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1. Introduction

One major topic of computer architecture is strategies to improve performance for
general-purpose processors. The execution time of a program is determined by the following
equation: T = i X cpi X twhere i denotes the instructions in total, cpi denotes the cycles per
instruction, and ¢ denotes cycle time. Our goal is to improve the performance by reducing ¢ and
maintaining a cpi of approximately 1. The cycle time of the processor is determined by the
critical path so one effective way to break the critical path into balanced stages is to insert
registers in between, also known as pipelining. We intend to divide the well-known 5-stage
processor further based on datapath characteristics and therefore achieve superpipelining. One
rudimentary example discussed was splitting the M/memory stage into 2 stages, MO and M1.
Since memory operations take a long time due to the cache/memory delay, the critical path can
be shortened and clock frequency can be raised, and throughput can be greatly improved as a
result.

On the other hand, superscalar and VLIW processors exploit instruction-level parallelism
and decrease cpi by running multiple instructions in parallel. In theory, a superpipelined design
that doubles its pipeline stages and a superscalar design that issues two commands can both
achieve a throughput two times higher than a normal pipelined processor under ideal conditions
(no hazards/dependencies). However, superscalar and VLIW have their disadvantages.
Superscalar processors need to either replicate their hardware units or limit how instructions can
be combined to be processed in parallel. VLIW processors have multiple instructions in one
word for different functional units but compilers have to decide that at compile time. If the
program cannot be broken into parallel instructions that operate on different function units, the
parallelism is rendered useless and much of the code size is wasted. Also, both suffer from
dependencies between instructions as well as extra logic required for those dependencies and
require extra help from smart compilers. They also lack extensibility and compatibility as
increasing the level of parallelism means having to alter the machine code for the same program.
Therefore, we believe that superpipelining is our best approach to improve performance.

After deciding on superpipelining, we start measuring how throughput is affected by the
number of stages. Compared to the simple single-cycle processor, our baseline, a bypassing
S5-stage pipelined processor, divides the main datapath into five stages: fetch, decode, execute,
memory, and writeback, and thus reduce the critical path. However, as we increase the number of
stages, we need to take care of more hazards caused by the dependencies among stages as they
cause stalling or squashing, increasing the cpi and decreasing the processor performance. In
response, we developed direct, unit and random tests to make sure each instruction works and
then a sequence of mixed instructions to examine our processor under a variety of hazards.

Now we see the increase in the number of stages helps us reduce the cycle time by
reducing the critical path and eventually improve program execution time, a question arises:
what is the optimal number of stages for a pipelined processor? This question involves the
exploration of the relationship between the number of stages and the number of hazards that



cannot be solved by bypassing. Under such motivation, our team decides to explore the
super-pipelined processor capable of running the tinyRV?2 instruction set as our alternative
design. We apply the same tests from baseline design and develop specific tests to examine the
newly emerged hazards.

As discussed in section II, we will use Fan-out of 4 (FO4) delay as a standard time unit to
measure the propagation delay of our critical path so we can study our processors regardless of
technology constraints. We will calculate FO4 delay for both of our designs and examine the
difference. FO4 delay is also used to measure the processor cycle time trend across history so we
can compare our designs with others by adopting this standardized unit.



2. FO4 Spice Simulation

To measure the propagation delay of a path, we use the propagation delay of a minimum
size inverter (3RC) as a relative delay unit. Similarly, to reduce the critical path length and build
a high-frequency superpipelined processor, we need a unit that makes our processor cycle time
comparable to processors built with different technologies. In this section, we introduce a
technology-agnostic metric: Fan-out of 4 (FO4) delay.

For most technologies, the optimal fanout of buffers driving large loads is generally
between 2.7 to 5.3, which makes FO4 a good delay measurement unit as tools try to select gates
that fit into the fanout range. As a delay metric, one FO4 is the delay of an inverter, driven by an
inverter four times smaller, and driving an inverter four times larger. Both conditions are
necessary since the rise and fall time of the input signal affect the delay as well as the output
load. The FO4 delays of various technologies are shown in figure 1.

TsMC

Vendor Orbit HP AMI AMI TSMC | TSMC | IBM | IBM | IBM
Model MOSIS | MOSIS | MOSIS | MOSIS | MOSIS | MOSIS | TSMC | IBM | 1IBM | IBM
Feature Siz&f nm 2000 200 600 a00 350 250 180 130 90 65

Fop V 5 5 5 3.3 33 2.5 1.8 1.2 1.0 1.0

[_iates

C‘x (delay) fF/um 1.77 1.67 1.55 1.48 1.90 230 167 1.04 097 (.80
Cg (power) fF/um 2.24 1.70 1.83 1.76 2.20 292 2.06 1.34 1.23 1.07
FO4 Inv. Delay ps 856 297 230 312 210 153 75.6 45.9 7.2 17.2

Figure 1: FO4 Delay Characteristics for a Variety of Processes (Weste and Harris p.312 Table 8.5)

To estimate the FO4 delay of the NanGate 45nm standard-cell library we are using, we
used ngspice to simulate the inverter circuit. To gain more understanding of the characteristics of
nMOS and pMOS, we first built our own inverters with nMOS and pMOS in the first spice deck.
We created a scaling factor so transistor sizes can be expressed as multiples of the minimum
width of an NMOS transistor. Since the nMOS of INV_X1 in the standard cell library has a
width of 415nm and a length of 50nm, we used a scale factor such that a width of 1 is equal to
450nm and the length is approximately 0.1 unit. To get a fanout of 4, we used a parameter H=4
to increase the width of the inverter. In this model, we used 5 inverters, each 4 times larger than
the inverter before it in the path. As seen in figure 2, the first two inverters shape the input
waveform, the third one is used for the FO4 delay measurement, and the last two are loads of the
path. Using transient analysis, we measured the rising and falling edge propagation delay and
average these two to get an inverter FO4 delay of 16.74ps.
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Figure 3: ngspice Waveform (Inverters built with nMOS and pMOS)

Measurements for Transient Analysis

tpdr = 1.532255e-11 targ= 1.958756e-10 trig= 1.885530e-18
tpdf = 1.816119e-11 targ= 5.911459e-11 trig= 4.09533%e-11
tpd = 1.6741%9e-11

Figure 4: ngspice Transient Analysis (Inverters built with nMOS and pMOS)

As we use cells from the NanGate 45nm library when pushing our designs through the
ASIC flow, we also built another spice stack using standard inverter cells. Since there are only
inverters of size X1, X2, X4, X8, X16, and X32, we used INV_X1, INV_X4, and INV_X16 to
build a three-stage path with the first inverter shaping the input, the second as the device under
test, and the third as the load. By inspecting the library we find both standard cells and standard
cells with parasitic delays. Comparing results in figure 4, figure 5, and figure 6, we conclude that
the standard cell library includes optimizations on the layout as well as the relative sizes of



nMOS and pMOS transistors so it has a smaller FO4 delay. By adding parasitic delay to the
standard cell, the model more accurately reflected the delay which is longer than the ideal model.
Our estimated FO4 is slightly below the FO4 delay of the IBM 65nm process, which is very
reasonable.

Measurements for Transient Analysis

tpdr = 1.402418e-11 targ= 3.51244@e-11 trig= 2.110022e-11
tpdf = 1.280554e-11 targ= 1.750416e-10 trig= 1.622361le-10
tpd = 1.34149%9e-11

Figure 5: ngspice Transient Analysis (Inverters from stdcells.spi)

Measurements for Transient Analysis

tpdr = 1.524427e-11 targ= 3.692069e-11 trig= 2.167642e-11
tpdf = 1.397153e-11 targ= 1.768417e-10 trig= 1.628701le-18@
tpd = 1.46079%9e-11

Figure 6: ngspice Transient Analysis (Inverters from stdcells-Ipe.spi)

The FO4 delay gives us a relatively accurate metric to assess how well our superpipelined
processor divides the stages. According to Hrishikesh ez al. [4], the optimal depth for each
pipeline is 6-8 FO4 delays. Our baseline 5-stage bypassing processor has a cycle time of 1.2ns,
which is around 82 FO4 delays. By comparing with other processors of different technologies
and eras in figure 7, we find our baseline processor at a similar position as the Power/PowerPC
processor in 1994, which also had about five stages. The FO4 delay provides a metric for
processor cycle time and helps us set goals and evaluate performance of our superpipelined

processor optimization.
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Figure 7: Microprocessor Cycle Time Trends (Weste and Harris p.175 Fig 4.38)




3. Baseline Design

The baseline design focuses on implementing a five-stage pipelined processor with
hardware stall and bypass to handle data hazards. One of the most important features of the
processor design is the separation of the datapath and control unit: such implementation
corresponds to the actual separation between microarchitecture and ISA. Control unit translates
the program into hardware language - signals and datapath understands the instruction semantics
and performs the executions. We can easily change the instructions and control tables without
changing the datapath design - a strategy creating an interface between software and hardware
and ensures the safety of the design. This baseline design is a good start for alternative design
since this five-stage pipelined processor divides the stages in a somewhat balanced manner,
based on datapath characteristics and state functionality.

3.1 Datapath

As shown in Figure 8, the datapath is split into five stages: fetch, decode, execution,
memory, and writeback. Right before the fetch stage, the program counter (PC) is sent to
instruction memory. There is an imem drop unit if the requested instruction is not used, which
happens due to a squash. Fetch stage increases the PC and reads the instruction pointed by the
PC in the memory. A PC mux is used to select multiple PC targets, which can be generated from
a branch or a jump. In the decode stage, instruction fetched in the previous cycle is sent to the
control unit, which will interpret the 32-bit instruction into different control signals and send
them back to the datapath; besides, the decode stage is also responsible for sending input data
into the arithmetic logic unit (ALU) and the multiplier. The execution stage takes input from the
decode stage, executes the instruction with ALU or multiplier, and outputs the data to the next
stage; memory request is also sent if needed by the instruction. In the memory stage, memory
response data is sent from the memory and the control unit sends the signal to decide whether to
use memory data or use ALU data. The last stage, write back stage writes data into the register
file, and whether the stage is useful depends on the instruction type.

Between pipeline stages there exist registers. They store the results of each stage and pass
it onto the next stage if there are no stall signals. If there are they will hold the values until the
stall is finished. These registers are critical as they are how we make a single-cycle processor
into a pipelined processor.

3.2 Control Unit

As illustrated in the previous paragraph, the control unit determines all the signals that
select mux inputs and controls pipeline register timing. The most important part, the decode
stage, defines a control table that interprets instructions into signals and outputs them to the
datapath. These signals include mux control signals, register enable signals, and data type
signals. These different signals are passed to different stages accordingly, which maximizes the
processor’s performance. Another important function of the control unit is to issue stall and
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Figure 8: Baseline Processor Datapath
(https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-lab2-xcel. pdf)
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squash signals to avoid data hazards. With all the signals interpreted by the control unit, it is easy
to know what instructions are being executed in different stages so that we can implement stall
and squash signals to prevent the pipeline from proceeding until data hazards are resolved.

3.3 Implementation Details

As we are following the Tiny RISC-V 2 processor ISA, we implemented 34 instructions
that the processor supports by taking an incremental approach. The first set of instructions that
we implemented is the register-register type instructions: add, mul, and, or, xor, slt, sltu,
sra, srl, s11. For those instructions, we declared new ALU function types in the D stage and
added them to the control table. The difference between those instructions is their ALU function
type. However mul is very different. We had to add an execute result mux in the X stage. This
mux can select from PC increment output, ALU output, or the single stage multiplier output. We
also had to set the multiplier request and response in the control table for stall and squash signals.
The second set of instructions we implemented is the register-immediate type instructions:
addi, andi, ori, xori, slti, sltiu, srai,srli, slli, auipc. Those instructions are
very similar to their corresponding register-register instructions except that they use immediate
for operand 2 mux selection and have an immediate type select.

The third set of instructions we implemented is the memory instructions 1w and sw. Load
and store involves sending memory request messages and waiting for memory responses in the
M stage. Memory access address is calculated in the X stage. If it is a sw instruction, data is read
from the register and passed into the memory request message; otherwise if it is a 1w instruction,
we send a read type memory request and wait for the data from the memory response. The fourth
set of instructions we implemented is the jump instructions jal and jalr. In the F stage, the
PC selection logic is designed such that if a jump instruction is interpreted in D stage, we would
use the PC from D stage. In the D stage, we first declare the new jump types, and then we check
if the instruction is jal to redirect the PC if necessary. For jalr instructions, we calculate the
target branch in the X stage with a new ALU function. If instruction is jalr, we need to use the
jalr target as the next PC. The fifth and final set of instructions we implemented is the branch
instructions: bne, beq, blt, bltu, bge, and bgeu. We first declare those branch types in D
stage and fill the control table accordingly. Then we check if the branch is taken in the X stage
and redirect the PC if it is taken.

Some efforts are put into creating correct stall, squash, and bypass logics to handle
hazards that appear in a pipelined processor, including read-after-write data hazard and control
hazard brought by branch and jump instructions. Bypassing allows us to avoid hazards without
having to stall for every single instruction; as a result, the overhead for load-use data hazard
becomes only one cycle. We only have to stall for load word instruction since the data needed to
be bypassed is ready at M stage instead of D stage, so the load-use latency is two cycles.

10



As bypassing data is used to replace the original data output of the register file and we
still want the immediate and the PC signals to be potential operands for the ALU unit, we choose
to place the bypassing muxes between the register file and the select mux for its corresponding
operand. Each bypass mux has four inputs, outputs from the bypassing paths of X, M and W
stage and the output of the register file. The output of each bypass mux is connected to an input
of its corresponding operand select mux in stage D. If bypassing is needed for resolving the
hazard, the bypassing mux select signal will choose the bypassed data and the operand select
mux will use the output from the bypassing mux.

As for the control units, we have six bypassing signals and two ostall signals for load
use dependency. The bypassing signals indicate if a bypass is needed and, if needed, from which
stage among X, M or W does the bypass path come from, and which operand, op1 or op2, will
use the data. The load-use dependency is an exception because loaded data is available at the end
of the M stage and we have to bypass data back to the D stage to resolve this hazard. To correctly
handle stalls and squashes for branches and jump, we have additional status and control signals.
jal needs to be resolved in the D stage and branches and jalr in the X stage. We change the
PC target mux selection signal based on the instruction type and originate squashes from the
stage if the PC is redirected.

The separation of the datapath and control unit is a clear example of modularity and
encapsulation. It prevents other modules from being modified while changes are made.
Modularity is also shown in the datapath design. As we instantiate registers, muxes, ALU, and
the multiplier from existing modules, we create a hierarchy of modules with the processor design
at the top, datapath, and control unit in the middle, and other basic components at the bottom.
This adds simplicity to the design, makes it more extensible, and decreases the chance of
corrupting other functionalities during implementation. As the stall strategy is purely hardware,
bringing convenience to the programmers who don’t need to worry about adding extra operations
to avoid data hazards.

11



4. Alternative Design

To implement a superpipelined processor based on the original baseline design, we

decided to take an incremental approach, splitting the critical path of the previous design and

then push the asic flow again to decide the constrainting path of the new design. The best timing

we can achieve for the 5-stage bypassing processor is 1.2 ns, which is approximately 82 FO4

delays. The critical path starts from the register for operand 2 in the X stage, goes into the ALU,

enters the control logic from ALU’s branch prediction signal, and ends at the instruction memory

request register. The gate level list for the critical path is shown in figure 9 and figure 10. So the

first step we take is to split the X stage.

Instance Arc | Cell | Slew | Delay | Arrival | Required
| | | Time Time
clk[e] ~ 9.025 -9.134 -0.134
CTS_ccl_a_BUF_ideal_clock_G@O_L1_1 CLKBUF_X2 0.925 | 0.001 -0.133 -0.133
CTS_ccl_a_BUF_ideal_clock_G@_L1_1 Ar=>Z" CLKBUF_X2 09.036 | 0.064 -9.069 -0.069
proc/v/dpath/CTS_ccl_a_BUF_ideal_clock_G@_L2_3 CLKBUF_X2 09.036 | 0.002 -0.067 -0.0867
proc/v/dpath/CTS_ccl_a_BUF_ideal_clock_G@_L2_3 Ar=>Z" CLKBUF_X2 09.927 | 0.059 -0.009 -0.608
proc/v/dpath/op2_reg_X/clk_gate_q_reg/latch CLKGATETST_X4 | 9.027 | @0.e01 -9.008 -0.0608
proc/v/dpath/op2_reg_X/clk_gate_q_reg/latch CK ~ => GCK ~ | CLKGATETST_X4 | 9.027 | 0.854 0.046 0.046
proc/v/dpath/op2_reg_X/q_reg_11_ DFF_X1 9.027 | 0.002 9.048 0.048
proc/v/dpath/op2_reg_X/q_reg_11_ K~—>0Q* DFF_X1 9.078 | 0.174 9.221 9.222
proc/v/dpath/alu/1t_x_7,/U689 NOR2_X2 09.078 | 0.002 09.223 0.224
proc/v/dpath/alu/1t_x_7/U689 Al ~ => ZN v NOR2_X2 09.017 | 0.009 0.233 0.233
proc/v/dpath/alu/1t_x_7/U706 NOR2_X1 9.017 0.000 9.233 0.233
proc/v/dpath/alu/1t_x_7/U706 Al v => ZN ~ NOR2_X1 09.018 | 0.028 0.261 0.261
proc/v/dpath/alu/1t_x_7/U707 A0I22_X1 09.018 | 0.000 0.261 0.261
proc/v/dpath/alu/1t_x_7,/U707 B2~ ->ZN v A0I22_X1 09.927 | 0.026 0.287 0.287
proc/v/dpath/alu/1t_x_7/U710 A0I221_X1 09.027 | 0.000 0.287 0.287
proc/v/dpath/alu/1t_x_7/U710 B2 v -> ZN © A0I221_X1 9.043 0.087 9.373 0.374
proc/v/dpath/alu/1t_x_7/U714 A0I211_X1 09.943 | 0.000 0.374 0.374
proc/v/dpath/alu/1t_x_7/U714 A~ ->ZNv A0I211_X1 09.018 | 0.025 0.399 0.399
proc/v/dpath/alu/1t_x_7/FE_RC_840_0 0AI21_X2 0.018 | 0.000 09.399 0.400
proc/v/dpath/alu/1t_x_7/FE_RC_840_0 Av->2ZN~ 0AI21_X2 09.019 | 0.025 0.424 0.424
proc/v/dpath/alu/1t_x_7/U748 A0I21_X1 09.919 | 0.000 0.424 0.425
proc/v/dpath/alu/1t_x_7/U748 Bl ~ ->ZN v A0I21_X1 9.011 | 0.020 0.444 0.444
proc/v/dpath/alu/1t_x_7/U781 0AI21_X2 09.011 | 0.000 0.444 0.444
proc/v/dpath/alu/1t_x_7,/U781 Bl v ->2ZN" 0AI21_X2 09.041 | 0.057 0.501 0.501
proc/v/ctrl/FE_OFC368_br_cond_lt_X INV_X1 09.941 | @0.e01 0.502 0.502
proc/v/ctrl/FE_OFC368_br_cond_lt_X A™=>ZNvV INV_X1 09.910 | 0.010 0.511 0.512
proc/v/ctrl/FE_RC_594_0 0AI33_X1 09.010 | 0.000 08.511 0.512
proc/v/ctrl/FE_RC_594_0 Alv > 2N~ 0AI33_X1 09.958 | 0.042 0.553 0.554
proc/v/ctrl/U148 NAND2_X1 0.858 | 0.000 08.553 0.554
proc/v/ctrl/U148 Al ~ => ZN v NAND2_X1 09.920 | 0.026 0.579 0.580
proc/v/ctrl/Ul53 0AI211_X2 0.920 | 0.000 0.579 0.580
proc/v/ctrl/U153 Av->2ZN" 0AI211_X2 09.925 | 0.029 0.608 0.609
proc/v/ctrl/U156 NAND2_X2 09.925 | 0.000 0.609 0.609
proc/v/ctrl/U156 Al ~ => ZN v NAND2_X2 09.014 | 0.024 0.633 0.633
proc/v/ctrl/U158 A0I21_X2 0.014 | 0.000 0.633 0.634
proc/v/ctrl/Ul58 B2 v->2ZN" A0I21_X2 09.925 | 0.037 0.670 0.671
proc/v/imem_drop_unit/FE_RC_831_0 NOR3_X1 09.925 | 0.000 0.670 0.671
proc/v/imem_drop_unit/FE_RC_831_0 Al ~ > ZN v NOR3_X1 09.009 | 0.015 0.686 0.686
proc/v/imemresp_q/genblkl_ctrl/U6 INV_X2 9.009 | 0.000 9.686 0.686
proc/v/imemresp_q/genblkl_ctrl/U6 Av->2IN~* INV_X2 9.087 | 0.012 9.698 0.699
proc/v/imemresp_q/genblkl_ctrl/uU7 NANDZ_X1 9.007 | 0.000 9.698 0.699
proc/v/imemresp_q/genblkl_ctrl/U7 Al ~ =—> N v NAND2_X1 9.020 | 0.015 9.713 8.713
proc/v/ctrl/ul60 NAND2_X2 09.020 | 0.000 0.713 0.713
proc/v/ctrl/U160 Al v => ZN ~ NAND2_X2 9.011 0.020 9.733 0.734
proc/v/ctrl/U162 NAND2_X1 09.011 | 0.000 0.733 0.734
proc/v/ctrl/Ul62 Al ~ => ZN v NAND2_X1 09.910 | 0.016 0.750 0.750
proc/v/ctrl/FE_OFC485_imemresp_deq_en INV_X2 9.010 | 0.000 9.750 0.750
proc/v/ctrl/FE_OFC485_imemresp_deq_en Av-—>2IN" INV_X2 9.011 | 0.019 9.768 08.769
proc/v/ctrl/U166 NOR2_X2 9.011 0.000 9.768 0.769
proc/v/ctrl/U166 Al ~ => ZN v NOR2_X2 09.008 | 0.010 0.779 8.779
proc/v/imemreq_q/genblkl_ctrl/Us INV_X2 9.008 | 0.000 0.779 0.779
proc/v/imemreq_q/genblkl_ctrl/U5 Av->7N~* INV_X2 9.009 | 0.015 9.794 8.795
proc/v/imemreq_q/genblkl_ctrl/U9 NAND2_X1 9.009 | 0.000 9.794 8.795
proc/v/imemreq_q/genblkl_ctrl/U9 A2~ => N v NAND2_X1 9.024 | 0.014 9.809 0.809
proc/v/U4 AND2_X2 09.924 | 0.000 0.809 0.809
proc/v/u4 A2 v ->2INv AND2_X2 0.908 | 0.040 0.849 0.849
proc/v/imemreq_q/genblkl_ctrl/U6 A0I21_X1 9.008 | 0.000 9.849 0.850
proc/v/imemreq_q/genblkl_ctrl/U6 Bl v —>ZN" A0I21_X1 9.041 | 0.035 9.884 0.884
proc/v/imemreq_q/genblkl_dpath/qstore/FE_RC_850_0 AND2_X1 9.041 | 0.000 9.884 0.884
proc/v/imemreq_q/genblkl_dpath/qstore/FE_RC_8506_0 A2 ~ => ZN ~ AND2_X1 9.009 | 0.040 9.924 0.924
proc/v/imemreq_q/genblkl_dpath/qstore/clk_gate_rfi CLKGATETST_X4 | 9.009 | 0.000 9.924 0.924
le_reg_0_/latch

Figure 9. Gate Level Critical Path for 5-stage processor
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Figure 10. Critical Path for 5-stage Processor (Based on
https://'www.csl.cornell.edu/courses/eces745/handouts/ece5745-lab2-xcel.pdf)
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4.1 Splitting X Stage into X0/X1

As the Arithmetic Logic Unit (ALU) is the main component of the X stage, we decide to
split the ALU into two different parts: the operation of the lower 16 bits of the operands are
finished in X0 stage and the remaining necessary data are passed into X1 to finish the higher 16
bits computation. With additional logic described in 4.1.2, this design is possible to avoid stalling
due to read-after-write dependencies between X0 and X1 by bypassing data from X0 back to D
and from X1 back to XO0. Instructions do not need to wait until the instructions they depend on to
finish computing at X1 stage.

4.1.1 Stalling Without Additional Bypassing

4.1.1.a Datapath

There are 14 instructions we need to support: arithmetic operations (add, sub), logical
operations (and, or, xor, nor), shift operation (s11, sr1, sra), comparisons (1t, 1tu), and
special operations (cp0, cpl, and adz). To support arithmetic operation, we need to pass a
carry out bit between the lower-16-bit ALU and the upper-16-bit ALU. Like what we would
do in a normal ripple carry adder, the carrry out bit indicates whether we need to
add/subtract 1 from the upper-16-bit addition/subtraction. The result of the lower-16-bit
computation is also passed through a register into the X1 to generate the final result. The logical
operation and the two copy instructions are the easiest to implement as they do not have any
dependencies between the upper and lower 16 bits so we keep the original implementation and
pass the output from X0 to X1 stage.

Even though shift operations take two 32-bit inputs, it only uses the lower 5 bits of
operand 2 to indicate the shift amount, which means we need to pass the shift opl value to
the X1 stage so that the upper 16 bits can shift with the right parameters. Instruction s11
performs a logical left shift, meaning there are 0 to 16 bits to be shifted into the upper 16 bit
position. So we pass the shift out bits into the upper-16-bit ALU together with the
lower-16-bit ALU output. In X1 stage we shift the upper 16 bit of the original operand 0 and or
the concatenated the results to generate the final output. Operation sr1 is a logical right shift,
meaning the upper 16 bits will be shifted to the lower 16 bit position. So we set shift out to
0, zero-fill the lower 16 bit position of operand 0 of the X1 stage (which is the upper 16 bits of
the actual operand 0), shift, and or the result with the output of X0 stage. Operation sra is the
arithmetic right shift and thus we use a $signed operation to decide whether to zero-fill or
one-fill the vacant bit-positions based on the sign of the original operand 0. Comparisons are first
determined by the comparison in the upper 16 bits. If they are of equal value, then the result of
the lower-16-bit ALU is used to decide the output. Operation adz is a special operation for the
JALR instruction. It performs an addition but masks the lowest bit to 0. So its implementation is
exactly the same as the add operation, but with the lowest bit connected to 0 in the
lower-16-ALU. Besides the 14 operations, ALU also calculates flags used for branch redirection.
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Figure 11. Datapath for X0/X1 Splitted Processor Without Additional Bypassing
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Flag ops 1t and ops_1tu have exactly the same implementation as the 1t and 1tu
operation, and ops_eq is implemented by doing comparison in both stages and output 1 if the
two operands are the same in both X0 and X1.

After fully testing the two components, we started the integration of ALU and the
processor. X0 stage is also responsible for sending the accelerator request message as they are
ready at the beginning of X0 stage. In the X1 stage, after the upper-16-bit ALU finishes
computation, its output is connected to the jump-and-link-register target and the data memory
request message address port. There is a mux after the ALU which is used to select the actual
output of the X1 stage among ALU results, multiplier response message, and PC+4 result for
jump-and-link based on the instruction type.

4.1.1.b Control Logic

As we add one more stage to the processor, we need to carefully consider the stall,
bypass, and squash logic for the processor. As we are implementing a basic 6-stage processor
that supports all of the functionality the baseline processor has, we did not have to include the
bypassing logic from X0 to D and from X1 to XO0. Instead, in the Decode stage, when the
processor realizes that the destination register of stage X0 matches with the operand registers in
stage D, we stall for one cycle to avoid hazard caused by read-after-write dependency; if the
instruction in X1 stage is a 1w, and its destination register matches with the operand register in
the D stage, we stall until we get the data back from the memory. Besides, as we implement the
processor to support the accelerator, we also need to stall at D stage if there is a csrrx
instruction in-flight at X0/X1 stage since its value will not be returned from the accelerator until
M stage. X0 stage only originates stall when the accelerator request is not ready; X1 stage
originates stalls if its instruction is multiplication and the multiplier is not ready to respond yet; it
also stalls if its instruction needs to send a data memory request but the memory is not ready to
take requests. X1 also originates a squash if it needs to handle a PC redirect for branch or jump
instruction. Same to our design in the baseline, one stage will be stalled if itself or any state after
it originates a stall, and will be squashed only when a stage after it originates a squash.

4.1.1.c Critical Path

By pushing the design through the ASIC flow, we get a minimum cycle time of 1.3 ns
and the critical path is at the D stage (illustrated in figure 12 and figure 13): it starts from the
pipeline register for instruction, goes through the register file and the bypassing muxes, and ends
at the operand register between D stage and X0 stage. This critical path shows that it might be
necessary for us to insert pipeline registers in the D stage after the register file to reduce the cycle
time.
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Figure 12. Gate Level Critical Path for X0/X1 Splitted Processor Without Additional Bypassing
(X1 in figure corresponds to X0 in report)
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Figure 13. Critical Path for X0/X1 Splitted Processor Without Additional Bypassing
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4.1.2 Bypassing in X0/X1 Stage

To avoid the extra bubble/stall introduced to the pipeline when executing back to back
dependent arithmetic instructions, we plan to add extra bypass logic to our processor, namely
from X0 to D and from X1 to X0. In the implementation described in 4./, the pipeline inserts a
bubble whenever the destination register of the instruction in X0 matches one of the two input
registers in D as the full 32-bit output will not be ready until the end of X1. To eliminate this
bubble, we can forward the lower 16-bit result from the end of X0 to the input muxes at the D
stage. We also need to add two additional input muxes at X0 so that the upper-16 bits can be
forwarded from the end of X1. This will retrieve some of the CPI as back-to-back dependent
instructions are extremely common in assembly. However, the extra delay slot from load-use
dependency cannot be resolved as the data from memory does not reach datapath until M.

4.1.2.a Datapath

Based on the above illustration, we add a bypassing path from X0 to the end of the D
stage: if the destination register of the instruction in X0 matches with any of the two operands in
D stage, the lower 16 bits of the X0 ALU computation result will be bypassed into the D stage;
similarly, two additional muxes are added at the end of X0 stage to conditionally bypass data
from X1 to X0. To make sure data is correctly stored into memory when there is a dependency
between data of the sw instruction and previous instruction destination, X1 result is also
bypassed to the memory request data port in XO.

4.1.2.b Control Logic

We still insert a bubble for the load-use dependency scenario as data loaded from
memory cannot be returned until the end of the M stage. If there is a match between accelerator
request instruction (csrw) operands and previous instruction destination, csrw waits until the
computation result is bypassed from X1 back to D stage as the accelerator request is sent in X0
stage. As there are dependencies between X0 and X1 stages, we add additional stall logic for
multiplication, comparison, and right shift operation. As the multiplier is given two cycles to do
the computation we wait until the end of the X1 stage to collect the result; comparison (1t, 1tu)
and right shift (sr1, sra) result are not ready until X1 stage because the lower 16 bits of
comparison operands are only useful when their higher 16 bits are the same and shifting right
means higher 16 bits of the operand will be shifted to the lower 16 bit position of the result.

4.1.2.c Critical Path

By pushing the design through the ASIC flow, we get a minimum cycle time of 1.25 ns
and the critical path is the bypassing path from the X1 stage to the D stage (illustrated in figure
15 and figure 16): it starts from the operand register in X1 stage, goes through the higher-16-bit
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Figure 14. Datapath for X0/X1 Splitted Processor Without Full Bypassing
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ALU, enters the execution result select mux, follows the bypassing path from X1 to D to the
muxes in D stage, and ends at the operand register between D stage and X0 stage. Combining
this critical path with the critical path we find for the non-bypassing 6-stage processor, we decide
the next step is splitting the D stage into DO/D1.

| clk[e] ~ | | @.824 | -@.133 | -8.145 |
| €TS_ccl_a_BUF_ideal_clock_Ge_L1_1 | CLKBUF_x3 | @.824 | @.e01 | -0.137 | -8.145 |
| €TS_ccl_a BUF_ideal_clock Ge_L1_1 O | CLKBUF_x3 | @.832 | e.@e1 | -0.077 | -8.034 |
| proc/v/dpath/CTS_ccl_s_BUF_idesl_clock_Ge_L2_2 | CLKBUF_X1 | @.830 | e.ea3 | -0.873 | -@.881 |
| proc/v/dpath/CTS_ccl_a_BUF_idesl clock_Ge _L2_2 AN o-> I | CLKBUF_x1 | @.e26 | @.@5% | -0.815 | -8.922 |
| proc/v/dpath/fopl_reg_X2/clk_gate_q_reg/latch | CLKGATETST_X2 | @.826 | @.e00 | -0.914 | -8.822 |
| proc/v/dpath/opl_reg_x2/clk_gate_g_reg/latch CK ~ -> GCK ~ | CLKGATETST_X2 | ©.807 | e.e2s | 0.815 | 8.008 |
| proc/v/dpath/opl_reg_X2/clk_gate_q_reg/FE_USKC1279 | CLKBUF_Xx2 | @.ee7 | @.ee8 | 0.915 | @.888 |
| _net5499 | | | | |
| proc/vidpath/opl_reg X2/clk gate q_reg/FE_USKC127% | &4 & -»> Z & | CLKBUF_ X2 | @.e29 | @.e58 | ©.865 | 2.858 |
| _net5499 | | | | |
| proc/vidpath/opl_reg X2/q_reg 1@ | DFF_X1 | @.829 | @.@el | ©.865 | 8.858 |
| proc/v/dpathfopl_reg_X2/q_reg_18_ CK * -> Qv | DFF_X1 | @.827 | @.116 | ©.181 | 8.174 |
| prec/v/dpath/alu_higherlg /use | Inv_ X1 | @.027 | @.epa | ©.185 | B8.178 |
| proc/v/dpath/alu_higherls/Use A - ZN & | INV_XL | @.834 | @.e51 | @.236 | @.229 |
| proc/v/dpath/alu_higherl6/U136 | AoI22 X1 | @.034 | @.001 | ©.237 | B8.230 |
| proc/v/dpath/alu_higherls /U136 BL ~ -» ZN v | AOI22_X1 | @.831 | e.e38 | @.274 | @8.267 |
| proc/v/dpath/alu_higherl6/u137 | AoI22_X1 | @.031 | @.e00 | @©.274 | B8.267 |
| proc/v/dpath/alu_higherls /U137 B2 v -» IN * | ADI22_X1 | @.825 | e.ess | @.331 | @.324 |
| proc/v/dpath/alu_higherls/ui3s | oaTz1 X1 | @.825 | e.e@® | ©0.331 | 8.324 |
| proc/v/dpath/alu_higherls/uU13s A~ -> IN v | OAIZ21_X1 | @.820 | @.e35 | @.365 | @.358 |
| proc/v/dpath/alu_higherlé/Uusea | ANDZ_X1 | @.026 | @.000 | 6.365 | @.358 |
| prec/v/dpath/alu_higherlg /usea A1 w -> IN v | ANDZ X1 | @.ees | e.@38 | 0.483 | B.398 |
| proc/v/dpath/alu_higherls/U311l | AOI21 X1 | @.ees | a.e0e | 0.483 | @.396 |
| proc/v/dpath/alu_higherl6/U311l & v -> IN & | ADIZ1 X1 | @.e64 | @093 | ©.496 | B8.489 |
| prec/v/dpath/alu_higherls /U312 | AOI21_X1 | @.e64 | @.e00 | 0.497 | @.489 |
| proc/v/dpath/alu_higherl6/u3iz B2 ~ -> IN v | ADI21_X1 | @.e20 | @.@31 | @.528 | 8.520 |
| proc/v/dpath/alu_higherls/U6as | A0I22 X1 | @.020 | @.e00 | 0.528 | @.521 |
| proc/v/dpath/alu_higherl6/U6as A1 w -> ZN & | ADIZ2Z_X1 | @.835 | @.e47 | 0.574 | 8.567 |
| proc/vidpath/alu_higherle/Ues6 | MANDZ X2 | @.e35 | @.eed | ©.574 | 8.567 |
| proc/v/dpath/alu_higherl6/U686 42 % -> ZN v | NANDZ_X2 | @.829 | @.e44 | 0.518 | a.611 |
| proc/vidpath/ex_result_sel mux X/ /U89 | A0I222 X1 | @.e29 | @.ee2 | @.521 | 8.613 |
| proc/v/dpath/ex_result_sel mux_X/U39 €2 v -» ZIN ~ | AOI222 X1 | @.854 | @.112 | 8.732 | 8.725 |
| proc/v/dpath/ex_result_sel_mux_X/US@ | Inv_ X1 | @.854 | @.e00 | ©.732 | 8.725 |
| proc/v/dpath/ex_result_sel mux_X/U9@ AN -y ZN v | INV_XL | @.823 | @.e35 | 8.767 | 8.768 |
| proc/v/dpath/op2_byp_mux_D/U145 | AoI22 X1 | @.823 | @.001 | ©.769 | 8.762 |
| proc/v/dpath/op2_byp_mux_D/U145 B2 v -> ZN ~ | ADI2Z X1 | @.@29 | @.e52 | @.821 | 8.814 |
| proc/v/dpath/op2_byp_mux_D/U147 | oaT211 X1 | @.e29 | e.po® | @.821 | 8.814 |
| proc/v/dpath/op2_byp_mux_D/U147 AN o> ZN v | DAIZ211_X1 | @.@35 | @.ee® | ©.881 | 8.874 |
| proc/v/dpath/op2_sel_mux_D/U23 | a01222 X1 | @.835 | e.e@® | ©.881 | 8.874 |
| proc/vidpath/op2_sel mux_D/U93 €2 w -» ZIN ~ | ADIZ222 X1 | @.e49 | @.185 | ©.986 | @.979 |
| proc/v/dpath/op2_sel_mux_D/U34 | Inv_ X1 | @.849 | @.008 | 0.986 | 8.979 |
| prec/v/dpath/op2_sel mux_D/U%4 a4 o> IN v | INV_XL | @.e13 | e.@28 | 1.014 | 1.887 |
| proc/v/dpath/op2_reg X1/U41 | AND2_X1 | @.e18 | @.e0e | 1.014 | 1.087 |
| proc/v/dpath/op2_reg X1/U41 A1 w -> ZIN v | ANDZ X1 | @.e18 | @.@36 | 1.858@ | 1.843 |
| proc/v/dpath/op2_reg_Xl/q_reg_2_ | DFF_X1 | @.e18 | e.pee | 1.058 | 1.843 |
e L e LT

Figure 15. Gate Level Critical Path for Bypassing X0/X1 Splitted Processor (X1 in figure
corresponds to X0 in report)
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Figure 16. Critical Path for Bypassing X0/X1 Splitted Processor



4.2 Splitting D Stage into D0/D1

The critical path in section 4.1.1 goes through the register file in stage D as the register
file module that we use has sequential write but combinational read, which means everything
from reading from the register file to choosing the source of different operands using large
muxes has to fit in one cycle. As figure 15 and figure 16 shows, both demonstrate a substantial
contribution to the critical path. Therefore, we decide to split the D stage right after the register
file to reduce the length of the critical path. However, as the register file is physically larger than
the area of the bypassing and data selection muxes, the unbalanced D0 and D1 stage might bring
a new critical path through the register file. As we are not sure whether the ASIC flow optimizes
the register-based design into latch-based design to enable timing-borrowing between stages, the
plan is to implement pipeline registers between the register file and the muxes and treat this as an
incremental approach to a latch-based balanced design if necessary.

When we pushed the design in 4.1.2 through the ASIC flow, we discovered that the
bypassing path from X1 to D becomes a critical path. We thought about rerouting the path to DO,
but it achieves nothing as the bypassing path from M to D1 serves the same purpose. M stage
also has less combinational logic than X1 so the path is less likely to be a problem. Not being
able to come up with a better solution, we decided to erase this path and insert a bubble instead.

Another problem with the new D0/D1 design is that if there is a dependency between
instructions in W stage and DO stage, the data read from the register file will not match the data
being written into the register file. Thus we add a bypassing path from W stage to DO stage
specifically for this RAW hazard.

4.2.1 Register-based Design

4.2.1.a Datapath

As seen in figure 17, we decided to insert registers right after op1l bypass mux DO
and op2 bypass mux DI1. The rationale behind this is that we are trying to balance the two
stages. While time borrowing using latches might help relax the timing constraint, we still need
to properly balance the logic for it to work. The bypassing path mentioned earlier from X1 to D1
is deleted from the data path, and a new bypassing path from W to DO appears with two muxes to
select between register file outputs and bypassing results.

One special case we discover makes it necessary to add a bypassing path from M stage to
DO stage. If dependencies between instructions force the instruction I2 to stall at DO when I1,
the instruction it depends on, is at M stage and stall at D1 until T1 writes back, it will read the
wrong data from the register file and has no chance to read the data correctly bypassed from W
to D1. Thus the bypassing mux in DO has three inputs: one from the register file, one from M
stage, and one from W stage.

4.2.1.b Control Logic
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Figure 17. Datapath for DO/D1 Splitted Processor



As we add yet another stage to the processor, we need to again carefully consider the
stall, bypass, and squash logic for the processor. Since we eliminated the bypassing path from X1
to D1, when the processor compares the destination register of stage X1 and the operand
registers in stage D1 and find a match, it stalls to avoid hazard caused by read-after-write
dependency; just like before, if the instruction in X1 stage is a 1w, we stall until we the data is
back from the memory. Stage DO does not originate a stall as the instruction will go to D1 no
matter what because there are no hazards between DO and D1. The squash logic in D1 is
inherited completely from the old stage D.

The bypassing logic from M to DO and from W to DO are almost exactly the same as
other bypassing logics. When the processor compares the destination register and the input
registers, it enables the bypassing result to go through the mux. One modification we made,
however, is that we determine this without considering whether the result will be used or not.
There are two reasons for this. First, whether we are using results from the register file is
determined by a control table that we placed in D1, and DO has no access to it. Second, it does
not matter whether the result would be used. As long as the correct register results are provided,
D1 will correctly choose which inputs to use.

4.2.1.c Critical Path

After we tested the functionality of our implementation, we pushed the design through
ASIC flow to see if we improved timing and which path we had to fix next. We get a minimum
cycle time of 1.13ns and unexpectedly the critical path is from X1 to F, as shown in figure 18 and
figure 19. The critical path originates from op2 reg X1, through the upper-16 ALU and
pc_sel mux F, and ends at a queue from imemreq. This is likely due to the extra logic inserted
between the two stages affecting the place and route. The path is physically longer and creates a
larger delay. Although not as much as we had hoped for, this is the first improvement in timing
that we see.
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| | clk[e] ~ | | @.027 | | -e.120 | -@.135 |
| v/CTS_ccl_a_BUF_ideal clock_G@_L1_1 [ | CLKBUF_X2 | .027 | @.@82 | -0.138 | -0.134 |
| v/CTs_ccl_a_BUF_ideal_clock_G@_L1_1 | an->z~ | CLKBUF_X2 | @.033 | @.@62 | -e.275 | -0.071 |
| v/dpath/CTS_ccl_a_BUF_ideal_clock_G@_L2_3 [ | CLKBUF_X1 | @.032 | @.@82 | -0.874 | -0.070 |
| v/dpath/CTS_ccl_a_BUF_ideal_clock_Ge@_L2_3 | A~ ->2Z 4 | CLKBUF_X1 | @.031 | @.065 | -@.008 | -9.004 |
| v/dpath/op2_reg_X2/clk_gate_q_reg/latch | | CLKGATETST_X2 | 8.031 | 8.000 | -0.008 | -0.004 |
| v/dpath/op2_reg_X2/clk_gate_q_reg/latch | CK ~ -> GCK ~ | CLKGATETST_X2 | @.027 | @.056 | @.048 | 8.052 |
| v/dpath/op2_reg_X2/q_reg_1_ | | DFF_X1 | @.027 | @.081 | @.849 | 9.053 |
| v/dpath/op2_reg_X2/q_reg_1_ | ck ~ -> @~ | DFF_Xx1 | e.020 | @.1@8 | @.156 | e.160 |
| v/dpath/alu_higherl6/FE_OCPC294_op2_X2_1 [ | CLKBUF_X1 | @.020 | @.080 | @.156 | 9.160 |
| v/dpath/alu_higherl6/FE_OCPC994_op2_X2_1 | A~ >z~ | CLKBUF_X1 | @.025 | @.054 | @.210 | 8.214 |
| v/dpath/alu_higherl6/DP_OP_6116_122_3532/U288 [ | NAND2_X1 | e.025 | @.020 | @.211 | 0.215 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U288 | Az ~ -> ZN v | NAND2_X1 | e.e15 | @.026 | @.237 | @.241 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U331 [ | 0AI21_X1 | @.015 | @.080 | @.237 | 2.241 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U331 | B2 v -> ZN ~ | OAI21_ X1 | e.019 | @.035 | @.271 | 9.276 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U332 [ | ADI21_X1 | @.012 | @.000 | @.271 | 8.276 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U332 | &~ ->2ZNv | AOI21 X1 | e.014 | @.020 | @.292 | 9.296 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U345 [ | oAI21_X1 | @.014 | @880 | @.292 | @.296 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U345 | B1 v -> ZN ~ | OAI21_X1 | e.042 | @.068 | @.352 | 8.356 |
| v/dpath/alu_higherl6/DP_OP_6116_122_3532/U350 | | AOI21_X2 | @.042 | @.000 | @.352 | 9.356 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U350 | BL ~ -> ZIN v | ADI21_X2 | @.016 | @.024 | @.376 | 9.380 |
| v/dpath/alu_higher16/DP_OP_61J6_122_3532/U353 | | 0AI21_ X1 | @.016 | @.000 | @.377 | 0.381 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U353 | Bl v -> ZN ~ | OAI21 X1 | @.033 | @.046 | @.423 | @.427 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U364 [ | A0I21_X1 | 2.033 | 0.000 | @.423 | 8.427 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U364 | BL ~ -> ZN v | ADI21_X1 | @.017 | @829 | @.452 | @.456 |
| v/dpath/alu_higherl6/DP_OP_6116_122_3532/U367 [ | oAT21 X1 | @.017 | @.000 | @.452 | 9.456 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U367 | Bl v ->2ZN ~ | 0AI21 X1 | 2.032 | @.045 | ©.497 | 9.501 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U394 [ | ADI21 X1 | @.032 | 0.020 | @.497 | @.501 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U394 | BL ~ ->» ZN v | ADI21_X1 | @.015 | @826 | @.523 | @.527 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U397 [ | oAaI21_X1 | e.e15 | e.eee | e.s23 | 8.527 |
| v/dpath/alu_higherl6/DP_OP_6136_122_3532/U397 | B v -> ZN ~ | OAI21_X1 | @.032 | @.044 | @.567 | 8.571 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U416 [ | ADI21_X1 | @.032 | e.e2@ | @.567 | 8.571 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U416 | B1 ~ -» ZN v | AOI21_X1 | @.016 | ©.027 | @.595 | 0.599 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U419 [ | oaz21_Xx1 | e.e16 | @.@2@ | @.595 | 2.599 |
| v/dpath/alu_higherl6/DP_OP_61J6_122_3532/U419 | B1 v -> ZN ~ | OAI21_X1 | @.025 | ©.837 | @.631 | 8.636 |
| v/dpath/alu_higherl6/DP_OP_6116_122_3532/U455 [ | FA_X1 | @.025 | @.0@@ | @.632 | 8.636 |
| v/dpath/alu_higher16/DP_OP_6136_122_3532/U455 | €T »->5v | FAX1 | @.015 | ©.095 | @.726 | 8.730 |
| v/dpath/alu_higher16/uU497 [ | a0I21 X1 | @.015 | @.080 | @.726 | 8.739 |
| v/dpath/alu_higher16/U497 | Bl v ->» ZN ~ | ADI21_X1 | @.032 | @.839 | @.765 | @.769 |
| v/dpath/alu_higherl6/FE_RC_1032_@ [ | oaI21_X2 | @e.032 | @.20 | @.765 | 8.769 |
| v/dpath/alu_higherl6/FE_RC_1032_@ | &~ ->2ZNv | OAI21_X2 | @.027 | ©.040 | @.805 | @.809 |
| v/dpath/pc_sel_mux_F/U84 [ | AOI22 X1 | ©.027 | @.001 | @.806 | 9.810 |
| v/dpath/pc_sel_mux_F/U84 | A2 v -> ZNn ~ | ADI22 X1 | @.026 | @.046 | @.851 | 0.856 |
| v/dpath/pc_sel_mux_F/UB6 [ | NAND3_X1 | e.026 | @.080 | @.852 | 8.856 |
| v/dpath/pc_sel mux_F/UB6 | A2 ~ -> ZN v | NAND3_X1 | @.041 | ©.073 | @.925 | 2,029 |
| v/imemreqg_q/genblkl_dpath/genblkl_bypass_mux/U24 | | Mux2_x1 | 8.041 | @.002 | @.926 | 8.930 |
| v/imemreq_q/genblkl_dpath/genblkl_bypass_mux/U24 | B v -> Z v | Muxz2_x1 | @.020 | @.086 | 1.e12 | 1.016 |
| | | proc_ProcRTL_lcore | ©.020 | @.801 | 1.813 | 1.017 |
B e e i +

Figure 18. Gate Level Critical Path for DO/D1 Splitted Processor (X2 in figure corresponds to
X1 in report)

4.2.2 Modification Related to the Instruction Memory Drop Unit

By testing our 4.2.1 design, we found a special scenario that induces a bug not considered
before. The error occurs in stage F. When a dependency causes a stall in the pipeline (in our case,
the stall originates from D1) and a branch instruction that will be taken arrives at stage X1 the
next cycle, the instruction memory request that needs to be squashed is not actually sent but the
squash signal sets the imemresp drop signal to 1. The imem drop unit incorrectly thinks that
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the next instruction memory response is an instruction that needs to be dropped, and thus drops a
valid instruction. We fix this by adding a comparison signal in the processor, which stops the
imemresp drop from being set to 1.

By pushing the new design through the ASIC flow, we find that the additional logic
changes the routing of the original design and hurts the timing significantly. The new critical
path, shown in figure 20 and figure 21, originates from op2_reg X1, through the branching flag
ports in the upper-16 ALU and the control logic, and ends at the signal next resp addr that
we used for instruction address comparison. The minimum cycle time is 1.26ns, worse than the
previous design. Since in both 4.2.1 and 4.2.2 designs the critical path is related to the PC
redirection, we decided to move branch resolution to stage M, eliminating the overhead brought
by the ALU unit in the path.
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Figure 19. Critical Path for DO/D1 Splitted Processor
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Figure 20. Gate Level Critical Path for Processor with Modified imem Drop Unit (X2 in figure

corresponds to X1 in report)
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Figure 21. Critical Path for Processor with Modified imem Drop Unit
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4.2.3 Potential Latch-based Design

Since the critical path through the register file is no longer an issue, we decided to
temporarily suspend the latch-based approach and focus on the new critical path. If this path
resurfaces in the future, we will revisit the latch-based approach.
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4.3 Dealing with PC Redirection

As indicated in figure 19, the critical path is caused by the branch target from X1 stage to
F stage for pc redirection. In figure 21, the critical path is also caused by the flags generated by
the ALU. To reduce the critical path length, we plan to move the pc redirection path from X1
stage to M stage, saving the time for the signal to pass through the ALU unit. This will bring one
extra cycle to every branch or jump instruction that is taken. Most of the changes happen in the
control logic, and some additional registers are needed to pass the PC target to the M stage.
Besides, as data memory requests are sent in the X1 stage, we need to drop the data sent back
from the memory if we are squashing the previous 1w instruction. However, we need to stall sw
instructions following a branching instruction, just so the incorrect memory request is never sent.

As the modification brings a higher CPI to branch and jump instructions, we start to look
for methods to reduce the CPI count. After examining the datapath diagram we realize that we
can move the JAL resolution from D1 stage to DO stage, saving one cycle for function calls in
the microbenchmarks.

Furthermore, the more stages we have before branch resolution, the higher branch
misprediction penalty is. After splitting X stage and D stage and moving branch prediction to M
stages, there will be five mis-fetched instructions for each mispredicted branch instruction. Thus
improving branch prediction accuracy will significantly reduce CPI of the program and a simple
four-entry branch target buffer is a reasonable choice.

4.3.1 Branch Resolution in Stage M

4.3.1.a Datapath

To move branch resolution to M stage, we need to keep the data for branch target and
jump-and-link-register target until M stage. Thus two pipeline registers are added between X1
and M stage: one for the branch target calculated in D1 stage and the other for the ALU
computation result used for jump-and-link-register target. The two target data are fed back into
the PC select mux which is used to generate the instruction memory request address. As needed
by the control logic, the flags output by ALU is also passed into M stage, adding two more
pipeline registers to M stage.

One other important change is related to data memory requests. If there is a 1w
instruction right after a PC redirection instruction (branch or jump) and the wrong result is
predicted, by the time we resolve the misprediction in M stage, a memory read request has
already been set in X1 stage and the processor is supposed to be waiting for a memory response
data at data memory port. Thus we added a data memory drop unit, similar to the instruction
memory drop unit used for dropping the next instruction in flight when squashing, to drop the
data response.

4.3.1.b Control Logic
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Figure 22. Datapath for M-stage PC Redirect Processor
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As we move the entire pc redirection to M stage, the control signal for branching and
JALR is also moved to M stage as PC_redirect M. The instruction branching type is
determined by the decoding table in DO stage, and is passed all the way through the pipeline into
M stage to decide which ALU flag should be used as the branch condition. A dmemresp drop
signal is implemented as an input to the dmem drop unit. If the instruction in X1 is a valid
memory instruction and is being squashed, the response of the instruction will be dropped.

4.3.1.c Critical Path

The critical path of the design, indicated in figure 23 and figure 24, has a length of
1.27ns. The critical path goes through the accelerator, which is simply a placeholder, the
writeback mux in M, back to the op2 bypass mux and op2 select mux in D1, and ends at the
pipeline register between D1 and X0. As we can see in figure x, the accelerator itself creates a
delay of about 0.4 ns. Since this is merely a placeholder, everything is combinational and we get
an unintended critical path. This is likely due to the routing algorithm moving gates around due
to the different logic and ended up increasing the length between these gates, resulting in a worse

cycle time.
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Instance 1 Arc | Cell | 5Slew | Delay | Arrival
| | | | I Time
——————————————————————————— 1 ——————1 R t —-—————1
| elk[0] ~ | | 0.023 | | -0.140
CTS_ccl_a BUF_ideal clock GO _L1_1 I | CLEBUF X3 | 0.023 | 0.001 | -0.139
CTS_ccl_a BUF ideal clock GO _L1_1 &+~ ->2* | CLKBUF X3 | 0.029 | 0.059 | -0.07%9
CTS _ccl a BUF ideal clock GO L2 4 1 | CLKEUF X2 | 0.029% | 0.003 | -0.076
CTS ccl_a BUF ideal clock GO L2 4 |2+ ->2* | CLKBUF X2 | 0.007 | 0.032 | -0.044
FE_USKC824_CTS 3 1 | CLKEBUF X2 | 0.007 | 0.000 | -0.044
FE_USKC824_CTS 3 | & " -2 " | CLKBUF X2 | 0.036 | 0.058 | 0.014
CTS_ccl_a BUF ideal clock GO L3 1 | | CLEBUF X3 | 0.036 | 0.001 | 0.015
CTS ccl a BUF ideal clock GO L3 1 |2+~ -»2~ | CLKBUF X3 | 0.028 | 0.064 | 0.078
xcel/xecelreq g/ctrl/head _reg 0_ | | SDFF_X1 | ©0.02% | 0.001 | Q.07%9
xcel/Xcelreg gfctrl/head reg 0O | CKE ~ -> QN ~ | SDFF X1 | ©.104 | 0.182 | 0.271
xcel/xcelreq g/dpath/queue/U37 | | MUX2 X1 | 0.104 | 0.001 | 0.272
xcel/xcelreqg g/dpath/queue/U37 | 5~ -»>2 " | MUX2 X1 | 0.017 | 0.058 | 0.331
xcel/U3 | | INV X1 | 0.017 | 0.000 | ©.331
xcel/U3 | &7 - ZN v | INV_X1 | 0.021 | 0.033 | 0,364
xC.ElJ"FE_OFCZ:il_nG 1 | CLEBUF X1 | 0.021 | 0.001 | 0.365
xC-ElfFE_OFCZ:Sl_nG |l &2v -> 2w | CLEBUF_X1 | 0.0%54 | 0.033 | 0,457
xcel/U30 1 | RNDZ_ X1 | 0.0%4 | 0.001 | 0,459
xcel/U30 | 22 v -> ZN v | AND2 X1 | 0.002 | 0.054 | 0.512
proc/v/xcelresp g/genblkl dpath/genblkl bypass_mux | | MUX2 X1 | 0.008 | 0.000 | 0.51z2
/25 | | | | |
proc/v/xcelresp g/genblkl dpath/genblkl bypass mux | B v -> Z v | MUXz X1 | 0.012 | 0.058 | 0.571
/U25 | | | | |
proc/v/dpath_wk_result_sel mux M/U25 | | a0I222 X1 | 0.012 | 0.000 | 0.571
proc/v/dpath_wk_result sel mux M/U25 | 22 v -> ZN ~ | ROI222 X1 | 0.097 | 0.147 | Q.718
pIDc,.-’v,.fdpath_wb_xesult_sel_mux_l{,.f FE_OFC255 mnll 1 | CLEBUF X1 | 0.0%7 | 0.000 | 0.T718
proc/v/dpath wb result sel mux M/FE OFC255 nll | &2+~ ->2* | CLKBUF X1 | 0.014 | 0.057 | 0.775
proc/v/dpath whb result_sel mux M/U26 | | INV_X1 | ©0.014 | 0.000 | Q.775
proc/v/dpath whb result_ sel mux M/U26€ | 2~ -> ZN v | INV_ X1 | 0.01& | 0.025 | 0.800
proc/v/dpath op2 byp mux D2/U31 I | mOIz2 X1 | 0.016 | 0.001 | ©.801
pIDG}'VJ"dpath_DpZ_by‘p_mux_DZfU:il | 22 v ->» ZN ~ | ADIZ2Z X1 | 0.025 | 0.039 | 0,840
proc/v/dpath_op2_byp mux D2/U32 I | NAND2 X1 | 0.025 | 0.000 |  0.540
pIDcfvfdpath_opZ_by‘p_mux_DZfU32 | a2 ~ -> ZN v | HaND2 X1 | 0.014 | 0.024 | 0,564
proc/v/dpath op2_ sel mux D2/U25 | | R0I222 X1 | 0.014 | 0.000 | 0.364
proc/v/dpath op2 sel mux D2/U25 | C2 v -> ZN ~ | ADI222 X1 | 0.078 | 0.167 | 1.031
proc/v/dpath op2_ sel mux D2/U2Z€ | | INV_X1 | 0.078 | 0.000 | 1.031
proc/v/dpath op2_sel mux D2/U26 | &2~ ->ZN v | INV X1 | 0.01% | 0.018 | 1.04%
pIDGfodpath_DpZ_IEg_leUZT 1 | RNDZ X1 | 0.01% | 0.000 | 1.049
pIDC-fodpath_DpZ_IEg_leUZT | 281 v -> ZN v | AND2Z X1 | 0.008 | 0.0349 | 1.083
proc/v/dpath op2_reg X1/q_reg 22 | | DFF_X1 | ©.00% | 0.000 | 1.083

Figure 23. Gate Level Critical Path for M-stage PC Redirect Processor
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Figure 24. Critical Path for M-stage PC Redirect Processor
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4.3.2 JAL in D0 Stage

4.3.2.a Datapath

To resolve JAL in the DO stage, the immediate generator and the PC_plus imm adder
are both moved to the DO stage. The immediate generated is passed through a pipeline register to
be used as a potential input operand for ALU in D1 stage.

4.3.2.b Control Logic

DO stage originates a squash if the instruction decoded is JAL and PC_redirect DO
is set to 1. The PC select mux then chooses the correct PC to fetch and the processor starts
another assembly sequence.

4.3.2.c Critical Path

By pushing the design through the ASIC flow, we get a minimum cycle time of 1.26ns,
and the critical path is indicated below in figure 26 and figure 27. The critical path penetrates
through the multiplier and ends at the pipeline register between X1 stage and M stage. As
illustrated in section 4.1, we purposely send the multiplication request at X0 stage and receive
multiplication response at X1 stage, giving the multiplier two cycles to finish its task. However,
we believe that the tool only gives the multiplier one cycle and thus makes it to be the longest
path in the design. The plan is to modify the ASIC flow and enable register retiming feature for
the multiplier so that the tool can auto-balance the stage by us simply adding a register before the
output port of the multiplier unit. As this requires us to modify mflowgen, a lightweight modular
flow specification and build-system generator for ASIC and FPGA design-space exploration
built by Christopher Torng, we are going to look more in depth into the flow.
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Figure 25. Datapath for 7-stage Processor with JAL in D0
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1
| I elkio] - 1 R (IR 1
| Prec/u/CTS cel a BUF ideal cleck GO L1 2 1 | CLERUF X3 10027 1 0 [EEURETH] 1
| proc/v/CTS cel a BUF ideal clock GO L1 2 I A= ->2* | CLEBUP X3 10.032 10 1 1 1
| proc/u/CTS cel a BUF idaal eleck GI L2 11 1 | CLERUF 32 1003z 1o 1 1 1
| proc/v/CTS cel a BUF ideal clock GO 12 11 I A —>2* | CLEBIP X2 1 0.026 | 0 1 1 1
| proc/u/dpath_imulfa_regfelk gate q seg/lateh 1 | CLECRTETST ¥a | 0.026 | 0 1 1 1
| prec/u/dpath imulfa reqfelk gata g seg/lateh | GE - > GEE ° | CLEGRTETST X4 | 0.028 | O 1 1 |
| proc/v/dpath_imul/a_req/q reg 7 1 | DFF K1 1 0.026 1 0 1 1 1
| proc/u/dpath_imilfa_regfq reg 7 R L] |0t 1o 1 1 1
| prec/v/dpath imul/mult x 1/FE OPC2E2 4 xeg eut 7 | |18 x4 1 0018 | 0.000 | 1 L
| proc/u/dpath imulfmult x 1/FE OFC292 o reg out 7 | R % -r IN v | TNV X4 1 0008 | 0015 | 1 1
| Prec/u/dpath imulfmult x 1/FE OPC28A a seg cut 7 d | | 1w xa 1 0008 | 0000 | 1 |
| up 1 1 1 1 1 1 1
| proc/u/dpath imulfmult x 1/FE OFC298 o reg out 7d | Rou -r IN * | TNV X4 Lo |0y | poma | aas
| w 1 1 1 1 1 1 1
| prec/v/dpath imulfmult x 1/FE RC 378 0 1 | KRNDZ X2 1 0.010 1 0.000 | 0.184 | 0.191 |
| prec/v/dpath imulfmult x 1/FE RC 378 0 IRl > BN v | NANDZ X2 1 0.0md | 0ana | nase | w20
| proc/v/dpath_imul/mult x 1/FE R 409 0 1 I oa1z1 K2 10007 1 0.000 | 0.1% | 0.204 |
| proc/u/dpath_imulfmult x 1/FE % ans o I Rw-s o | ontax2 (R N O e A R I T
| prec/v/dapath imulfmult x 1/11343 1 | waxnz X1 1 0.023 | D000 | 0318 | w235 |
| proc/v/dpath_imul/mult x 1/11343 I RL * > BN v | NANDZ K1 10016 1 0.027 | 0 [
| proc/ufdpath imulfmult  1/FE OPCINT n162a 1 | BUF x4 10016 1 0 Ionas | wesz
| proc/v/dpath imul/mult x 1/FE OPCHNT nl624 I Aw->2v | BUF K4 10011 | 0 | n.2EL | m.zea |
| proc/u/dpath_imlfmilt x 1/0214% 1 | on121 %2 1o o | ooz w.zsa |
| prec/v/dpath imulfmult x 1/02143 | By > aw o | o2 R [ ]
| proc/v/dpath_imul/mult x 1/012147 1 | KRz K1 10031 10 I 03281 0,335
| proc/u/dpath_imulfmilr s 1702147 PR e oma a 1oz |0 I onae 1
| proc/v/dpath imul/mult x 1/02148 1 | KRz K1 1 0.025 | 0 (BRI R e E ]
| proc/u/dpath_iml/milt x 1/02148 e I ) | oaz 1o Ionazg o 1
| prec/u/dapath imulfmult x 1/02213 1 | 1w K 10032 10 | n.s2s | w.aaz |
| proc/v/dpath_imul/mult x 1/012213 A =2y | IW K 10011 10 [ [ 1
| proc/u/dpath imulfmult x 1/FE % 206 0 1 | on121 %2 1o e 1o 1o 1
| prec/v/dpath imul/mult x 1/FE R 206 0 | B2 v > 3N ¢ | on1; X2 10024 1 0 [ [N
| prec/v/dpath_imul/mult x 1/023 1 | KANDZ X1 10.024 1 0 [ [N
| prec/v/dapath imulfmalt % 17023 IRl -> BN v | NANDZ X1 1 0.0z 1o Ionsen | wuser
| proc/v/dpath_imul/mult x 1/FE R ] 1 I oA1z1 K1 10012 1 0 [ [ L]
| proc/u/dpath_imulfmult x 1/FE %5 ] I Rw-s | oatza 1027 |0 1o T 1
| prec/v/dpath imulfmult x 1/FE KRG 324 0 1 | waxnz X1 10027 1 0 1o I wsan
| proc/v/dpath_imul/mult x 1/FE R 324 0 I RL * > BN v | NANDZ K1 10,010 1 0.017 | 0 [ R
| proc/ufdpath imulfmult  1/FE RO ] 1 I on121 31 10010 | oooon | 0 [ 1
| proc/v/dpath imulfmult x 1/FE R 323 0 I hvo-x 28" | OAIZ1 X1 10030 | 0.027 | 0569 | 0576 |
| proc/u/dpath_imlfmilt x 1/022%8 1 | Fn | oo | oooon |0 [ 1
| prec/u/dapath imulfmult x 1702298 IA~=>sv | ERX 1 0.020 | 02302 1 0 I wers
| proc/v/dpath_imul/mult x 1/FE %2 9 0 1 | KANDZ K1 10.020 | 0.000 | 0 [N
| prec/u/dpath_imulfmult % 1/FE RC 9 0 | A2 v -r EN o | MawDR 0 10011 | 002z 1 0 T 1
| prac/v/dpath imulfmult x 1/FE B2 A 0 1 | oa1z1 K1 10011 | 0000 | 0 [ R
| prec/u/dpath_imulfoult x 1/FE RC A 0 I Rs=rvou | ORTZI X1 10013 | 0023 | 0 [ 1
| prec/v/dpath imulfmult x 1/02274 1 | 1w K 1 0.033 | 0.000 | 0 I wza
| proc/v/dpath_imul/mult x 1/02274 I Aw->28° | IW K 10010 1 0.01% | 0.736 | 0.743 1
| proc/u/dpath_imlfmilt s 1/02283 1 | snsnz 2 10010 | 0000 | 0736 | @ 1
| prec/v/dpath imul/mult x 1/02283 IRl -> 3N v | NANDZ X2 10014 | 0.021 1 0 [ AT
| prec/v/dpath imulfmult x 1/FE RC 32R 0 1 | HANDZ K1 10,014 | 0003 | 0780 | 0767 |
| prec/v/dpath imulfmult x 1/FE RC 328 0 |2 v > Ew o | EaNDR [ R B L B T
| proc/v/dpath_imul/mult x 1/FE R ] 1 | KANDZ K1 1 0.010 1 0.000 | 0.97% | 0787 |
| proc/u/dpath_imulfmult x 1/FE %5 ] e 100w |0y | 09e | aAna
| prec/v/dpath imulfmult x 1/FE R ] 1 | 1w k2 100 | noen | 0997 | w.Ana
| proc/v/dpath_imul/mult x 1/FE R ] IR —> 28 ° | TNV K2 10033 1 0.021 | 0.R17 | 0.825 |
| prec/v/dpath imulfmalt x 1702762 1 | waxnz %2 1003 | 0.en | DB | W.R3s |
| proc/v/dpath_imul/mult x 1/02762 | A2 * > BN v | NANDZ K2 10013 1 0.022 | 0.R4D | 0.R47 1
| proc/u/dpath_imulfmult x 1/023%8 1 | snsnz 1 10013 | ooan | DoRan | 0.AQT |
| prec/v/dpath imulfmult x IRy > Ew | e 10013 | 0020 | D.BEL | W.AER |
| proc/v/dpath_imul/mult x 1 | KANDZ K2 10013 1 0.000 | 0.RE1 | 0.A6A |
| proc/ufdpath_imulfmilr s 1/0235% IRl -x BN w | MANDZ X2 1 0.00R | 000 | DB | 0LAE3
| proc/v/dpath imulfmult x 1702579 1 | woRz k2 | 0.00R | D000 | 0.7 | 0.AR3 |
| proc/u/dpath_imulfmult x 1/025718 I Rou = v ou | o2 x2 (R R e R L R R T
| prec/u/dpath imuleesp q/genblkl dpathigenblkl byga | | waxn2 x4 10035 | 0001 | 0.8s | 0,826 |
| 8 _mux/T1 1 1 1 1 1 1 1
| prec/u/dpath_imulresp qfgenblkl dpathigenblkl bypa | Al v -> 28 * | MANDZ X4 L onis | 0017 | nos3e | 0.sad
| 58 mus/T1 1 1 1 1 1 1 1
| prec/v/dpath_imulresp q/genblkl dpathigenblkl bypa | | KRNDZ ¥4 10019 | 0.000 | 0.536 | 0.%43 |
| 58 _mus/m0 1 1 1 1 1 1 1
| proc/v/dpath_imuleesp q/genblkl dpathigenblkl bypa | Al * —> BN v | NANDZ X4 1 0.00% | 0.016 | 0 [
| wa_mue/min 1 1 1 1 1 1 1
| prec/u/dpath ax result sel mux X2/FE R 697 0 1 | KANDZ X4 10008 | 0.001 | 0 I w.sen |
| prec/v/dpath ex result sel mux X2/FE R 697 0 | Rl v -> BN * | NANDZ X4 10.010 1 0.015 | 0 [
| prec/u/dpath ex result sel mux X2/FE RC 526 0 1 | waxmz x4 1 0.030 | 0000 | 0 I e
| proc/v/dpath ex_result sel mux K2/FE RC 0 IRl * > BN v | NANDZ K4 10014 1 0.015 | 0 [
| proc/u/dpath_opl byp mux X1/FE RC 222 0 1 | ez w2 L oooa | oooon 10 [ 1
| prec/u/dpath opl byp mux X1/FE RE 222 0 I Bw->zv | w2 10032 | 0.058 | 1.042 | 1.050 |
| proc/v/dpath_opl_reg K2/T11 1 | RND2 X2 10.012 | 0.000 | 1 1108000
| proc/ufdpath opl reg X211 IRl w-x BN v | RND2 X2 10006 | 0028 | 10711 1 1
| proc/v/dpath opl reg Xi/q reg 13 1 | DFF K1 10006 | 0000 | 1071 1078 |

Figure 26. Gate Level Critical Path for 7-stage Processor with JAL in D0
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Figure 27. Critical Path for 7-stage Processor with JAL in D0
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4.3.3 Branch Target Buffer

To recover some of the CPIs we lost by moving branch resolution to stage M, we
intended to implement a branch target buffer (BTB) with four entries. Each entry consists of a
32-bit address, 1-bit valid flag and a 2-bit age field. In stage D0, our processor decodes the
branch target and checks it against the four entries in the BTB. If there is a match, it squashes the
instructions already fetched and redirects to the new PC. That prediction is propagated to stage
M, where the actual resolution happens. If the prediction does not match the actual resolution, it
has to squash again and redirect to the actual PC. Then, depending on the specific scenario, it
would update the entries, maybe replacing the least recently used entry with age 3.

A typical microbenchmark program such as vector-vector add has the assembly sequence
shown in figure 28. The original design makes no branch prediction and simply fetches the next
PC. For vector-vector add, the loop repeats for 100 iterations, and that means 5 instructions
squashed for every iteration. With our BTB, the processor predicts the correct PC 98 out of those
100 times, and saves close to 400 cycles, more than a third of the total cycles. This BTB
correctly predicts all for loops except for the first and the last iteration.

BEPBB24B <vvadd_scalar(int#*, int*, int+*, int)s:

248: bge ¥@, w13, 274 <vvadd_scalar(int+#, int#, int*, int)+@8w2c>
24 5111 ¥13, x13,8x2

258: add ¥13,x11,x13

254 1w ®«16, @ (x11)

258: 1w wild, B{x12)

26 addi ®11, %11, 4
2608: addi ¥12, %12, 4

264 add ¥15, x15, x14

268 W ®16,8(x18)

260 addi w1\, k1@, 4

278: bne ¥11,x13, 2654 <vvadd_scalar(int*, int#*, int*, int)+8xcs

274 jalr ®xB,xl,8

Figure 28. Assembly Snippet Compiled from vvadd.c

Unfortunately, we did not have enough time to actually implement this short but effective
improvement.
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5. Testing Strategy

5.1 Baseline Testing

The testing for the baseline design involves test-driven development methodology and
directed testing on individual data sets associated with controlled input data and expected
outputs. To test functionality, we have unit tests for the ALU as well as each instruction under
one of the six categories: register-register, register-immediate, branch, jump, memory, and csr.
There are a total of 685 tests written that all passed at the time of submission. With unit tests
available, we could take an incremental approach to develop the processor. That is, after
connecting the necessary datapath and control/status signals for one instruction, we could run the
tests for that specific instruction. Upon failure, we would check our outputted line traces and
waveforms to confirm proper pipelined execution and expected register/wire values. We faced
many problems and corner cases when implementing the alternative design. The layout of the
unit tests allows us to single in on error cases and pinpoint the exact location of the bug.

There are numerous test cases, albeit repetitive, since FL, BaseRTL, and AItRTL run
essentially the same tests. As mentioned above, the instructions fall under one of the six major
categories. Register-register instructions are those that take two register values as operands and
store the result in a register, such as add, mul, xor, or sra. Register-immediate instructions
are those that take a register value and an immediate value as operands. Branch instructions are
ones that either jump to a label or not based on the condition specific to the instruction. For
instructions under this category, the helper functions from inst utils.py such as
gen_rr_dest dep test() are used. The helper functions are basically wrapper functions that
generate an assembly program in string using the parameters provided. By using the wrapper
functions, we could generate many tests of the same category easily and neatly.

For each instruction, there are about 40 directed test cases, a random test, and a random
delay test. A lot of the directed test cases are corner cases that could potentially fail. For
example, how well does s1t, the instruction that compares two signed numbers, handle 2’s
complement. Can it compare Ox7fftffff and 0x80000000 correctly? By writing a lot of tests like
this, we found a few bugs that could go unnoticed. Random value tests were conducted to ensure
robustness of testing unachievable by manual number generation. Tests with random delay were
also important as, for this design, the memory is not combinational and the imul takes more than
one cycle to complete calculation. Therefore, there are a few different reasons, including data
hazards, that could create stalls, which means our processor needs to be properly tested. In the
end, we created just under 700 tests, and they all pass on our processor.
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loop:

1w B(x2)
addi , %3, 1
sw x3, B(x4)
addi x2, x2, 4
addi x4, x4, 4
adui@ x1, -1
sw x1, 8(x8)

1w @{KE)D

bne x9, x8, loop

Figure 29. Load-use Dependency Code Snippet

5.2 Alternative Design Testing
5.2.1 Testing Methodology

We reused all of the tests from the baseline design for the alternative design. Since the
ISA remains unchanged, the expected behavior of every test is the same. We also added
additional mixed-instruction tests that try to expose the structural hazards specific to our
superpipelined processor. For example, to shorten the critical path through the ALU, we would
break it into two stages, each handling half of the arithmetic. In stage X0, the ALU calculates the
lower 16 bits of the operands, while the rest is calculated in stage X1. We must properly handle
the stall and bypass logic between the two stages when there are data dependencies to avoid
hazards shown in table 1. Therefore, back-to-back dependent additions are created to ensure the
correctness, as shown in figure 30. Similarly, we would test additional stalling and bypassing
logic in stages such as M0 and M1, as shown in figure 31.

add(xDpxl, x1 |V W X0 X1\ |Y z
XX

add Vv W X0 ) X0 X1 Y Z

add x1, x1, x1 v w X0 X0 1 X0 X1

Table 1. Pipeline Diagram for X0-X1 Hazard
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addi 8, 1
addi x1, 1
addi x2, 1
addi x4, x3, 1

1

addi %

add MxS
add Q{?}:@,\xﬁ

add x8, x7, x7
Figure 30. Add-after-Add Dependency Code Snippet

csrr x1, mngriproc < exoeedlesd

lw x1, 4(x1)

Csrw procZmngr, x1 > @xeéfdbeef

.dgata

word Bxes8a.leos
Jword Bxe8882e84
JWord exeugeleos
word BxBe88 286
Jword axesesiele
word 8xesesaleld
Jword exeses2els
Jword 8xeeedbeef

Figure 31. Load-after-load Dependency Code Snippet

5.2.2 Testing Separated ALUs

As stated in section 4.1, we splitted the ALU to two components: lower-16-bit ALU and
upper-16-bit ALU each handles the computation of 16 bits. To make sure our pipelined ALU
works, we designed separate test cases. For both of them, we created unit tests for each
arithmetic instruction of ALU: add, sub, sl11, or, and, nor, xor, srl, sra. Besides the
operational instructions, ALU also generates flags indicating the relationship between two inputs
and even behave like a mux so comparison instructions: s1t, s1tu, eq and multiplexing
instructions cp0, cpl tests are designed accordingly.

For lower-16-bit ALU, apart from the expected outputs from provided inputs, we also
need to test the correctness of the carry out bit for add, sub, s1t and s1tu. When adding,
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there might be an overflow. When subtracting, if operand 0 is smaller than operand 1, there will
be a borrowed 1 from higher 16 bits. s1t and s1tu have carry-out outputs to higher 16 bits
because it is possible that the higher 16 bits of two inputs are the same and we need the results
from lower 16 bits. In s11, we need to pass extra shifted-out bits to higher-16-bit ALU so we
have tests for those outputs as well.

For higher 16-bit ALU, apart from similar tests associated with inputs and expected
outputs, we need to take the results, carry out and shift out bits from lower 16 bits as inputs. For
each instruction, we designed tests with various results from the lower 16-bit ALU. In add,
sub, s1t and s1tu, since we have carry out as an input, we have tests that set it as 0 or 1. In
s11, we generate different shifted out bits from lower 16-bit ALU to test if higher 16-bit ALU
calculates the output correctly. For all of the shift operations (s11, sr1, sra), we also have test
cases for both positive and negative numbers so that we make sure we handle arithmetic and
logical shifts correctly. By looking into the failing negative sra test cases, we realized that we
cannot or data with signed representation and unsigned representation together. So instead
we unsigned the signed shifted upper 16 bits before or it together with the output from the
lower-16-bit ALU.

Since ALU also generates flags to control logic, we have corresponding test cases with
ops_1t, ops_1ltu, ops_eq designed to test these three flags. Higher 16-bit ALU will take
carried flags from lower 16-bit ALU and generate final flags based on carried flags and higher 16
bits; therefore, we include tests with different carried flags for s1t, s1tu and eq.

After the testing individual components, we also created a wrapper module to directly
connect them together and tested the fully functioning ALU with the original ALU operation
tests. This integrated test guarantees that our ALU modules perform the operations exactly as we
expected from the design specification.

5.2.3 Testing the X0/X1 Splitted Processor Without Additional Bypassing

After fully testing the splitted ALU, we put it into the processor with a splitted X stage.
To ensure the functionality of the processor, we used the same testing as we have for the baseline
processor. As the testing fully represents the design specification we have for the processor, the
fact that our 6-stage processor with a splitted ALU passes those tests means our design meets the
requirement. Besides the direct, random, and delay test we have for each of the 14 instructions,
we also created dependency tests specifically for the ALU. As the extra execution stage creates
an additional read-after-write hazard between X0 and X1, we used back-to-back addition
sequences and load word sequences to examine if it performs as we expected. As indicated in
figure 32 and figure 33, there are bubbles after each RAW add instruction, which matches with
our stall signal implemented in the control logic. With the accelerator tests which use CSRR and
CSRW to write data between register file and control register, we fixed a bug in our stall logic. As
long as there is a CSRRX instruction in-flight in the X0/X1 stage, we need to stall in the D stage.
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Otherwise the instruction dependent on the CSRRX instruction will receive wrong data since the
value will not be returned by the accelerator until the M stage.

By examining the line tracing for independent additions (figure 32), back-to-back
dependent additions (figure 33), and load-use hazard assembly microbenchmarks (figure 34), it is
clear how our 6-stage processor functions: it streams the addition if there is no dependency; for
instructions with back-to-back dependency, there is one cycle of bubble between each
instruction; for load word instruction sequence, each instruction comes with two bubbles for
waiting memory response from M stage. As we not only want to improve the cycle time but also
aim to improve the throughput of the entire processor, it is necessary for us to implement a
6-stage processor with bypassing from X0 to D and from X1 to X0 so that there is only load-use
hazard being stalled by memory access.

CEELTELTY | | | | |

@0e@0204 |addi  x@1, x@@, @xeel | | | | |

# | # | addi | I I I
20RPA20R |addi %02, x@l, @xeel | | addi | | |
@0eRA20c |addi %83, x@1, @xP@1 |addi| | addi | |
2000210 addi x84, x@1, @x@@1 |addi|addi| | add1 |

@0R0e214 |addi  x@5, x@@, @x0@1l |addi|addi|addi| |

# | # | addi | addi | addi | addi |
@P@@e218 |add  x@6, xB5, %85 | | addi | addi | addi |
@eeee2lc|add x@7, x@5, x@5 |add | | addi | addi |
@0@@e22@ |add  x@8, xB5, %85 |add |add | | addi |
QERRA224 |csTw @x7c@, w04 |add |add |add | |
QeRRR228 |csrw @x7c@, ¥@B |csrw|add |add |add |

Figure 32. Independent ALU Instruction Line Tracing
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20200204 |addi  x@1, x0@, exeel | I I I |
# |# |addi | I I |
20200208 |addi  x@2, x@1, exeel | | addi | I |
# | # | addi | | addi | [
eoeeezec |addi  x@3, x02, exeel | | addi | | addi |
# | # | addi | | addi | |
20200210 |addi  x@4, x03, Bxeel | | addi | | addi |
20200214 |addi  x@5, x0@, @x@el |addi| | addi | |
# | # | addi | addi | | addi |
20@0@218 |add @6, ¥x05, x@5 | | addi | addi | [
# |# |add | | add1i | addi |
@0@ea21c|add  x@7, x05, %06 | |add | | addi |
# | # |add | |add | [
20eee22e |add  x@B, x@7, %07 | |add | |add |

Figure 33. Back-to-back RAW ALU Dependency Line Tracing (Stalling)

20002208 | 1w x@l, exees(xel) | |esrr| | |
# | # |1w | |esrr| |
# |# | [1w | |eser|
2eeae2ec|lw x@l, exees(xel) | | |1w | |
# | # [1w | | 1w |
# | # | 1w | | |
eeeeez1e|lw x81, BxBR4(xal) | [ [1w |

# | # |1w | | 1w |
# | # | [1w | | |
20eee214 |lw x81, BxBR4(x81) | | [1w |

# | # |1w | | 1w |
# |# | 1w | | I
20020218 | 1w x01, @x@e4(x@1) | [ 1w |

# | # |1w | | 1w |
# |# I 1w | | I
eeeeezic|lw x81, BxBR4(xal) | [ [1w |

# | # |1w | | |1w |
# | # | [1w | | |
eeeeez2e |lw x01, BxBR4(xa1) | | [1w |

# | # |1w | | 1w |
# | # | [1w | | |

Figure 34. Load-use Dependency Line Tracing



5.2.4 Testing the Bypassing X0/X1 Splitted Processor

As we are taking an incremental approach to implement the superpipelined processor, we
can incorporate our old unit and integrated tests with the new dependency tests to prove the
functionality and the additional feature of the 6-stage bypassing processor.

One important testing method we used in the line tracing of the pymtl testbench. Line
tracing allows us to visualize the pipeline diagram of the test, making it easier to debug the
design. As the major difference between a 6-stage bypassing processor and a 6-stage stalling
processor is whether there are bubbles between two instruction with dependency, we add
dependency tests on different instructions and use the line tracing to show that data is
successfully bypassed from execution stages and there are less bubbles in the line tracing.

00000200 | | | | | |
00000204 |addi  xB1, x00, 0xeel | | | | |
00000208 |addi  x82, x01, ©x001 |addil| | | |
0000020c [addi  x83, x02, ©x001 |addi|addi| | |
00000210 |addi x84, x03, ©x001 |addi|addi|addil] |
00000214 |addi  x@05, x00, 0x001 |addi|addi|addi|addi]|
00000218 | add x06, x05, x85 |addi|addi|addi|addi]|
0000021c |add  x07, x@6, x06 |add |addi|addi|addi|
00000220 |add  x@8, x07, x07 |add |add |addi|addi|
00000224 |CcsTW @0x7c@, x04 |add |add |add |addi]
00000228 |csTw 0x7c@, x08 |csrw|add |add |add |

Figure 35. Back-to-back RAW Add Dependency Line Tracing (Bypassing)

Comparing the line tracing we get from the X0/X1 splitted processor with stalling
execution stage in figure 33, line tracing in figure 35 shows that we get rid of the bubble between
RAW add instructions by bypassing data from X0 to D and from X1 to XO.

00000260 |sra x03, x@1, 0x02 |addi|sub |addi|csIw]|
# | # |sra |addi|sub |addi]
00000264 |sra x84, x83, exez2 | |sra |addi|sub |
# | # |sra | |sra |addi|
00000268 |sra x85, x84, @xe2 | |sra | |sra |
0000026c|srl x06, x01, 0x02 |sra | |sra | |
# | # |srl |sra | |sra |
000006270 |srl x87, x86, oxe2 | |srl |sra | |
# | # |srl | |srl |sra |
06000274 |s1l x88, x87, 6x82 | |srl | |srl |

Figure 36. Back-to-back Right Shift Bubble Line Tracing (Bypassing)
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000060230 |mul x02, x01, xo1 | |addi|csrw|csrw]|
# | # [mul | |addi|csrw]|
# | # | [mul | | addi|
60000234 |mul x03, x82, x02 | | [mul | |
# | # [mul | | [mul |
# | # | |mul | | |
00000238 |mul x04, x03, x83 | | [mul | |
# | # [mul | | [mul |
# | # | |mul | | |
6000023c |mul x05, x84, x04 | | [mul | |
# | # [mul | | [mul |
# | # | |mul | | |
60000240 |mul x06, xB5, x05 | | [mul | |
# | # [mul | | [mul |
# | # | |mul | | |
00000244 |mul x@7, x06, xB6 | | [mul | |
# | # [mul | | [mul |
# | # | |mul | | |
60000248 |mul x08, x@7, xo7 | | [mul | |

Figure 37. Back-to-back RAW Mul Bubble Line Tracing (Bypassing)

As stated in 4.1.2.b, the dependency between X0/X1 computation results in bubbles
between back-to-back multiplication, right shift, and comparison. The line tracing in figure 36
shows a back-to-back right shifting assembly sequence. For right shift instructions without RAW
hazard, there are no bubbles between the instruction; otherwise, the shift instruction stalls in D
stage for one cycle to wait to its operand coming back at the end of X1 stage. In figure 37 there
are two bubbles between each pair of multiplication instructions brought by the two cycle latency
multiplier and RAW dependency.

After the pipelined processor design passes all of the directed, random, and delay tests,
we run to further test our alternative design. These benchmarks provide non-trivial and realistic
sequences of instructions, so passing this verification is a good sanity check that our processor is
working as expected. In total there are 6 microbenchmarks being used for realistic testing and
their detailed information are listed in table 2. In ummark-cmult we find a bug related to
RAW dependency between ALU instruction and sw instruction (shown in figure 38). Instruction
sub x15,x14,x15 stores data in register x15 and sw x15,0xff8 (x10) stores data in
x15 to the memory. Thus for sw instruction we need data to be bypassed from register file to
memory request data port. As we only implemented bypassing to instruction operand at that
time, we passed computation result of the ALU into the operand register between X0 and X1,
incorrectly modified the upper 16 bits of the memory address we are going to write to and caused
a byte array access out of index error. To solve the problem, we added a bypass path from X1 to
dmem req data portin X0 and fixed the control logic accordingly so that data can be
bypassed correctly encountering a RAW dependency between ALU instructions and sw
instruction.
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ubmark-sort

Quicksort algorithm

ubmark-accum

Integer accumulation

ubmark-bsearch

Binary search in a linear array of key/value pairs

ubmark-vvadd

Element-wise vector-vector add

ubmark-mflit

Masked convolution on a small image

ubmark-cmult

Element-wise complex multiplication

Table 2. Six Microbenchmarks for Testing

264
268:
26c:
270:
274
278:
27c:

mul x14,x14,x17
addi x16,x16,8
addi x11,x11,8
addi x12,x12,8

mul x15,x16,x15
sub %15, x14,x15
SW xlS,—B{xlB}

Figure 38. RAW Dependency for sw in ubmark-cmult

By running ubmark-mf1it, we fixed the bug that existed in our multiplication
response enable logic. The bne x15,x12, 39c always predict taken, meaning the next
instruction fetched after it will be mul x12,x12, x12 at PC 388. If the program takes a

branch after a multiplication instruction, all instructions in-flight in the pipeline are squashed. As

we did not enable the multiplication response enable signal for such a scenario, the mul
instruction result will stay in the multiplier, making it unable to receive the next request. If a

multiplication comes after the squash, it will stall in D stage and the program will never continue

running. Thus we enable the processor to receive multiplication response when there is a mul

instruction in X1 stage and X1 is going to be squashed. The multiplier is then cleared and ready

for the next mul instruction.
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3b8: addi x15,x15,1
3bc: addi x10,x10, 4
3ce: addi x11,x11, 4
3ch: bne x15,x12,39c <verify_results(unsigned int#, unsigned int*, int)+@x1l4>

00000388 <verify_results(unsigned int*, unsigned int#*, int)>:

388: mul x12,x12,x12
38c: beq x12,x0,3c8 <verify_results(unsigned int*, unsigned int#*, int)+@x40>
390: lui x16,0x20

Figure 39. Multiplication after Squash in Ubmark-mfilt

5.2.5 Testing the D0/D1 Splitted 7-Stage Processor

As we splitted the D stage into DO/D1 and each stage handles different bypassing
scenarios, we add more dependency tests to make sure our processor design can handle all kinds
of hazards. In the gen stall test, we have multiple sequences of add and addi
instructions each targeting at dependency between different stages. If there is no nop between
instructions, our bypassing between X0 and D1 and between X1 and X2 successfully handles the
hazard. If there is one nop, as shown in figure 40, the addi instruction in D1 stage will stall for
one cycle until the addi in X1 reaches M stage. This is due to the fact that we remove the
bypassing path from X1 to D stage and instead solve the hazard by bypassing from M to D1. If
there are two nops between the additions, there is a RAW dependency between X1 stage and
DO stage, shown in figure 41. Instruction in DO will stall for a cycle until data can be bypassed
from M to DO. These are the two regular RAW hazards brought by splitting D stage and
removing bypassing from X1 to D that we need to stall. When there are 4 nops between two
dependent instructions, we realize that we cannot wait for the second instruction to reach D1
because the first instruction writes back one cycle before and the second instruction has already
read the wrong data in the register file. Thus we add a bypassing path from W to DO stage to
account for the RAW instructions with four instructions in between.
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F:0000022c|D@:addi
>
F:00000230|D@:nop
>
F:00000234|D0:addi
> (0000eR04)

F:# |DO:#

>
F:00000238|D@:nop
> (00000008)
F:0000023c|D@:addi

*

|DO: #
:00000240 | DO : nop

100000244 | DO : addi

*

|D@: #

f MV MV MV TV Vv

:00000248|DO:nop

Xx01, x00, 0x001 |Dl:csrw|X@:

|D1:addi|X@:csrw|X1:

x02, x01, 0x001

|D1:# |X@:nop
|D1:addi|Xe:
x03,

x02, 0xeel

|D1:# | X0:nop
|D1:addi|X@:
X04,

x03, 0x001

|D1:# | X0:nop

|D1:addi|Xe:

|[D1:nop |X@:addi|X1l:csrw|M:

|D1:nop |X@:addi|X1:

|[D1:nop |XO:addi|X1:

|X1:csrw|M:add |W:add |
[M:csrw|W:add |
[W:csTw|
|X1:addi|M:csrw|W: |
|X1:nop |M:addi|W:csrw]|
[M:nop |W:addi]
|X1:addi|M: |[W:nop |
|X1:nop |M:addi|w: |
[M:nop |W:addi]
|X1:addi|M: |[W:nop |

|[X1:nop |M:addi|w: |

Figure 40. X1/D1 RAW Dependency

F:00000270|D@:addi
>
F:00000274|D@:nop
>
F:000e0278|D@:nop
> (00000004)

F:# |De:#

>

F:00008027c |D@:addi
> (000000688)
F:00eee28@|D@:nop
>
F:00000284|D@:nop

=+

|DO: #
100000288 |D@:addi
:0000028c |DB:nop

100000290 |D@:nop

MV MV TV MV TV

3+

|DO: #

Xx01, x@@, exeel |Dl:csrw|Xe:

|D1:addi|X@:csrw|X1:

|[D1:nop |X@:addi|Xl:csrw|M:

|D1:nop |X@:nop

x02, x@l, exeel |D1i: | X@:nop

|D1:addi|Xe:

|D1:nop |X@:addi|X1:

|[D1:nop |X@:nop

x03, xe2, exeel |D1: | X@:nop

|D1:addi|Xe:

|[D1:nop |X@:addi|X1:

|[D1:nop |X@:nop

|X1:csrw|M:add |W: |
[M:csxw|W:add |
|[W:csTw|
|X1:addi|M:csrw|W: |
|X1:nop |M:addi|W:csrw]|
|X1:nop |M:nop |W:addi|
[M:nop |W:nop |
|X1:addi|M: |[W:nop |
|X1:nop |M:addi|w: |
|X1:nop |M:nop |W:addi]
[M:nop |W:nop |

| X1:addi|M: |[W:nop |

Figure 41. X1/D0 RAW Dependency

By running the microbenchmark tests on our design, we find an irregular dependency

caused by instruction stalling due to other hazards. In ubmark cmult, shown in figure 42 and
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figure 43, as the multiplication in I5 is not ready to respond, I6 is forced to stall at cycle 10.
Since we already have a bypassing path from W to DO, the data dependency hazard between I3
and I6 is resolved at cycle 9. T4 returns x4 value at cycle 8 and writes back at cycle 9.
However, 16 is only valid for data bypassing at cycle 11. At cycle 11 T4 has already written
back to the register file, which causes 16 to read wrong data for x4. Thus we implement a
bypassing path from M to DO so that at cycle 9 both I3 and T4 can both bypass the valid data to
DO.

280: 1w x14,-8(x11)

284 1w x17,-4(x12)

288: 1w x16,-4(x11)

28c: 1w Xx15,-8(x12)

290: mul x14,x14,x17

294: mul x15,x16,x15

Figure 42. Dependency in ubmark cmult
112|134 |5(6|7]8]9(10(11

1 |Iw x1 F |IDO|D1[{XO(X1|M|W
12 |Iw x2 F |DO|D1{XO[X1|M|W
13 |Iw x3 F|DO[DT1(XO0|X1| M| W
14 |lw x4 F |DO[D1{XO(X1| M| W
15 |mul x1, x1, x2 F |DO(DO[D1|X0O|X1|M|W
16 | mul x3, x3, x4 F | F (DO|DO0|D1|D1|X0

Figure 43. Pipeline Diagram for the ubmark cmult Dependency (Instruction Simplified)

5.2.6 Testing the D0/D1 Splitted 7-Stage Processor with modified Unit Signal

When testing our design in section 4.2.1, we noticed that some of the branching tests
were failing by exceeding the maximum cycle number. After examining the waveform, we found
the specific scenario that triggers the bug: stage F being stalled first and then squashed
immediately after. This results in stage F waiting for an instruction dropped by the drop unit
indefinitely. We resolved this bug by modifying the imem resp drop signal as described in
section 4.2.2.

5.2.7 Testing 7-Stage Pipeline Processor With M Stage Branch Resolution

Even though moving the PC redirection unit from X1 stage to M stage is not a
complicated change, we still test it thoroughly to make sure there is no unexpected dependency.
We carefully look into the line tracing of ProcRTL branch test to make sure that every
falsely predicted branching is resolved at M stage. By examining the microbenchmark test cycle
count, we find a matching between the number of for loops inside the benchmark program and
the increase of cycle count between 4.3.1 design and 4.2.2 design (result shown in fable 3). This
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proves that our design has one extra cycle of latency for every branch that is not correctly

predicted.
4.2.2 4.3.1 |[forloop count
ubmark-sort 20863 22170 *
ubmark-accum 1014 1114 100
ubmark-bsearch| 4325 4610 *
ubmark-vvadd 1313 1413 100
ubmark-mflit 8236 8560 200
ubmark-cmult 3213 3313 100

Table 3. Benchmark Cycle Count for 4.3.1 and 4.2.2

When we test our design with gen load after branch test, we realize a bug
caused by squashing a 1w right after a branch instruction. As the branch is resolved in M stage
Iw has already sent out a data memory request at X 1. The data memory response writes back

5

after the PC points to the valid instruction, corrupting the register file. Thus we add a dmem drop

unit which has exactly the same functionality as the imem drop unit: dropping an invalid data
memory response if the 1w instruction is squashed. By carefully examining all dependency
conditions, we realize that it is not possible to stall a 1w instruction at X1 stage. Thus we don’t
need to add more comparison signals for the dmem drop unit as there will not exist a 1w
instruction at X1 stage but did not send any data.
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5.2.8 Testing 7-Stage Pipeline Processor With JAL at D0
Similar to the testing method we have in 5.2.7, the 4.3.2 design only involves moving
JAL related components from D1 to D0. JALR, however, is still resolved at M stage since it
needs the computation result from the ALU. By examining the line tracing for the
ProcRTL jump test (shown in figure 44), it is clear that our design meets the specification
and requirement as stage F is squashed when the instruction jal is at DO.

F:00000228|D@:addi  x03, x03, ©x04@ |D1l:addi|Xe: |X1: IM:jal |W:addi]
F:~ ” |D@:jal x05, @xifffe8 |D1:addi|X@:addi|X1: |M: |W:jal |
F:00000238|D0@:jalr x31, x01, 0xe80 |Dl:nop |X@:nop |Xl:nop |M:nop |W:nop |
F:000;0230|D0:addi X@3, x03, @x001 |Dl:jalr|Xe:nop |Xl:nop |M:nop |W:nop |
F:000;0246|D6:n0p |D1:addi|X@:jalr|X1l:nop |M:nop |W:nop |
F:00036244|De:nop |D1:nop |X@:addi|X1l:jalr|M:nop |W:nop |
Fi~ ” |D@:~ |D1:~ | X@:~ [ X1:~ [M:jalr|W:nop |
F:000;6264|Da: |D1: |Xe: | X1: |M: |[W:jalr|
F:000;0268|D0:addi x03, x03, 0xee2 |D1: |Xe: |X1: |M: |W: |
>

Figure 44. JAL and JALR Line Tracing
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6. Evaluation

6.1 Cycle Time

Baseline | X0/X1 with | X0/X1 with | D0/D1 | DO/D1 | Branch JAL in
Stalling Bypassing 4.2.1) | (4.2.2) | Resolution in | D0
4.1.1) 4.1.2) W 4.3.1) 4.3.2)
Cycle [1.2 1.23 1.22 1.13 1.23 1.27 1.26
time/ns
Table 4. Minimum Cycle Time
Cycle Time
1.28
1.26
E 124
E

122

1.20

baseline 411 4.1.2 422 43.1 4.3.2

Figure 45. Cycle Time

Looking at the cycle times (table 4 and figure 45), we noticed an initial increase in 4.1.1
after we divide the X stage into X0 and X1 without bypassing. We took a look at our critical path
and found out that it is not the critical path of our original baseline design and after comparing
the components and routing, we realized that the placement of these components are influenced
due to our additional logic for dividing X stage.

Compared with 4.1.1, our 4.1.2 design has a relatively smaller cycle time. As we add
additional control logic and bypassing muxes, the ASIC flow tool tries to optimize the placement
of standard cells and somehow influences routing of the processor. This helps to reduce the
critical path of our bypassing design.

From 4.1.2 to 4.2.1, we first time achieve a cycle time smaller than the original baseline
design. This is due to the fact that we divide the critical path in 4.2.1 (in D stage through register
file) into two stages, significantly reducing the path length. This matches with our expectation
for the incremental implementation approach: gradually dividing critical paths to eliminate the
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longest path in the design. However, as we correct our design by adding control signals to the
imem drop unit, the cycle time significantly increases from 1.13ns to 1.23ns for design 4.2.2.
Taking into account that the critical path shifts from datapath to control logic, we believe the
cause is the following: the additional control logic we add in design 4.2.2 completely changes the
how Cadence Innovus, the place and route tool, place the components and route the control logic.
The increased wiring distance between important components causes the change in critical path.

In 4.3.1 design, we focus on moving the PC redirection unit from X1 stage to M stage,
hoping we can save the 0.3ns overhead caused by the ALU unit. However, the cycle time
significantly increases again from 1.23ns to 1.27ns, even through the critical path changes. By
moving the JAL resolution from D1 stage to DO stage in 4.3.2 design we also decrease the
critical path length and change the critical path position. This change is supposed to be a
functional improvement of the CPI, but such a minor change also causes change in cycle time.
Here we can conclude that place-and-route is very sensitive to the design and any minor change
can cause reroute of the entire design; besides, a change from 1.27ns to 1.26ns can cause the
critical path position to change, making us suspect that the tool might put in effort to evenly
distribute path length of the design. This helps the tool to minimize the longest path in the design
and meet the timing constraint; but at the same time this makes it harder for us to see an

improvement in the cycle time of our design, since there might be multiple paths of similar
length.

Path Slack Path Slack Path Slack

Number of Paths
Mumber of Paths

Number of Paths

Worst Best Worst Best Worst Best

0.000603437 | 0.941921 0.00224245 | 1.00336 | 0.000137091 | 0.996365

Baseline 4.1.1 4.1.2
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Path Slack Path Slack Path Slack
120

Number of Paths
Number of Paths
Number of Paths

Worst Best Woerst Best Worst Best
u.mug5529?| 0.977203 | ﬂ-ﬂﬂ345556| 0.956617 | u.uu1113194| 0.978025

4.2.2 4.3.1 4.3.2
Figure 46. Path Slack Histograms
(top to bottom, left to right: baseline, 4.1.1, 4.1.2, 4.2.2, 4.3.1, 4.3.2)

By examining the path slack histogram (shown in figure 46) generated by Cadence
Innovus for each of the design we have, we further prove our assumption about how
place-and-route works: the tool tries to average datapath length for every single path we have in
out design so that it can achieve the minimum cycle time. As we keep improving our design and
implementation, more and more paths reach the timing constraint we set when we push the
design through the flow. This is one of the major reason why we keep getting critical path of
similar or even longer length for different design: there are multiple paths that we need to
eliminate to see a significant improvement in the processor cycle time and sometimes slight
change in logic can have an impact on routing, making the critical path even longer than before.

One other dilemma we realize is the dual effect of adding more stages into the processor.
While it can significantly help improve the cycle (from 4.1.2 to 4.2.1), it also brings more
dependency between stages and results in more stalling. To improve CPI, which is also an
important factor considering processor performance, we need to add more aggressive bypassing
to the design. Looking at the critical paths of our designs, it is obvious that most of them are
results of bypassing and data forwarding.

As we mentioned in section 4.3.2, register retiming is an effective tool Cadence Innovus
has to automatically balance stages by changing pipeline register position. The reason why we
still incrementally divide critical path instead of place registers at the output and let the tool do
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the work is that register retiming is only helpful when there is no feedback loop in the design.

Forwarding and bypassing loops are usually harder to resolve under the regime of ASIC design.

If we take a look at figure 7 and think about how the industry designs processors with a cycle

time of 10-20 FO4 delays, it is reasonable to believe that ASIC design is not the entire picture of

processor design. Full custom design allows engineers to manually place components and route

wires in the way they want, which seems like a valid method to reduce the length of the data

forwarding path. Both ASIC and full custom design are different approaches to solve the same

problem and their combination is the most appropriate way to achieve the best design.

6.2 CPI
Base- | X0/X1 with | X0/X1 with | D0/D1 Branch JAL in D0
line Stalling Bypassing | (4.2.2) | Resolution in 4.3.2)
4.1.1) “4.1.2) W 4.3.1)

sort/cycles 14874 19017 17603 20863 22170 22137
accum/cycles 612 813 812 1014 1114 1113
bsearch/cycles | 2856 4311 3478 4325 4610 4608
vvadd/cycles | 1012 1215 1112 1313 1413 1412
mfilt/cycles 6160 7322 6890 8236 8560 8541
cmult/cycles | 2212 2915 2712 3213 3313 3312

Table 5. Benchmark Cycle Count
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ubmark cycles

ubmark-sort
ubmark-accum

ubmark-hsearch

10000 ubmark-vvadd
'/.\././_/‘—‘ ® ubmark-mflit
5000 ubmark-cmult
w
Q
s
@]
1000
500
baseline 4.1.1 4.1.2 4.2.2 43.1 4.3.2

Figure 47. Ubmark Cycle Count

Applying the same microbenchmark to each design is a good way to measure the power,
energy, area and CPI of them. Since we do not have an instruction count yet to calculate CPI
(cycle count / instruction count), we will evaluate CPI based on the amount of cycles for each
design given that instruction count is the same for each benchmark. As we divide our designs
into more stages and reduce the length of the critical path, it is important to keep track of the
trends of these statistics. As stated in section 1, The execution time of a program is determined
by the following equation: T = i X cpi X t. Even though we primarily focus on improving t,
the cycle time of the processor, the ultimate purpose is to reduce the total execution time of the
software. Keeping track of cpi helps us understand how many bubbles our processor design
creates and helps us decide whether implementing an aggressive bypassing is beneficial, just like
the transition we have from the stalling splitted X0/X1 processor (4.1.1) to bypassing splitted
X0/X1 processor (4.1.2). A lot of this is contributed by branch penalty. By adding an extra stage
before branch resolution, the process wastes an extra cycle for every mispredicted branch
instruction. Since we had not implemented a branch predictor, the extra cycle hurts our CPI
tremendously.

For design 4.1.1, there is a noticeable increase in the number of cycles, about 30%
,compared to that of our baseline design which is reasonable because we use simple stalling to
deal with read-after-write dependency between X0 and X1, and thus did not take full advantage
of pipelining.

For design 4.1.2, we see an obvious decrease in the number of cycles, about 10%, for
each benchmark because of the additional bypass path. The path successfully reduces the amount
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of bubbles required between instructions with RAW hazards. Even though we still need to stall

for multiplication, shifting, and comparison, eliminating bubbles for most common instructions

such as add significantly contributes to our cpi.
For design 4.2.2, we continue to see an increase in the number of cycles for about 20%.

This is again due to the extra stall logic and branch misprediction penalty. As the number of

instructions squashed goes from 3 to 4, we lose many cycles as the benchmarks contain for loops

that are usually taken.

For design 4.3.1, the trend continues as expected. In an effort to decrease cycle time, we

sacrifice CPI by moving branch resolution to stage M, further increasing the misprediction

penalty from 4 to 5, resulting in the number of cycles increasing for about 100.

For design 4.3.2, we see a slight decrease in the number of cycles. However, for

benchmarks such as sort, there are many function calls and therefore the number of cycles goes

down by 30.

Generally, as we come up with a new design, we see an increase in the number of cycles.
This is to be expected, as our goal is to sacrifice CPI for cycle time. By separating stages, we
were hoping to see a dramatic decrease in cycle time and therefore the overall execution time can

be improved. As we see in fable 6, this is not the case, unfortunately.

Base- | X0/X1 with X0/X1 with D0/D1 Branch JAL in
line Stalling Bypassing 4.2) Resolution in DO

4.1.1) “4.1.2) W (4.3.1) 4.3.2)
sort/ns  [17848.8| 23390.91 21475.66 25661.49 28155.9 27892.62
accum/ns | 734.4 999.99 990.64 1247.22 1414.78 1402.38
bsearch/ns | 3427.2 5302.53 4243.16 5319.75 5854.7 5806.08
vvadd/ns | 1214.4 1494.45 1356.64 1614.99 1794.51 1779.12
mfilt/ns 7392 9006.06 8405.8 10130.28 10871.2 10761.66
cmult/ns | 2654.4 3585.45 3308.64 3951.99 4207.51 4173.12

Table 6. Benchmark Execution Time
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Execution Time (ns)

10000

5000

1000

500

baseline

Execution Time

4.1.1

43.1

© ubmark-sort
ubmark-accum
ubmark-bsearch

ubmark-vvadd

@& ubmark-mflit

©® ubmark-emult

Figure 48. Execution Time for Each Design with Minimum Time Constraint

Since the number of cycles with our latest design has increased for all benchmarks

compared to the baseline design, we need a decrease in cycle time in greater percentage in order

to see a decrease in overall execution time, which is the product of the cycle time and the cycle

count. As discussed in 6.1, the cycle time has not evolved as expected. Instead of going down for

each design, the cycle time generally increases with some fluctuations. Since both cycle time and

CPI increased, it is not surprising that the execution time for each benchmark increases. It is fair

to say that we did not achieve our original goal and we see no speedup at all despite our efforts.

6.3 Area

From an area perspective, we push the design through the flow twice, one with its

minimum cycle time and the other with uniform timing constraint, hoping we can get different

insights from the result.

Baseline | X0/X1 with | X0/X1 with D0/D1 Branch JAL in
Stalling Bypassing 4.2) Resolution DO
4.1.1) 4.1.2) in W (4.3.1) 4.3.2)
Design
2 19051.71 | 20283.298 20467.37 |[21631.918 | 21632.982 [22170.036
area/um

Table 7. Design Area with Minimum Time Constraint
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Baseline | X0/X1 with | X0/X1 with D0/D1 Branch JAL in
Stalling Bypassing 4.2) Resolution | D0(4.3.2)
4.1.1) 4.1.2) in W
4.3.1)
Design
2 | 18799.434 | 19300.162 20146.236 | 21547.209| 21632.982 | 22014.593
area/um
Table 8. Design Area with Uniform Time Constraint (1.27ns)
Area
@ minimum time uniform time
23000
22000 /
21000 /
20000 lo/
19000
18000
baseline 4.1.1 41.2 42.2 4.3.1 4.3.2

Figure 49. Area for Each Design with Minimum Time Constraint

In table 7 and figure 49, we listed the area of each design with their optimal timing. It is

reasonable for the design area to increase each time we make modifications. There are great

leaps in the design area from both baseline to 4.1.1 and from 4.1.2 to 4.2. As we add more stages

to the design, we require more pipeline registers in both the datapath and the control unit.

Besides, as we have higher demand for aggressive bypassing, we need more and larger muxes.

Both factors contribute to the design area. From 4.1.1 to 4.1.2, the muxes needed for bypassing

increases design area by 0.91%. From 4.2 to 4.3.1, since we only move the position of PC

redirection without adding extra logic, the area only change by lum”. As indicated in table 8 and

figure 49, as we release the timing constraint for some of the designs, we can see an

63




improvement in design area. It is confusing why we have a 1.21% increase in area when

changing from 4.3.1 to 4.3.2 design since the only change we make is to move JAL components
from D1 stage to DO stage. For 4.1.2 the design area is even slightly higher under looser time
constraints. We suspect that changes in design influence the placement of standard cells and the

routing of the wire, which reflects the uncertainty of the ASIC flow.

6.4 Power and Energy
Baseli | X0/X1 with X0/X1 with D0/D1 Branch JAL in
ne Stalling Bypassing 4.2) Resolution | D0(4.3.2)
4.1.1) “4.1.2) in W (4.3.1)
energy/nJ | 384.5 483.4 487 488.4 529.7 547.8

Table 9. Design Energy Consumption for ubmark-sort with Minimum Time Constraint
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Figure 50. Energy for Each Design

Energy

4.2.2

4.3.1 4.3.2

To analyze the power and energy for each design, we use the waveform generated by the
same benchmark, ubmark-sort, run by each design. As seen in table 9 and figure 50, there
exists an increase in energy across all designs when compared to their previous iterations. This is

expected because we added extra logic for every iteration and they cost extra energy. The most
significant increases we see are from baseline to 4.1.1 and from 4.2 to 4.3.1. From baseline to

4.1.1, the ALU structure is completely different and hence we see the massive increase as more
computation is required. From 4.2 to 4.3.1, a drop unit is added and we believe that might be the

64




cause as it is doing extra work every time a data memory request goes through it. At other
iterations, the change in energy is pretty insignificant as we only made minor changes such as

adding a few registers to the datapath.

Base X0/X1 .w1th X0/X1 v.v1th DO/D1 Branc.h JAL in
line Stalling Bypassing 4.2) Resolution D0(4.3.2)
4.1.1) 4.1.2) ) in W (4.3.1) "
power/mW 18.6 17.6 19.5 15.9 16 16.7

Table 10. Design Power Consumption for ubmark-sort with Minimum Time Constraint
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Figure 51. Power for Each Design

Power

412

4,22

43.1

4.3.2

As seen in table 10 and figure 51, the power experiences an inexplicable trend. Without
4.1.2, it looks somewhat like a quadratic trend, with the trough at 4.2.2. However, power does
not matter as much as energy and it fluctuates a lot depending on the dataset as well as the
implementation itself as it is affected by many factors like overall energy as well as cycle time.

In order to increase performance of the original 5-stage pipelined processor, we tried
different ways to decrease the cycle time. We thought that some stages might have more logic
than others and we could separate those stages in halves so that the critical path would be
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shortened by half effectively. Therefore, we separated X into X0/X1 and D into DO/D1, hoping
that the critical path would be shortened. We also erased some bypassing paths that are critical
paths hoping that we could decrease cycle time in exchange of the increasing CPI. However, as
we gradually discovered, the ASIC flow does an amazing job in optimizing the timing of
different paths. As seen in figure 46, for each design, there are not one but dozens of paths that
meet the timing constraint by just a little. When eliminating the one path, we inadvertently
interfere with place and route and thus increases the delay in all these other paths. The sad truth
as described in section 6.1 and 6.2 is that the numerous efforts and approaches we took did not
decrease the execution time of any of the benchmarks. Every one of them increased by at least
50% compared to the baseline design as both the CPI and the cycle time increased. The area and
energy also increased, albeit not significantly. Our failed attempt is a valuable lesson that timing
is very tricky when it comes to ASIC design and modern ASIC tools are very effective when it
comes to balancing paths and meeting timing.
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[1] A. Bashteen, I. Lui, and J. Mullan, “A superpipeline approach to the MIPS architecture,”
COMPCON Spring 91 Digest of Papers.

A superpipeline approach to the MIPS architecture, published in 1991 by three
employers of MIPS Computer Systems, Inc., talks about the rationale behind implementing
superpipelining instead of superscalar and VLIW to achieve a higher level of performance on the
new generation of MIPS processors. The old generation of MIPS processors has five stages,
much like the five-stage processors that we learned about in ECE 4750. The authors noted that
many stages only take half a clock cycle and the entire pipeline can be broken down into smaller
stages with a deeper pipeline. Mainly, accesses to the instruction cache as well as to the data
cache can be split into two states, decreasing the clock cycle requirement.

Superscalar and VLIW processors try to increase performance by running multiple
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Available instruction-level parallelism for superscalar and superpipelined machines,
published in 1989 by Norman Jouppi and David Wall from Digital Equipment Corporation,
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Western Research Lab, discusses the approach they took to evaluate parametrized superscalar
and superpipelined machines with an emphasis on how their performances are improved and
limited by instruction-level parallelism.

Ideally, a superpipelined machine should have almost the same performance as the
superscalar machine. A superscalar machine of degree n can issue 7 instructions in the same
cycle and thus have a throughput of » and a superpipelined machine of degree m, by making the
assumption that the cycle time of a machine is many times larger than the add or load latency,
has m times more stages but //m cycle time of the base machine. What is flawed about the
assumption is that a normal program has instruction-level parallelism of 2, and only by carefully
manipulating the Assembly code can we bring it up above 4. Besides, we assume that the latency
of each stage is equal -- for operations like memory access that may take multiple cycles when
misses happen, the deeper the pipeline level the longer we need to wait. Furthermore, they also
briefly mentioned how cache performance and cache misses can affect machine performance. All
of these concerns provide us with ideas on what factors should be considered for evaluation and
how we can improve our superpipelined machine based on the performance bottlenecks.

[3] Ching-Long Su and A.M. Despain, “Minimizing branch misprediction penalties for
superpipelined processors,” in Proceedings of MICRO-27. The 27th Annual IEEE/ACM
International Symposium on Microarchitecture, San Jose, CA, USA, 1994

This paper discusses and evaluates the methods to reduce branch misprediction rates and
branch penalties in order to reduce branch misprediction penalties.

Firstly, there are two approaches to deal with branch misprediction rate. One is dynamic
branch schemes implemented in hardware to predict branch behavior at run-time. The other is
static branch schemes achieved by the compiler to schedule safe instructions into branch delay
slots at compile-time. The authors implemented two static branch schemes: compiler predicting
the branch outcomes based on program behavior at compile-time and run-time profile
information. Compared with only the program behavior, a combined static branch prediction
method improves the accuracy from 71.85% to 86.38% on average. Regarding the dynamic
branch schemes, the authors implement a two-level adaptive branch target buffer and a
correlation-based scheme that takes advantage of the “relationship between nearby branches to
improve accuracy.” Secondly, Branch With Masked Squashing(BWMS) is used to reduce branch
penalties by filling branch delay slots as much as possible with safe instructions first and then
unsafe ones from target blocks.

In general, the authors conclude that the prediction accuracy of the dynamic prediction
schemes with a small Branch Target Buffer (BTB) can be higher than of the static prediction
scheme. However, if we want dynamic prediction schemes to perform better than advanced static
branch schemes (BWMS), a large BTB (“more than 2048 entries”) is required.
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8. Appendix

4.1.1: Path Slack Histogram; Amoeba Plot; Color Reference
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4.1.2: Path Slack Histogram; Amoeba Plot; Color Reference
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4.2: Path Slack Histogram; Amoeba Plot; Color Reference
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