
 DEDAUB.COM

OTSea

Smart Contract Security Assessment

Dec 18, 2023

 DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the OTSea platform contracts.
The OTSea Protocol is a peer-to-peer exchange where users can buy ERC20 tokens for
ETH or sell ERC20 tokens for ETH without going through a liquidity pool, while enjoying
extra benefits such as order discounts and private exchange opportunities.

The audit covered the new version of the platform’s main contract, OTSea, which acts as
the trusted intermediary between sellers and buyers, and the FeeSplitter contract.

The code and accompanying artifacts (e.g., test suite, documentation) have been
developed with high professional standards. No security issues/threats that could lead to
theft were identified by the audit. No issues leading to loss of funds resulting from the
intended use of the system were identified by the audit.

SETTING & CAVEATS

The audit report covers commit hash 9288e4e10f32bf730ecc0a630c6fbf66007b6dca
of the at the time private repository otsea-smart-contracts. Audited suggested fixes
were also reviewed up to commit hash b1515946527a35f50881fb832700340447862593

Two auditors worked on the codebase for 5 days.

The test suite was consulted during the audit but was not part of it. The full list of audited
files is:

contracts/
├─ fees/
│ └─ FeeSplitter.sol
├─ helpers/
│ ├─ ListHelper.sol
│ ├─ SignatureHelper.sol
│ ├─ TransferHelper.sol

1

 DEDAUB.COM

│ └─ WhitelistHelper.sol
├─ libraries/
│ ├─ OTSeaErrors.sol
│ └─ OTSeaLibrary.sol
└─ otc/
 └─ OTSea.sol

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e. issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) specifications of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

2

 DEDAUB.COM

PROTOCOL-LEVEL CONSIDERATIONS

ID Description STATUS

P1
Any ERC20 token, including malicious/scam tokens, can be
exchanged through the protocol

INFO

The OTSea protocol allows the exchange of any token that implements the ERC20
standard. The OTSea contracts do not impose any other restriction or check on the
tokens one could sell or buy. Users of the protocol should be aware of this fact and
should not trust but verify that the tokens they are exchanging are legitimate and not
malicious or scam tokens, as such a token could arbitrarily change users' balances and
its total supply, disallow transfers, transfer incorrect amounts, report incorrect
balances, etc. The OTSea team is implementing a warning system on their front-end
app to protect users from interacting with such tokens, but as this is an ever changing
landscape users should be aware that such a system might not always successfully
identify a malicious token. The audit results suggest that an adversary would not be
able to use a malicious token to extract funds without the users’ consent.

3

 DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL
Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
●​ User or system funds can be lost when third-party systems

misbehave.
●​ DoS, under specific conditions.
●​ Part of the functionality becomes unusable due to a programming

error.

LOW

Examples:
●​ Breaking important system invariants but without apparent

consequences.
●​ Buggy functionality for trusted users where a workaround exists.
●​ Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

4

 DEDAUB.COM

CRITICAL SEVERITY:

[NO CRITICAL SEVERITY ISSUES]

HIGH SEVERITY:

[NO HIGH SEVERITY ISSUES]

MEDIUM SEVERITY:

[NO MEDIUM SEVERITY ISSUES]

LOW SEVERITY:

ID Description STATUS

L1 Trade execution can be DOSed ACKNOWLEDGED

In the case of partial orders it is trivial for an attacker to spend minimal denominations
of a currency in order to delay a specific purchase of an order. This is made possible
due to the following check in _executeTrade function:

if (​
 order.isAON​
 ? _trade.amountToSwap != remainingOutput​
 : remainingOutput < _trade.amountToSwap​
) revert OTSeaErrors.InvalidPurchase();

The attacker would be able to frontrun the user’s transaction and decrease the
remainingOutput, making the user’s transaction revert. Although such an attack
would be expensive on mainnet and could also be avoided if the user would submit
their transaction using a MEV resistant RPC, which is advised in general, it is advisable
that this scenario is thought of further on cheaper chains.

5

 DEDAUB.COM

L2 TransferHelper assumptions ACKNOWLEDGED

TransferHelper has a MaroonedETH mechanism that allows for the salvaging of funds
in the case of an incorrect implementation of the receiver, i.e., the receiver function
has not implemented a fallback or receive function.

TransferHelper::_safeETHTransfer:65

function _safeETHTransfer(address _account, uint256 _amount) internal {​
 (bool success,) = _account.call{value: _amount}("");​
 if (!success) {​
 _maroonedETH[_account] += _amount;​
 emit MaroonedETH(_account, _amount);​
 }​
}

Instead of reverting when the low-level call _account.call{value: _amount}("")
returns false, i.e., when the ETH transfer from the OTSea contract to the _account has
failed, the ETH amount is stored in the _maroonedETH mapping for _account to claim
later via the claimMaroonedETH function. This assumes that the _account has
implemented functionality that calls claimMaroonedETH or is at least able to upgrade
their code to do so. However, if this is the case the contract should get upgraded to be
able to receive ETH and then re-execute the order, instead of resorting to more
complex (and possible error prone) solutions.
At the same time, such an implementation could be considered bad practice as it
broadens the attack surface to protect for advanced user errors. A simple issue that
can be found is in the FeeSplitter contract where a malicious/compromised owner
could set both the teamWallet and dividendWallet to non payable wallets, call
distribute multiple times inflating the maroonedEth value of the team wallet and
then switch back to normal wallets, where the protocol would be able to pull a
different ratio of funds to the team wallet depending on the fee percentage by calling
claimMaroonedEth. Considering the current design of the protocol this is a non-issue,

6

 DEDAUB.COM

however this feature adds unnecessary complexity and it would be advised to just let
the contract revert.

L3
Certain fee on transfer and rebase tokens might reduce
OTSea contract’s balance and affect other orders

ACKNOWLEDGED

The OTSea protocol allows any token, including fee on transfer and rebasing tokens, to
be exchanged using its contracts as the trusted intermediary. The protocol handles
inclusive fee on transfer tokens appropriately. Exclusive fee on transfer tokens on the
other hand might prove problematic as they work by sending an additional transfer
from the sending address after the primary transfer. This second transfer would be
eating from other orders' funds stored in the contract, potentially leading to a situation
where the remaining amount is not sufficient to cover an order's whole input amount.
The remaining amount would be available to trade If the order creator has allowed
partial order fulfillment. A similar situation could be exhibited for negative rebasing
tokens, which would usually deflate the contract's balance at pre-specified intervals.
For positive rebasing tokens, token surpluses would be trapped in the contract.

7

 DEDAUB.COM

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-profile, high-value protocols have significant centralization threats.)

ID Description STATUS

N1 Off-chain signer could get compromised ACKNOWLEDGED

The main OTSea contract uses signatures produced by an off-chain signer operated by
the team to reliably set a user’s fee type and also pass in any seller’s discount and
referral details. If the signer key were to be compromised by an attacker they would be
able to appear as an OTSea whale and enjoy a 0.3% instead of a 1% fee while
attributing most of it to themselves by exploiting the referral system. All in all, an
attacker would be able to use the exchange and pay less fees (to the protocol) for their
trades, but they would not be able to affect other users' orders/funds.

N2 Owner’s control over the protocol ACKNOWLEDGED

Below we describe in detail the control that the owner bears over the protocol:
●​ Pause/unpause order creation, execution, updating but not cancellation. The

owner can also pause/unpause updates to whitelists.
●​ Set the fish and whale fees to values only less than the initial, which are 1% and

0.3% respectively.
●​ Set the team fee and the team and dividends wallet.

8

 DEDAUB.COM

●​ Set the maximum amount of trades that are allowed to be executed during a
single transaction.

9

 DEDAUB.COM

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 _checkSequence checks can be simplified INFO

The checks implemented by function _checkSequence can be simplified from:

if (_start == 0 || _start > _total) revert InvalidStartID();​
if (_end == 0) revert InvalidEndID();​
if (_start > _end) revert InvalidStartID();​
if (_end - _start + 1 > LOOP_LIMIT) revert InvalidSequence();​
if (_end > _total) revert InvalidEndID();

to:

if (_start == 0) revert InvalidStartID();​
if (_start > _end) revert InvalidStartID();​
if (_end - _start + 1 > LOOP_LIMIT) revert InvalidSequence();​
if (_end > _total) revert InvalidEndID();

as requiring _end <= _total and _start <= _end implies _start <= _total,
while start <= _end and _start != 0 implies _end != 0.

A2 cancelOrders::totalTokensOwed is used as an accumulator
of amounts of different ERC20 tokens

FIXED

In the cancelOrders function the variable totalTokensOwed takes account of all
ERC20 tokens being transferred back to the order creator. This is misleading in the logs
as it does not accurately tell the log consumer which tokens have been transferred

10

 DEDAUB.COM

back, since the variable aggregates all different token orders being canceled. The more
consistent approach would be to emit separate events for each order canceled.

A3 Whitelists’ size can exceed LOOP_LIMIT INFO

The abstract contract ListHelper defines the constant LOOP_LIMIT that is used by the
WhitelistHelper contract to enforce an upper limit on the loop iterations performed by
its functions. Thus, one could assume that the maximum size of a whitelist cannot
exceed LOOP_LIMIT, which is not true as the function _updateWhitelist can be
called an arbitrary amount of times and each time increase the size of a whitelist by
LOOP_LIMIT. Nevertheless, there is no function in the current codebase that will iterate
over a whole whitelist, meaning that arbitrarily increasing the size of whitelists cannot
be leveraged to cause a DOS attack. Still, we think developers of the protocol should be
aware of this scenario when working on future versions of the protocol.

A4 The ListHelper contract could be made abstract FIXED

The ListHelper contract could be made abstract, as its purpose is to serve as a parent
contract.

A5 BuyOrderCreated events convey less information compared
to SellOrderCreated events

INFO

The BuyOrderCreated events do not store the order’s totalInput and totalOutput
amounts. On the other hand, the SellOrderCreated events store the totalInput and
totalOutput amounts after the amounts have been updated to account for any
transfer fees applied by the token. Thus, SellOrderCreated events will store
totalInput and totalOutput amounts after fees if any, while BuyOrderCreated
events completely ignore this info (due to the fact that no tokens fee are applied during
a buy order creation) when there could be event consumers that would be interested in
them.

A6 Further strengthening the OTSea contract against
reentrancy attacks

INFO

11

 DEDAUB.COM

The current version of the OTSea contract is not vulnerable to reentrancy attacks.
Nevertheless, several defensive oriented improvements could be made to minimize the
possibility of a reentrancy vulnerability getting introduced in future versions of the
protocol.

1.​ In functions _executeBuy and _executeSell, the instructions updating
totalAmountToSwap and totalAmountToReceive should be moved before the
calls _handleETHPayment and safeTransferFrom.

2.​ Function updatePrice could be made non-reentrant even though only an order’s
creator can call it for their order and they cannot change the totalInput
amount or extract any of the input, they can only change the totalOutput (or
in other words requested) amount. This means that at the moment an order
creator can make their order cheaper or more expensive but they cannot gain
anything by fulfilling it.

3.​ Function TransferHelper::claimMaroonedETH should be made internal. The
OTSea contract could then implement a non-reentrant claimMaroonedETH
function that calls TransferHelper::_claimMaroonedETH.

4.​ Function createBuyOrder could be made non-reentrant.

A7 Canceling an order does not update the inputTransacted
amount

INFO

Canceling an order sets its state to Canceled but does not update the
inputTransacted field. Technically, no input is transacted but totalInput -
inputTransacted tokens are transferred out of the contract and are no longer
available to be traded for this order. Thus, we would advise to set the
inputTransacted field to totalInput.

12

 DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

13

	OTSea
	ABSTRACT
	SETTING & CAVEATS
	PROTOCOL-LEVEL CONSIDERATIONS
	ID
	P1

	
	VULNERABILITIES & FUNCTIONAL ISSUES
	CRITICAL SEVERITY:
	HIGH SEVERITY:
	MEDIUM SEVERITY:
	LOW SEVERITY:
	ID
	L1
	L2
	L3

	CENTRALIZATION ISSUES:
	
	ID
	N1
	N2

	
	
	OTHER / ADVISORY ISSUES:
	ID
	A1
	A2
	A3
	A4
	A5
	A6
	A7

	
	DISCLAIMER
	ABOUT DEDAUB

