Proof of Concept for Automated STEM Tilting Using Image Analysis for Quantifoil Grids

Lynnicia Massenburg, Elizabeth Heon, Sai Venkata Gayathri Ayyagari, Andrew Balog, Darel
Pates, Sita Sirisha Madugula

Tilt allows a microscopist to align specific orientations of the sample to the electron beam for
imaging and diffraction. Virtually all TEM experiments will begin with tilting the sample to a
desired orientation; thus, sample tilting is a clear goal for automated electron microscopy efforts.
This project focuses on a simplified case of automated tilting: aligning a Quantifoil grid with
circular holes perpendicular to the beam. When the grid is tilted relative to the beam, projection
of the 3D grid into the 2D image plane will make the holes appear as ellipses, whereas when the
grid is perpendicular to the beam the holes should appear perfectly circular, (Figure 1). In this
case, tilting can be done at low magnification in real space by tracking the appearance of the
holes. Therefore, the goal of this effort is to develop a proof-of-concept auto-tilting algorithm by
optimizing the circularity of holes in a Quantifoil grid.

Methods:

In this work, synthetic images will be used for proof of concept. The work is divided into two
main parts:

Figure 1: Experimental STEM HAADF image of a hole in a Quantifoil grid both a) tilted
relative to the electron beam, and b) after tilting to the grid perpendicular to the electron beam.
This data was acquired experimentally before the hackathon.

Digital Twin: Digital twins are virtual representations of physical objects; in microscopy a
digital twins simulates such actions as tilting, focusing, and collecting images and diffraction
patterns, returning either simulated images or pre-captured data [1]. The use of a digital twin
allows for the development of algorithms like this one, which require iterative collection of data
at given parameters, without the need to be connected to a real instrument.

For this work, a digital twin was created which produced appropriate simulated images for the
auto-tilting algorithm. This was done by treating the grid (and by extension the hole) as a plane
in 3D space. The normal to this plane was tracked and updated appropriately when tilt



commands were issued by the simulated auto tilt algorithm. The matplotlib library [2] was then
used to generate an image of the projected ellipse.

Circle Recognition and Optimization: A method was developed to recognize circular figures in
synthesized pseudo-micrographs. The circle recognition and optimization implements a complete
pipeline that takes a folder of images at different tilts, segments the main (assumed circular)
object in each image, measures its geometric circularity, and performs robust circle fitting, while
saving visual diagnostics and a summary table of metrics.

Overall Autotilting Workflow: A starting image is first generated with the grid at a random tilt.
The circle optimization code is performed to determine the circularity metric.

Step 2) Optimization Loop \
Apply

/Step 1) Initialization

optimization
algorithm to
determine Spoaregt
appropriate tilt
updates
» i Fit circle to ellipse and Generate new image
Initial synthetic determine circularity Repeat loop until max
Kmlcrograph generated metric circularity achieved

Figure 2: Auto-tilting workflow for low-magnification, real-space tilting of Quantifoil grids
based on circularity of included grid holes

Circle Recognition and Optimization function: It first reads each in grayscale, denoising with
Gaussian blurring, and applying inverted Otsu thresholding followed by morphological closing
to obtain a clean binary region corresponding to the object. From this binary image, it extracts
the largest external contour, approximates it with a polygon using cv2.approxPolyDP (with the
approximation tightness controlled by epsilon_ratio), and uses this polygon to generate two
outputs: an overlay image where the detected region is highlighted in red on the original
grayscale image, and a binary polygon mask saved for later fitting. The code then computes a

standard circularity metric for each image, 41 Area/Perimeter” where a value of 1 indicates a
perfect circle, and stores this in a DataFrame alongside the image name. For more detailed
geometry, it loads the polygon masks, refines the contour coordinates to subpixel accuracy with
cornerSubPix, subsamples the boundary to a manageable number of points, and uses RANSAC
with CircleModel to obtain a robust initial circle estimate and a set of inlier points that agree
with that circle. Starting from this RANSAC initialization, it performs a nonlinear least-squares
minimization of radial distance residuals using scipy.optimize.least squares, yielding optimized
center and radius parameters together with the root-mean-square error (RMSE) of the fit and an
arc-coverage fraction that quantifies how much of the boundary is well described by a single
circle. For each image, the function saves two diagnostic plots: an image with the fitted circle,
center, and sampled contour overlaid, and an angular error plot showing radial deviation as a
function of angle around the circle.



(1]

R. Sweat, J. G. Park, R. Liang, R. Sweat, J. G. Park, and R. Liang, “A Digital Twin Approach to a Quantitative
Microstructure-Property Study of Carbon Fibers through HRTEM Characterization and Multiscale FEA,” Materials
2020, Vol. 13, vol. 13, no. 19, Sep. 2020, doi: 10.3390/MA13194231.

“Matplotlib — Visualization with Python.” Accessed: Dec. 17, 2025. [Online]. Available: https:/matplotlib.org/


https://matplotlib.org/

