
Proposal for implementing
"batteries included" in Selenium

Boni García
July 22, 2022

Table of contents
1 Introduction 1

2 Driver management 1
2.1 WebDriverManager 2

2.1.1 WebDriverManager methodology 3
2.1.2 Pros and cons of WebDriverManager 5

2.2 Browser Manager 6
2.2.1 Browser Manager algorithm 7
2.2.2 Pros and cons of Browser Manager 8

3 Proposal: Selenium Manager 8
3.1 Preliminary design 9
3.2 Milestones 11



1 Introduction

The setup of a browser infrastructure is a prerequisite for using Selenium. This infrastructure
can be local (i.e., installed in the local machine) or remote (e.g., using Selenium Grid or a cloud
provider such as Sauce Labs, BrowserStack, etc.). Local browsers are the typical infrastructure
for first-comers to Selenium. In this case, at least a browser (e.g., Chrome, Firefox, Edge, etc.)
and its corresponding driver (e.g., chromedriver, geckodriver, msedgedriver, etc.) must be
installed locally.

On the one hand, browsers are usually installed on every computer. On the other hand, drivers
are Selenium-specific and are typically downloaded and installed manually. The maintenance of
these drivers can be challenging since modern web browsers (often called evergreen browsers)
automatically and silently upgrade to the next stable version. Due to this automatic upgrade, the
drivers required by Selenium would also need to be updated eventually since the driver-browser
compatibility is not satisfied in the long run.

To provide a better onboarding and user experience with Selenium, we (the Sauce Labs’ Open
Source Program Office -OSPO-) propose an implementation for the so-called "batteries
included" concept. The idea behind this name is to use a helper tool that automatically manages
the browser infrastructure required by Selenium (i.e., browsers and drivers).

2 Driver management

When using local infrastructure, Selenium users need to provide both the browser and the
driver. For a given browser (e.g. Chrome), the process of resolving its proper driver (e.g.,
chromedriver) is called driver management, and it is composed of three main steps:

1. Download. The first step is obtaining the proper driver to control a given browser. The
driver is a platform-dependent binary file (e.g., geckodriver for Windows). Moreover, the
driver version needs to be compatible with the underlying browser version. For that
reason, the user needs to find out the browser version and download the correct driver
version from its online repository (typically, checking the driver documentation to select
the appropriate version).

2. Setup. Once the driver is downloaded and available, the driver needs to be available in
the PATH environment variable. Alternatively, the driver’s absolute path needs to be
exported using a given property before creating a WebDriver object.

3. Maintenance. Modern web browsers (such as Chrome, Firefox, or Edge) are sometimes
called evergreen browsers. This term reflects a common feature of these browsers that
automatically and silently upgrade to the next stable version. Due to this upgrade, the
previously downloaded driver will need to be updated eventually since the driver-browser
compatibility is not satisfied in the long run.

Driver management, when carried out manually, has different inconveniences, such as:

1

https://opensource.saucelabs.com/
https://opensource.saucelabs.com/
https://link.springer.com/article/10.1007/s10664-021-09975-3


- Development effort. Developers need to invest some time in discovering the browser
version and driver, download it, and make it available for test scripts.

- Lack of test portability. The driver path should be known by Selenium tests. As a result,
the resulting tests can be linked to a specific computer, and cannot be executed on a
different machine out of the box, for example, in a Continuous Integration (CI) server.

- Maintenance effort. To avoid a mismatch problem between the browser and the driver,
the user needs to keep track of the driver version. Otherwise, the execution of the
Selenium WebDriver test will fail in the long run. For example, with Chrome, the
message that is shown as a consequence of this error is the following: “this version of
chromedriver only supports chrome version N” (being N is the latest version of Chrome
supported by a particular version of chromedriver). As reported periodically in
StackOverflow, this is a recurrent problem for Selenium WebDriver users.

To overcome the problems related to manual driver management and listed above, there has
emerged a group of tools called managers in the Selenium ecosystem. The following table
summarizes the available driver managers for different language bindings.

Manager Language License Maintainer

WebDriverManager Java Apache 2.0 Boni García

webdriver-manager Python Apache 2.0 Serhii Pirohov

webdrivers Ruby MIT Titus Fortner

WebDriverManager.Net C# MIT Aliaksandr Rasolka

Table 1. Driver managers for Selenium

2.1 WebDriverManager

WebDriverManager is an open-source Java helper library for SeleniumWebDriver created and
maintained by Boni García. Its primary feature is automated driver management for the drivers
(e.g., chromedriver or geckodriver) required by Selenium WebDriver. It also discovers browsers
installed in the local system, builds WebDriver objects (such as ChromeDriver, FirefoxDriver,
etc.), or runs browsers in Docker containers seamlessly. WebDriverManager was first released
in 2015. Since then, it has become a well-known helper utility for Selenium WebDriver
developers. Figure 2 shows the evolution of the WebDriverManager monthly downloads and
unique IPs from July 2021 to June 2022 according to the Maven Central Sonatype Statistics.

2

https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+Chrome
https://github.com/bonigarcia/webdrivermanager
https://pypi.org/project/webdriver-manager
https://github.com/titusfortner/webdrivers
https://github.com/rosolko/WebDriverManager.Net
https://oss.sonatype.org/


Fig. 2. WebDriverManager Usage Statistics

WebDriverManager provides a fluent API based on a set of singletons to execute the above
mentioned resolution algorithm. These singletons are accessible through the
WebDriverManager Java class. For instance, it is possible to invoke the method
chromedriver() to manage the driver required by Chrome, i.e., chromedriver, as follows:

WebDriverManager.chromedriver().setup();
WebDriver driver = new ChromeDriver();

2.1.1 WebDriverManager methodology

WebDriverManager is mainly used as a Java library available on Maven Central (although other
uses are available, such as Command Line Interface -CLI- tool, REST-like server, or Docker
container). Figure 3 illustrates the architecture implemented by WebDriverManager. Internally,
WebDriverManager is based on a resolution algorithm that automatically manages the drivers
required by each browser. This algorithm implements the following steps:

1. Browser version discovery. WebDriverManager uses an internal component called
commands database to execute this step. This database contains a list of shell
commands (in different operating systems) that allow discovering the browser versions
(e.g., google chrome --version in Linux).

2. Driver version discovery. To that aim, WebDriverManager uses another component
called versions database. This database stores the knowledge to keep the compatibility

3

https://github.com/bonigarcia/webdrivermanager/blob/master/src/main/resources/commands.properties
https://github.com/bonigarcia/webdrivermanager/blob/master/src/main/resources/versions.properties


between the versions of browsers and drivers. Both commands and versions databases
are automatically updated from an online repository. In this way, WebDriverManager
always uses the latest knowledge database.

3. Driver download. WebDriverManager downloads the resolved driver, connecting to the
proper repository (e.g., chromedriver, geckodriver, etc). WebDriverManager stores the
downloaded drivers in the local filesystem into a folder called driver cache. This driver
cache allows reusing the drivers. In addition, WebDriverManager uses a local properties
file called resolution cache. Inspired by the Domain Name System (DNS), this cache
stores the relationship between the resolved driver versions following a time-to-live (TTL)
approach. In subsequent invocations, the driver is considered fresh during the TTL (1
day by default). When the TTL expires, the resolution algorithm is executed again. This
mechanism prevents the usage of outdated driver versions when the browser
automatically gets upgraded.

4. Driver path export. Finally, WebDriverManager exports the downloaded driver path using
the proper Java system property (e.g., webdriver.chrome.driver for
chromedriver).

Fig. 3. WebDriverManager architecture

Figure 4 provides a detailed view of the WebDriverManger resolution algorithm in context with
the rest of elements of its architecture.

4



Fig. 4. WebDriverManager resolution algorithm

2.1.2 Pros and cons of WebDriverManager

The main advantages of WebDriverManager are:

● Easy to use.
● Mature and stable.
● Rich configuration capabilities. WebDriverManager allows tuning all the details of the

driver management process (e.g., browser version, driver version, proxy, among many
others elements) in three different ways:

○ Using the WebDriverManager Java API, for instance:

WebDriverManager.chromedriver().driverVersion("81.0.4044.138").setup();
WebDriverManager.firefoxdriver().browserVersion("75").setup();

5



WebDriverManager.operadriver().proxy("server:port").setup();
WebDriverManager.edgedriver().mac().setup();

○ Using the Java system properties, for instance:

mvn test -Dwdm.cachePath=/custom/path/to/driver/cache

○ Using environmental variables. For instance:

docker run --rm -v ${PWD}:/wdm -e ARGS="resolveDriverFor chrome" -e
WDM_CHROMEVERSION=84 bonigarcia/webdrivermanager:5.2.1

The main limitation of WebDriverManager is:

● Mainly restricted to Java. Although WebDriverManager can be used beyond Java (such
as Command Line Interface -CLI- tool, REST-like server, or Docker container), it is
mainly used in Selenium WebDriver projects using Java as a language binding.

2.2 Browser Manager

Browser Manager is a tool created and maintained by David Burns since 2020. It is aimed to
download and install browsers and drivers onto the local machine. Browser Manager is a binary
tool created with Rust and designed to be executed from the shell. The following snippet shows
the options allowed in the latest version (i.e. 0.1.0) at the time of this writing is:

$ ./browser-manager -h
Browser Manager 0.1.0
David Burns <david.burns@theautomatedtester.co.uk
Browser manager for selenium to download browsers and drivers

USAGE:
browser-manager [OPTIONS]

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-b, --browser <browser_name> Select the browser you wish to you with

version. E.g. Firefox@69 or Chrome@latest

The only feature allowed to date is the ability to download a given browser type and version and
its corresponding driver, for instance:

6

https://github.com/AutomatedTester/browser-manager


● Firefox 69:

$ ./browser-manager -b Firefox@69

● Chrome latest:

$ ./browser-manager -b Chrome@latest

2.2.1 Browser Manager algorithm

Internally, Browser Manager uses a library crate (i.e., a compiled Rust program) called clap
(Command Line Argument Parser) for parsing the arguments from the command line. The
internal algorithm implemented by Browser Manager is as follows:

program browser-manager
input: browser ❶

version ❷
output: downloaded artifacts (driver and browser) in a target folder ❸

browser_found ← check_if_installed(browser) ❹
if not browser_found

os, arch ← read_from_env ❺
download_browsers_and_driver(browser, version, os, arch) ❻
update_metadata ❼

end if

end program

❶ The supported browsers are Chrome and Firefox.
❷ Latest version is used by default.
❸ It uses internally a Rust crate called directories, which is a library that provides
platform-specific standard directories to use a local folder (e.g., ~/.config/browser-manager
for Linux or /Users/Alice/Library/Preferences/org.webdriver.browser-manager for
macOS).
❹ It uses the command which internally to check if the browser is available.
❺ It finds out the local operating system and architecture using Rust’s standard environment
constants (env::consts::OS and env::consts::ARCH).
❻ It uses a predefined set of URLs for downloading artifacts, such as (among others):

https://chromeenterprise.google/browser/download/thank-you/?platform={}&channel=sta
ble&usagestats=0
https://download.mozilla.org/?product=firefox-latest&os=osx&lang=en-US

7

https://docs.rs/clap/latest/clap/
https://crates.io/crates/directories
https://doc.rust-lang.org/std/env/consts/index.html
https://doc.rust-lang.org/std/env/consts/index.html
https://chromeenterprise.google/browser/download/thank-you/?platform=%7B%7D&channel=stable&usagestats=0
https://chromeenterprise.google/browser/download/thank-you/?platform=%7B%7D&channel=stable&usagestats=0
https://download.mozilla.org/?product=firefox-latest&os=osx&lang=en-US


❼ It keeps a JSON file per browser (e.g., chrome_details.json), containing the following data:
{"name":"chrome","driver_path":"/home/boni/.config/browser-manager","brow
ser_path":"/home/boni/.config/browser-manager","version":"103.0.5060.53",
"bitness":"x86_64","os":"linux"}

2.2.2 Pros and cons of Browser Manager

The main advantages of Browser Manager are:

● Easy to use, since it provides a basic CLI interface.
● Portability (through different binaries compiled to the three major operating systems, i.e.,

Windows, Linux, macOS).
● It supports both drivers and browsers.

Nevertheless, Browser Manager is only a prototype implementation which has several
limitations:

● It only downloads the driver and the browser installer to a local folder. But it does nothing
with these artifacts.

● It does not use cache nor versioning mechanisms.
● Some bugs discovered (e.g., currently the Chrome download in Linux is actually a web

page file in a .zip file).
● Only limited to Chrome and Firefox (there is some Edge URL in the source code, but its

support is not yet implemented).

3 Proposal: Selenium Manager

To ease the adoption of browser automation with Selenium WebDriver, we propose the
implementation of an official driver/browser manager in the Selenium project. A possible name
for this project of the Selenium portfolio is Selenium Manager. This tool implements the
concept of batteries included. In other words, it allows managing the required browser and
driver infrastructure for Selenium WebDriver in an automated fashion, allowing a more pleasant
user experience for Selenium users, especially for firstcomers.

The name "Selenium Manager" is proposed for several reasons. First, the concept of manager
is already known in the Selenium community. As explained previously, existing projects (e.g.,
WebDriverManager, webdriver-manager, etc.) provide a similar solution to some extent. Second,
the term manager is broad enough to allow for incorporating additional features in the future.
This way, in the long-term, Selenium Manager might ease the development with Selenium, for
instance, allowing the creation of the project scaffolding (for different languages) in an
automated fashion.

8



Selenium Manager will enrich the existing Selenium core projects (i.e., WebDriver, Grid, and
IDE). In the beginning, it will be used in the Selenium WebDriver language bindings.
Nevertheless, its use might be extended to other use cases (e.g., for registering nodes in
Selenium Grid). Selenium Manager aims to reuse the benefits of the previously explained
similar tools, i.e., WebDriverManager and Browser Manager. Moreover, it will provide additional
characteristics. Hence, its main features are:

● CLI tool developed in Rust (like Browser Manager).
● Cache mechanisms (like WebDriverManager).
● Storage of local metadata (like Browser Manager and WebDriverManager).
● Use of versions and commands databases (like WebDriverManager).
● Rich configuration capabilities (like WebDriverManager).
● Cross-browser (ideally Chrome, Firefox, Edge, and IE Driver Server should be

supported).
● Evergreen. Like the major browsers, Selenium Manager will be able to upgrade itself

automatically and silently.
● Auto-installable. As a final step, when the tool is stable, we can consider implementing

the feature of automatic installation from each language binding.

Table 1 contains the fundamental commands that will be implemented in the early versions of
Selenium Manager.

Command Description

./selenium-manager –-browser chrome

Manages the proper chromedriver for the
locally installed Chrome. If Chrome is not
installed, it tries to install the latest version
(and also, its driver).

./selenium-manager –-browser firefox
--version 100

Manages the proper geckodriver for the
Firefox 100. If Firefox100 is not installed, it
tries to install it.

./selenium-manager –-browser firefox
--version 100 --ignore-browser

Manages the proper geckodriver for the
Chrome 100.

./selenium-manager –-browser chrome
--ignore-driver

Install the latest version of Chrome, but not
chromedriver

./selenium-manager –-browser firefox
--version 100 --ignore-driver Install Firefox 100, but not geckodriver

Table. 1. Selenium Manager basic CLI commands

9



3.1 Preliminary design

Selenium Manager will be a tool created from scratch. It will be a Rust application that can live
in a folder called rust within the Selenium GitHub monorepo. It will be built using Bazel, like the
rest of Selenium components.

Selenium Manager will make a best effort to download browsers and drivers for Selenium
WebDrivers. The following snippet provides the very basic algorithm to be implemented by
Selenium Manager:

program selenium-manager
input: browser

browser_version (default: latest)
driver (default: auto)
driver_version (default: auto)
os (default: read from system)
arch (default: read from system)

output: path to downloaded artifacts (driver and browser)

browser_found ← check_if_installed(browser, browser_version)
if not browser_found

download_browser(browser, browser_version, os, arch)
update_metadata(browser, browser_version, os, arch)

end if
if not browser_version

browser_version ← check_browser_version
end if

required_driver ← calculate_driver_version(browser, browser_version)
driver_found ← check_if_installed(driver, driver_version)

download_driver(driver, driver_version, os, arch)
update_metadata(driver, driver_version, os, arch)

end program

The part corresponding to drivers is well-known and relatively easy to implement, thanks to the
experience of previous approaches like WebDriverManager. Nevertheless, the part for
downloading browsers ready to be executed on a local computer (without installing them using
administrator grants) can be from difficult to not feasible (due to permission errors or required
shared libraries). At this moment, the browsers repositories that seem more promising for
Selenium Manager are the following:

Browser Description URL

Firefox Official Firefox repository for
different operating systems and

https://www.mozilla.org/en-US/firefox/all/#
product-desktop-release

10

http://github.com/seleniumHQ/selenium/
https://bazel.build/
https://www.mozilla.org/en-US/firefox/all/#product-desktop-release
https://www.mozilla.org/en-US/firefox/all/#product-desktop-release


architectures

Chromium Chromium continuous builds
archive

https://commondatastorage.googleapis.c
om/chromium-browser-snapshots/index.h
tml

Table. 2. Browser repositories for Selenium Manager

As an alternative solution to install browsers locally, we can think of managing browsers in
Docker containers. For that, the Selenium docker-selenium project already is maintaining the
major browsers as in Docker Hub.

3.2 Milestones

The implementation of Selenium Manager should be incremental. In the beginning, it should be
a component that each Selenium language binding can optionally use to manage the local
browser infrastructure. In the mid-term, and as long as it becomes more stable and complete, it
could be used as the default tool for automated browser and driver management. All in all, the
milestone we propose are the following:

Milestone Description

M1: Driver management ● Beta version of the Selenium Manager.
● Focused on driver management for Chrome,

Firefox, and Edge.
● Selenium Manager compiled for Windows, Linux,

and macOS (in GH Actions).
● Available in Selenium binding languages (Java,

JavaScript, Python, Ruby, and C#).
● Used as a fallback for language bindings, when the

driver is not found.
● Selenium Manager binaries bundled within the

binding languages.

M2: Driver management for
IEDriver

● Include driver support for IExplorer.
● Allow Selenium Manager to be used as a Rust lib

crate.
● Support for browser beta/canary/dev versions (for

Chrome, Firefox, Edge).
● Enhance error handling in Rust logic.

M3: Rich configuration ● Proxy support in Selenium Manager.
● Extra configuration capabilities from binding

languages to Selenium Manager (e.g., force to use

11

https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://github.com/SeleniumHQ/docker-selenium
https://hub.docker.com/u/selenium


a given driver version, etc.).

M4: Browser management:
Chrome/Chromium

● Analyze how to make browser management for
Chrome (or Chromium, if Chrome is not possible).

● Implement this feature in Windows, Linux, and
macOS.

M5: Browser management:
Firefox

● Analyze how to extend the browser management
feature to Firefox.

● Implement this feature in Windows, Linux, and
macOS.

M6: Browser management: Edge ● Analyze how to extend the browser management
feature to Edge.

● Implement this feature in Windows, Linux, and
macOS.

Table. 3. Selenium Manager milestones

When all these milestones are completed, we can consider how to evolve the tool to other
scenarios (e.g., Selenium Grid, Selenium Docker) or features (e.g., creation of project
scaffoldings).

3.3 Backlog

This section contains some ideas for future development:

● Allow the new Selenium Manager CLI to be used as a Rust lib crate (issue #11132).
● Support for browser beta/canary/dev versions.
● Support other platforms for chromedriver (see electron releases).
● Compile Selenium Manager in multiple platforms (such as x32 and ARM64).
● Manage driver snap versions.
● Read geckodriver version metadata to ensure geckodriver version (see feature request

on geckodriver/issues/2049 and bugzilla-1794550).

12

https://github.com/SeleniumHQ/selenium/issues/11132
https://github.com/electron/electron/releases
https://github.com/mozilla/geckodriver/issues/2049
https://bugzilla.mozilla.org/show_bug.cgi?id=1794550

