change in cycle time. 
Here we can conclude that place-and-route is very sensitive to the design and any minor change 
can cause reroute of the entire design; besides, a change from 1.27ns to 1.26ns can cause the 
critical path position to change, making us suspect that the tool might put in effort to evenly 
distribute path length of the design. This helps the tool to minimize the longest path in the design 
and meet the timing constraint; but at the same time this makes it harder for us to see an 
improvement in the cycle time of our design, since there might be multiple paths of similar 
length. 
 

 
                   Baseline                                        4.1.1                                           4.1.2 
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                     4.2.2                                          4.3.1                                             4.3.2 

Figure 46. Path Slack Histograms  
(top to bottom, left to right: baseline, 4.1.1, 4.1.2, 4.2.2, 4.3.1, 4.3.2) 

​  
By examining the path slack histogram (shown in figure 46) generated by Cadence 

Innovus for each of the design we have, we further prove our assumption about how 
place-and-route works: the tool tries to average datapath length for every single path we have in 
out design so that it can achieve the minimum cycle time. As we keep improving our design and 
implementation, more and more paths reach the timing constraint we set when we push the 
design through the flow. This is one of the major reason why we keep getting critical path of 
similar or even longer length for different design: there are multiple paths that we need to 
eliminate to see a significant improvement in the processor cycle time and sometimes slight 
change in logic can have an impact on routing, making the critical path even longer than before. 
​ One other dilemma we realize is the dual effect of adding more stages into the processor. 
While it can significantly help improve the cycle (from 4.1.2 to 4.2.1), it also brings more 
dependency between stages and results in more stalling. To improve CPI, which is also an 
important factor considering processor performance, we need to add more aggressive bypassing 
to the design. Looking at the critical paths of our designs, it is obvious that most of them are 
results of bypassing and data forwarding.  

As we mentioned in section 4.3.2, register retiming is an effective tool Cadence Innovus 
has to automatically balance stages by changing pipeline register position. The reason why we 
still incrementally divide critical path instead of place registers at the output and let the tool do 
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the work is that register retiming is only helpful when there is no feedback loop in the design. 
Forwarding and bypassing loops are usually harder to resolve under the regime of ASIC design. 
If we take a look at  figure 7 and think about how the industry designs processors with a cycle 
time of 10-20 FO4 delays, it is reasonable to believe that ASIC design is not the entire picture of 
processor design. Full custom design allows engineers to manually place components and route 
wires in the way they want, which seems like a valid method to reduce the length of the data 
forwarding path. Both ASIC and full custom design are different approaches to solve the same 
problem and their combination is the most appropriate way to achieve the best design. 
 
6.2 CPI 

 

 Base- 
line 

X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2.2) 

Branch 
Resolution in 

W (4.3.1) 

JAL in D0 
(4.3.2) 

sort/cycles 14874 19017 17603 20863 22170 22137 

accum/cycles 612 813 812 1014 1114 1113 

bsearch/cycles 2856 4311 3478 4325 4610 4608 

vvadd/cycles 1012 1215 1112 1313 1413 1412 

mfilt/cycles 6160 7322 6890 8236 8560 8541 

cmult/cycles 2212 2915 2712 3213 3313 3312 

     Table 5. Benchmark Cycle Count  
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Figure 47. Ubmark Cycle Count 

 
Applying the same microbenchmark to each design is a good way to measure the power, 

energy, area and CPI of them. Since we do not have an instruction count yet to calculate CPI 
(cycle count / instruction count), we will evaluate CPI based on the amount of cycles for each 
design given that instruction count is the same for each benchmark. As we divide our designs 
into more stages and reduce the length of the critical path, it is important to keep track of the 
trends of these statistics. As stated in section 1, The execution time of a program is determined 
by the following equation: . Even though we primarily focus on improving , 𝑇 = 𝑖 × 𝑐𝑝𝑖 × 𝑡 𝑡
the cycle time of the processor, the ultimate purpose is to reduce the total execution time of the 
software. Keeping track of  helps us understand how many bubbles our processor design 𝑐𝑝𝑖
creates and helps us decide whether implementing an aggressive bypassing is beneficial, just like 
the transition we have from the stalling splitted X0/X1 processor (4.1.1) to bypassing splitted 
X0/X1 processor (4.1.2). A lot of this is contributed by branch penalty. By adding an extra stage 
before branch resolution, the process wastes an extra cycle for every mispredicted branch 
instruction. Since we had not implemented a branch predictor, the extra cycle hurts our CPI 
tremendously. 

For design 4.1.1, there is a noticeable increase in the number of cycles, about 30% 
,compared to that of our baseline design which is reasonable because we use simple stalling to 
deal with read-after-write dependency between X0 and X1, and thus did not take full advantage 
of pipelining.  

For design 4.1.2, we see an obvious decrease in the number of cycles, about 10%, for 
each benchmark because of the additional bypass path. The path successfully reduces the amount 
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of bubbles required between instructions with RAW hazards. Even though we still need to stall 
for multiplication, shifting, and comparison, eliminating bubbles for most common instructions 
such as add significantly contributes to our . 𝑐𝑝𝑖

For design 4.2.2, we continue to see an increase in the number of cycles for about 20%. 
This is again due to the extra stall logic and branch misprediction penalty. As the number of 
instructions squashed goes from 3 to 4, we lose many cycles as the benchmarks contain for loops 
that are usually taken. 

For design 4.3.1, the trend continues as expected. In an effort to decrease cycle time, we 
sacrifice CPI by moving branch resolution to stage M, further increasing the misprediction 
penalty from 4 to 5, resulting in the number of cycles increasing for about 100. 

For design 4.3.2, we see a slight decrease in the number of cycles. However, for 
benchmarks such as sort, there are many function calls and therefore the number of cycles goes 
down by 30. 

Generally, as we come up with a new design, we see an increase in the number of cycles. 
This is to be expected, as our goal is to sacrifice CPI for cycle time. By separating stages, we 
were hoping to see a dramatic decrease in cycle time and therefore the overall execution time can 
be improved. As we see in table 6, this is not the case, unfortunately. 
 

 Base- 
line 

X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2) 

Branch 
Resolution in 

W (4.3.1) 

JAL in 
D0 

(4.3.2) 

sort/ns 17848.8 23390.91 21475.66 25661.49 28155.9 27892.62 

accum/ns 734.4 999.99 990.64 1247.22 1414.78 1402.38 

bsearch/ns 3427.2 5302.53 4243.16 5319.75 5854.7 5806.08 

vvadd/ns 1214.4 1494.45 1356.64 1614.99 1794.51 1779.12 

mfilt/ns 7392 9006.06 8405.8 10130.28 10871.2 10761.66 

cmult/ns 2654.4 3585.45 3308.64 3951.99 4207.51 4173.12 

Table 6. Benchmark Execution Time  
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Figure 48. Execution Time for Each Design with Minimum Time Constraint 

 
​ Since the number of cycles with our latest design has increased for all benchmarks 
compared to the baseline design, we need a decrease in cycle time in greater percentage in order 
to see a decrease in overall execution time, which is the product of the cycle time and the cycle 
count. As discussed in 6.1, the cycle time has not evolved as expected. Instead of going down for 
each design, the cycle time generally increases with some fluctuations. Since both cycle time and 
CPI increased, it is not surprising that the execution time for each benchmark increases. It is fair 
to say that we did not achieve our original goal and we see no speedup at all despite our efforts. 
 
6.3 Area 
 

From an area perspective, we push the design through the flow twice, one with its 
minimum cycle time and the other with uniform timing constraint, hoping we can get different 
insights from the result. 

 

 Baseline X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2) 

Branch 
Resolution 
in W (4.3.1) 

JAL in 
D0 

(4.3.2) 

Design 
area/  𝑢𝑚2 19051.71 20283.298 20467.37 21631.918 21632.982 22170.036 

Table 7. Design Area with Minimum Time Constraint 
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 Baseline X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2) 

Branch 
Resolution 

in W 
(4.3.1) 

JAL in 
D0(4.3.2) 

Design 
area/  𝑢𝑚2 18799.434 19300.162 20146.236 21547.209 21632.982 22014.593 

Table 8. Design Area with Uniform Time Constraint (1.27ns) 

 
Figure 49. Area for Each Design with Minimum Time Constraint 

 
In table 7 and figure 49, we listed the area of each design with their optimal timing. It is 

reasonable for the design area to increase each time we make modifications. There are great 
leaps in the design area from both baseline to 4.1.1 and from 4.1.2 to 4.2. As we add more stages 
to the design, we require more pipeline registers in both the datapath and the control unit. 
Besides, as we have higher demand for aggressive bypassing, we need more and larger muxes. 
Both factors contribute to the design area. From 4.1.1 to 4.1.2, the muxes needed for bypassing 
increases design area by 0.91%. From 4.2 to 4.3.1, since we only move the position of PC 

redirection without adding extra logic, the area only change by 1 . As indicated in table 8 and 𝑢𝑚2

figure 49, as we release the timing constraint for some of the designs, we can see an 
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improvement in design area. It is confusing why we have a 1.21% increase in area when 
changing from 4.3.1 to 4.3.2 design since the only change we make is to move JAL components 
from D1 stage to D0 stage. For 4.1.2 the design area is even slightly higher under looser time 
constraints. We suspect that changes in design influence the placement of standard cells and the 
routing of the wire, which reflects the uncertainty of the ASIC flow. 
 
6.4 Power and Energy  

 

 Baseli
ne 

X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2) 

Branch 
Resolution 
in W (4.3.1) 

JAL in 
D0(4.3.2) 

energy/nJ 384.5 483.4 487 488.4 529.7 547.8 

Table 9. Design Energy Consumption for ubmark-sort with Minimum Time Constraint 
 

 
Figure 50. Energy for Each Design 

 
​ To analyze the power and energy for each design, we use the waveform generated by the 
same benchmark, ubmark-sort, run by each design. As seen in table 9 and figure 50, there 
exists an increase in energy across all designs when compared to their previous iterations. This is 
expected because we added extra logic for every iteration and they cost extra energy. The most 
significant increases we see are from baseline to 4.1.1 and from 4.2 to 4.3.1. From baseline to 
4.1.1, the ALU structure is completely different and hence we see the massive increase as more 
computation is required. From 4.2 to 4.3.1, a drop unit is added and we believe that might be the 
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cause as it is doing extra work every time a data memory request goes through it. At other 
iterations, the change in energy is pretty insignificant as we only made minor changes such as 
adding a few registers to the datapath.  
 
 

 Base
line 

X0/X1 with 
Stalling 
(4.1.1) 

X0/X1 with 
Bypassing 

(4.1.2) 

D0/D1 
(4.2) 

Branch 
Resolution 
in W (4.3.1) 

JAL in 
D0(4.3.2) 

power/mW 18.6 17.6 19.5 15.9 16 16.7 

Table 10. Design Power Consumption for ubmark-sort with Minimum Time Constraint 

 
Figure 51. Power for Each Design 

 
​  As seen in table 10 and figure 51, the power experiences an inexplicable trend. Without 
4.1.2, it looks somewhat like a quadratic trend, with the trough at 4.2.2. However, power does 
not matter as much as energy and it fluctuates a lot depending on the dataset as well as the 
implementation itself as it is affected by many factors like overall energy as well as cycle time. 
​  
​ In order to increase performance of the original 5-stage pipelined processor, we tried 
different ways to decrease the cycle time. We thought that some stages might have more logic 
than others and we could separate those stages in halves so that the critical path would be 
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shortened by half effectively. Therefore, we separated X into X0/X1 and D into D0/D1, hoping 
that the critical path would be shortened. We also erased some bypassing paths that are critical 
paths hoping that we could decrease cycle time in exchange of the increasing CPI. However, as 
we gradually discovered, the ASIC flow does an amazing job in optimizing the timing of 
different paths. As seen in figure 46, for each design, there are not one but dozens of paths that 
meet the timing constraint by just a little. When eliminating the one path, we inadvertently 
interfere with place and route and thus increases the delay in all these other paths. The sad truth 
as described in section 6.1 and 6.2 is that the numerous efforts and approaches we took did not 
decrease the execution time of any of the benchmarks. Every one of them increased by at least 
50% compared to the baseline design as both the CPI and the cycle time increased. The area and 
energy also increased, albeit not significantly. Our failed attempt is a valuable lesson that timing 
is very tricky when it comes to ASIC design and modern ASIC tools are very effective when it 
comes to balancing paths and meeting timing. 
 
8. Literature Review 
[1] A. Bashteen, I. Lui, and J. Mullan, “A superpipeline approach to the MIPS architecture,” 
COMPCON Spring 91 Digest of Papers.  
 

A superpipeline approach to the MIPS architecture, published in 1991 by three 
employers of MIPS Computer Systems, Inc., talks about the rationale behind implementing 
superpipelining instead of superscalar and VLIW to achieve a higher level of performance on the 
new generation of MIPS processors. The old generation of MIPS processors has five stages, 
much like the five-stage processors that we learned about in ECE 4750. The authors noted that 
many stages only take half a clock cycle and the entire pipeline can be broken down into smaller 
stages with a deeper pipeline. Mainly, accesses to the instruction cache as well as to the data 
cache can be split into two states, decreasing the clock cycle requirement. 

Superscalar and VLIW processors try to increase performance by running multiple 
instructions in parallel, and they have their disadvantages, mainly due to having to replicate 
hardware function units and extra logics required to handle dependencies between instructions. 
They also lack extensibility and backward compatibility. Superpipelined processors do not face 
these challenges and result in a faster cycle time while maintaining backward compatibility, but 
that is not to say that superpipelining is perfect. In the superpipelined version of the MIPS 
processor, taking branches costs “as much as 20-30%” when discussing the performance.  
 
[2] N. P. Jouppi, and D. W. Wall, “Available instruction-level parallelism for superscalar and 
superpipelined machines,” ACM SIGARCH Computer Architecture News, April 1989  
 
​ Available instruction-level parallelism for superscalar and superpipelined machines, 
published in 1989 by Norman Jouppi and David Wall from Digital Equipment Corporation, 
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Western Research Lab, discusses the approach they took to evaluate parametrized superscalar 
and superpipelined machines with an emphasis on how their performances are improved and 
limited by instruction-level parallelism.  

Ideally, a superpipelined machine should have almost the same performance as the 
superscalar machine. A superscalar machine of degree n can issue n instructions in the same 
cycle and thus have a throughput of n and a superpipelined machine of degree m, by making the 
assumption that the cycle time of a machine is many times larger than the add or load latency, 
has m times more stages but 1/m cycle time of the base machine. What is flawed about the 
assumption is that a normal program has instruction-level parallelism of 2, and only by carefully 
manipulating the Assembly code can we bring it up above 4. Besides, we assume that the latency 
of each stage is equal -- for operations like memory access that may take multiple cycles when 
misses happen, the deeper the pipeline level the longer we need to wait. Furthermore, they also 
briefly mentioned how cache performance and cache misses can affect machine performance. All 
of these concerns provide us with ideas on what factors should be considered for evaluation and 
how we can improve our superpipelined machine based on the performance bottlenecks. 
 
[3] Ching-Long Su and A.M. Despain, “Minimizing branch misprediction penalties for 
superpipelined processors,” in Proceedings of MICRO-27. The 27th Annual IEEE/ACM 
International Symposium on Microarchitecture, San Jose, CA, USA, 1994 
 

This paper discusses and evaluates the methods to reduce branch misprediction rates and 
branch penalties in order to reduce branch misprediction penalties. 

Firstly, there are two approaches to deal with branch misprediction rate. One is dynamic 
branch schemes implemented in hardware to predict branch behavior at run-time. The other is 
static branch schemes achieved by the compiler to schedule safe instructions into branch delay 
slots at compile-time. The authors implemented two static branch schemes: compiler predicting 
the branch outcomes based on program behavior at compile-time and run-time profile 
information. Compared with only the program behavior, a combined static branch prediction 
method improves the accuracy from 71.85% to 86.38% on average. Regarding the dynamic 
branch schemes, the authors implement a two-level adaptive branch target buffer and a 
correlation-based scheme that takes advantage of the “relationship between nearby branches to 
improve accuracy.” Secondly, Branch With Masked Squashing(BWMS) is used to reduce branch 
penalties by filling branch delay slots as much as possible with safe instructions first and then 
unsafe ones from target blocks. 

In general, the authors conclude that the prediction accuracy of the dynamic prediction 
schemes with a small Branch Target Buffer (BTB) can be higher than of the static prediction 
scheme. However, if we want dynamic prediction schemes to perform better than advanced static 
branch schemes (BWMS), a large BTB (“more than 2048 entries”) is required.  
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8. Appendix 
4.1.1: Path Slack Histogram; Amoeba Plot; Color Reference 
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4.1.2: Path Slack Histogram; Amoeba Plot; Color Reference 
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4.2: Path Slack Histogram; Amoeba Plot; Color Reference 
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