
Polkadot Native Storage

Table of contents

Table of contents
1. Project

1.1 Overview
1.2 Details

Milestone and Task Descriptions
1. Research
2. Collator node
3. polka-store
4. polka-index
5. polka-fetch
6. Deployment
7. Delia
8. Gregor

1.3 Ecosystem Fit
1.4 Future Plans
1.5 Risks

2. Team
2.1 Team members
2.2 Contact
2.3 Legal Structure
2.4 Experience

2.4.1 Team Code Repos
2.4.2 Team LinkedIn Profiles

2.5 Communication and reporting
3 Milestones/Cost Breakdown

3.1 Overview
3.2 Milestones

1. Project

1.1 Overview

Our goal is to implement a Filecoin-like Polkadot-native system parachain for data storage.

One that uses DOT as the native token and where anyone in the ecosystem through XCM
would be able to store and retrieve data. This is mainly inspired by the vision Gavin
presented at Decoded 23 about building the Ubiquitous Supercomputer. When thinking
about the app-centricity design and the Space and Cores model it will be critical for us to
have native storage and not depend on other networks.​
​
This basically extends the Polkadot value offering to include storage, similar to Filecoin, and
brings us closer to the supercomputer vision.

We believe it's very important that this work is done as a public good with DOT used as the
fee token, otherwise, any dependence on other networks or other tokens would undermine
the goals.

1.2 Details

The work proposed here is based on the extensive research completed and available at
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/polkadot-native-stor
age-v1.0.0.pdf. Please read the linked document as it complements this application.

A significant part of the research was the implementation of a proof-of-concept, illustrating
several aspects of our planned architecture: Polkadot Native Storage - PoC.
The PoC demonstrates:

●​ parachain registration to a local relay chain (test environment)
●​ parachain block production
●​ XCM: sending messages between parachains using sudo pallet and ping pallet (in a

non-test environment, the sudo pallet would be a system vulnerability and a proper
governance mechanism should be used.)

●​ visibility of the Filecoin actors as pallets in the local parachain
●​ ability to run parts of the FVM code in the Substrate runtime (WASM)
●​ the ability to interact with the actors (e.g. miner actor - add miner, change worker

address) using extrinsics
●​ RPC endpoint interaction
●​ ability to control collator selection set

https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/polkadot-native-storage-v1.0.0.pdf
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/polkadot-native-storage-v1.0.0.pdf
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/testing_guide.md

Our work has been introduced to Polkadot in the ecosystem forum:
Polkadot Native Storage - Ecosystem

This proposal represents our current thinking, which has continued to evolve from – and
improve over – the original solution.
We are moving forward:

●​ learning from further research,
●​ engaging in internal discussions,
●​ debating design choices.

The implementation of Polkadot Native Storage is divided into eight milestones and their
constituent tasks.

1.​ Research
1.1.​ Research lotus
1.2.​ Research lotus-miner
1.3.​ Research FVM

2.​ Collator node
2.1.​ Port Actors to pallets
2.2.​ Main Functionality
2.3.​ Markets
2.4.​ Serialize blockchain state to disk
2.5.​ Common consensus

3.​ polka-store: Rust executable corresponding to a Filecoin storage provider.
3.1.​ External Libraries
3.2.​ Proof-of-Replication
3.3.​ Proofs-of-Spacetime
3.4.​ Remaining Functionality

4.​ polka-index
4.1.​ Research
4.2.​ Implementation

5.​ polka-fetch
5.1.​ Basic Functionality

6.​ Deployment
6.1.​ Collator Node
6.2.​ Storage System

7.​ Delia: a web-based demo for creating and executing storage deals.
7.1.​ Research
7.2.​ Implementation

8.​ Gregor: a file aggregator, demo web app targeted for smaller file content
8.1.​ Research phase
8.2.​ Implementation

https://forum.polkadot.network/t/polkadot-native-storage/4551

Here is a diagram of the 21 tasks, organized by milestone and order of implementation.

Milestone and Task Descriptions

1. Research

Tasks:

●​ Research lotus: this is code for the collator
●​ Research lotus-miner: this is code for polka-store, the storage system
●​ Research FVM: specify what will be in our pallets

Research is required due to the scope of the project. This work will decide what parts of the
API to keep, what to cut, and what needs to be added. Additionally, some parts of the
Filecoin codebase will be examined in greater detail in order to weigh their pros and cons for
use in Polkadot Native Storage.

At the completion of the tasks in this milestone, all questions regarding the implementation
of the collator node and polka-store should be answered. The research completed here
will also provide a clearer view of the order of implementation and yield optimal
implementation strategies.

1.1 Research lotus (task 1)

There are three subtasks associated with this task.

1. Analysis of lotus

Sufficient time will be spent analyzing both the Filecoin lotus application, which
runs a full node, along with lotus-miner, which performs the storage provider
duties. The functionality in these applications will be split between the collator node
and polka-store.

Care will be taken here to acquire a comprehensive listing of required functionality.
The completeness here will enable a smooth implementation of the collator node and
polka-store.

Our goal is to create a report which covers all the aspects of the Filecoin lotus
application with ideas and recommendations on how to implement and connect it to
Substrate solutions.

2. Define JSON-RPC API

In this subtask, we decide what parts of the API to keep, what to cut, and what needs
to be added. The original API is documented here.

There are 21 modules (Auth, Chain, Client, etc). We need to learn what subset
of API calls to keep and which calls to eliminate. It will be essential to port only the
demanded part to our solution to keep it clean and efficient.

Additionally, if applicable, identify any new calls specific to Polkadot at this time.

An important artifact to come from this research is a list of crates to be implemented,
which are ports of Go libraries in lotus (and other Filecoin repositories)

https://github.com/filecoin-project/lotus/blob/master/api/api_test.go

3. Research markets and boost

In Filecoin, the storage and retrieval markets comprise functionality to handle deal
negotiation, whether for creating a storage deal or initiating a file retrieval. Each
module employs a client and provider finite state machine (FSM), operating via the
following protocols over libp2p.

●​ /fil/storage/mk/
●​ /fil/storage/ask/
●​ /fil/storage/status/
●​ /fil/retrieval/qry/

https://docs.filecoin.io/reference/json-rpc
https://github.com/filecoin-project/lotus/blob/master/api/api_test.go

However, Filecoin is phasing these libraries out (now marked as EOL), in favor of
boost, a tool for storage providers to manage data onboarding and retrieval.
Specifically, there are newer protocols

●​ /fil/storage/mk/1.2.0
●​ /fil/storage/status/1.2.0
●​ /fil/storage/transfer/1.0.0

Filecoin’s boost application and libraries should be thoroughly examined as part of
this research — other development short cuts may be discovered. Boost is
somewhat large and complex, and includes a web front-end with GraphQL. One thing
that boost has done for Filecoin is creating a light client node that is not a lotus full
node, thus eliminating the need to sync from the chain.

The goal here is to determine:

●​ a strategy to port the 4 FSMs to Rust (e.g, using the rust-fsm crate, which
includes DSL macros)

●​ how to integrate the protocols with the collator nodes libp2p
●​ how to port/fork the required data store libraries (e.g., filestore and

piecestore); they each bring in several other Go libraries.
●​ what parts of the node APIs need to be ported.
●​ discover other useful parts of boost.

1.2 Research lotus-miner (task 2)

In the same vein as task 1.1, but this time for the storage system.
There are three subtasks here:

1. Analysis of lotus-miner

Run this and learn the architecture and APIs. There are similar goals for this task as
they were for the lotus one.

2. Define JSON-RPC API

Corresponding to the work with the collator and lotus, here, we decide what parts
of the API to keep and what to cut. There is a full listing here, with 15 modules
(Actor, Auth, Deals, Market, etc). Care will be taken to ensure all
market-related calls are accounted for. These will be used by off-chain clients.

In addition, there are two modules in the Worker API which are relevant here, namely
Misc and Storage.
https://filecoin-shipyard.github.io/js-lotus-client/api/worker-api/index.html

https://boost.filecoin.io/deployment/libp2p-protocols#propose-storage-deal-protocol
https://github.com/eugene-babichenko/rust-fsm
https://github.com/filecoin-project/go-fil-markets/tree/master/filestore
https://github.com/filecoin-project/go-fil-markets/tree/master/piecestore
https://github.com/filecoin-project/go-fil-markets/tree/master/piecestore
https://filecoin-shipyard.github.io/js-lotus-client/api/storage-miner-api/index.html
https://filecoin-shipyard.github.io/js-lotus-client/api/worker-api/index.html

3. Analyze the lotus-worker

Time should also be spent here considering using the lotus-worker executable
for doing the CPU & GPU intensive storage tasks (e.g., add piece, seal commit, seal
pre-commit, pre-commit, unseal piece, read piece). Strategically, it could save
development time by using this application as it is in the lotus repository, i.e., do
not port that functionality.
This executable does not interact with the blockchain directly.

The result of this subtask would be a decision to fork the lotus worker or not.

Deliverables

●​ report on lotus-miner analysis
●​ full API specification:

○​ modules
○​ methods
○​ structs

●​ Report on use or non-use of lotus-worker
○​ do we gain anything by its use (e.g., development, deployment)
○​ enumerate disadvantages

1.3 Research FVM (task 3)

There are two subtasks here

1. Research compiling the FVM for WASM

Our first idea was to bring the actors into Polkadot, bundling each actor into its own
pallet. The Rust libraries for IPLD and blockstore are already linked into the individual
actor crates.

In our previous grant submission, we sketched an alternative strategy described in
our article. Roughly, instead of creating a pallet for each actor, mirroring the structure
of the FVM, we would compile the entire FVM into a pallet. This would have mirrored
how the Polkadot Frontier project implemented the EVM for Polkadot.

The result of this subtask is a decision regarding which way to proceed.

2. Specification of Actor messages

Here we identify:

●​ which actors to be ported to pallets
●​ which messages (extrinsics) to be ported

Calls to the proving system must be identified, as they will be executed by
polka-store. Multi-threaded code and GPU support do not exist in WebAssembly.

https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-solution.md#33-alternative-bring-the-entire-fvm-into-a-pallet
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-solution.md#33-alternative-bring-the-entire-fvm-into-a-pallet

Deliverables
●​ for each actor/pallet

○​ full API specification
○​ extrinsics

●​ design documentation (schemas, diagrams, concepts)​

2. Collator node

These are the tasks that make up the collator implementation.

Tasks:

●​ Port Actors to pallets
●​ Main Functionality
●​ Markets
●​ Serialize blockchain state to disk
●​ Common consensus

General information about how we plan to port parts of the Filecoin code base are to be
found in our research article.

The collator node — when tethered to a storage system (polka-store) — runs the
Filecoin equivalent of a Storage Miner Node:

●​ writes to the blockchain state
●​ mines and produces blocks
●​ participates in the storage market,
●​ can sync and validate the chain.
●​ can make storage seals
●​ seals stored data into sectors. (polka-store)
●​ acquires storage consensus power.

As part of further work, it could be advantageous to enable (perhaps just by feature gating) a
chain verifier node, which only would do the following:

●​ writes to the blockchain state
●​ can sync and validate the chain.

A verifier node could be used for creating snapshots.

2.1 Port Actors to pallets (task 4)

The specification of this task is the result of research done in task 1.3. That research
describes the actors and corresponding messages (extrinsics, for us) to be
implemented. Here, we create the pallets, checking their functionality in synthetic

https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-overview.md#311-general-strategy

form. Test suites will also be implemented, eventually becoming part of the
documentation

The research done in task 1.3 will also drive the decision to compile the FVM as a
whole into a pallet, which is an alternative implementation strategy.

Actors are a set of participants that play defined roles within the Filecoin protocol. In
principle, they are similar to smart contracts in the Ethereum Virtual Machine: they
alone may change the blockchain state.

Each actor is responsible for specific tasks, maintaining its own state tree as one
component of the blockchain state. In addition, they interact with other actors to
ensure the proper functioning of the overall system.

At this moment, the relevant ones for us to port to pallets are

●​ system singleton actors: storage market, storage power, reward, cron
●​ user actors: storage provider, account, payment channel

Deliverables

●​ pallets codebase
●​ tests (unit tests, integration tests)
●​ documentation (with demos)

2.2 Main Functionality (task 5)

The specification of this task is the result of research done in task 1.1. Research
lotus.

Overall, it is a set of coding tasks that cover the expected functionality and tests for
the main collator implementation, which includes but is not limited to:

●​ Pallets and their extrinsics implementation, along with a JSON-RPC API, for
use by client applications (CLI/Delia/Gregor, etc.).

●​ XCMP connectivity implementation, which includes providing the ability to call
our chain operations from the different parachains, which is one of the main
goals for the project, as the system parachain. This includes:

○​ Defining use cases required for implementation based on the business
logic agreed upon with stakeholders/community (e.g., requesting
remote operations and their types, transferring assets from other
chains to pay for requested operations or fees, etc.).

○​ Based on the defined use cases and requirements, and utilizing the
“staging-xcm” crate in general, as well as the “XCM pallet” with
additional documentation available here, XCMP connectivity should be
implemented.

https://github.com/paritytech/polkadot-sdk/blob/master/polkadot/xcm/Cargo.toml
https://github.com/paritytech/polkadot-sdk/blob/master/polkadot/xcm/pallet-xcm/Cargo.toml
https://wiki.polkadot.network/docs/learn-xcm-pallet

In the scope of this task, concrete details should be defined regarding how tokens
(DOTs) are managed within a parachain. This involves the integration of Substrate
pallets such as "pallet-balances", which is utilized for managing balances of fungible
assets (e.g. DOT tokens). The outcome of the research task should clarify whether
the use of "pallet-assets" is necessary. The responsibilities of pallet-assets include
managing custom fungible assets or tokens. This pallet might be required, for
instance, if there is a need to facilitate cross-parachain communication involving
custom fungible assets. Additionally, it may be essential if some use case involves
custom fungible tokens beyond DOTs, allowing users to create and manage their
own assets. The decision to integrate pallet-assets may also depend on whether
there is a need for additional features provided by this pallet.

Collaterals

In the scope of this task, logic and implementation details regarding collaterals
should be defined.

Keeping with the Filecoin specification regarding miner collaterals, we will ensure
network security by requiring participants to invest in resources, namely hardware
and upfront token collaterals. Collateral serves as a commitment to appropriate
behavior, rewarding value creation and penalizing malicious actions through slashing.

Storage resilience is gained through three mechanisms:

1.​ Initial Pledge Collateral: Miners commit an initial amount of DOT with each
storage sector.

2.​ Block Reward Collateral: Minimizes upfront collateral by using block
rewards, penalizing miners for failing storage commitments and ensuring
incentives for data storage.

3.​ Storage Deal Collateral: Provided by storage providers to secure deals, with
detailed information available in the Storage Market Actor.

Based on the above-mentioned specification, stakeholders/community input, and the
requirements of the ported version, a concrete mechanism should be defined and
implemented.

forest

One aid in implementing this relatively large task is a Filecoin node implementation in
Rust: https://github.com/ChainSafe/forest. This is an instance of a chain verifier
node: no storage is handled and no markets, but block validation and blockchain
state transitions are performed.

Storage provider slashing

Proofs-of-Spacetime must be timely submitted to the chain, respecting deadlines
within a proving period. The slashing mechanism must be tested here, in conjunction
with polka-store. It involved several different actors and APIs.

https://github.com/paritytech/polkadot-sdk/tree/master/substrate/frame/balances
https://github.com/paritytech/polkadot-sdk/tree/master/substrate/frame/assets
https://spec.filecoin.io/#section-systems.filecoin_mining.miner_collaterals
https://github.com/ChainSafe/forest
https://spec.filecoin.io/systems/filecoin_nodes/node_types/
https://spec.filecoin.io/systems/filecoin_nodes/node_types/

The cron pallet processes storage providers every 60 epochs (30 minutes) to
validate that miners have correctly proven storage of the portion of their sectors due
to be checked. It is this processing that validates the storage, thus ensuring the
resiliency of the network. It detects (and penalizes) any lost or corrupted data.

Deliverables

●​ all API calls implemented
●​ XCMP connectivity
●​ tests
●​ JS/Node.js test client
●​ Documentation (API definition)

2.3 Markets (task 6)

The deliverable for this task is a Rust library, consisting of the following components
and properties.

●​ finite states machines for storage and retrieval
●​ API functions support (nodes)
●​ deal-making protocols executed over libp2p
●​ data persistence.
●​ form the core of a storage client.

A precise enumeration of API endpoints to be implemented and other implementation
details will be the result of research done in subtask 3 of task 1.1.

1. Finite State Machine

There are 4 state machines:

●​ storage client
●​ storage provider
●​ retrieval client
●​ retrieval provider

The storage FSM states are of type StorageDealStatus and are enumerated
here.

The retrieval FSM states are of type DealStatus and are enumerated here.

The storage events (both provider and client) are listed here.

Retrieval events are here.

Finally, what is learned about boost will be applied here. In particular, boost comes
with a client that can be used to make storage deals – the client does not require a
Filecoin node. That should also be our goal.

https://github.com/filecoin-project/go-fil-markets/blob/master/storagemarket/dealstatus.go
https://github.com/filecoin-project/go-fil-markets/blob/master/storagemarket/dealstatus.go
https://github.com/filecoin-project/go-fil-markets/blob/master/retrievalmarket/dealstatus.go
https://github.com/filecoin-project/go-fil-markets/blob/master/storagemarket/events.go
https://github.com/filecoin-project/go-fil-markets/blob/master/retrievalmarket/events.go

2. Nodes

There are four node types, similar to the FSM types:

●​ StorageProviderNode
●​ StorageClientNode
●​ RetrievalProviderNode
●​ RetrievalClientNode

Each node is an interface; the API definitions may be found here and here. The
research task will determine how much of the API will be ported.

3. Protocols

​ These are enumerated in task 1.1, subtask 3.

4. Data store

Persistent file storage must be implemented, encompassing the functionality of these
libraries:

●​ filestore: a wrapper around Go’s os.File for use by storage and
retrieval markets.

●​ piecestore: a database for storing deal-related PieceInfo and CIDInfo.

Rust libraries for IPFS and IPLD exist, and may prove useful. This task is primarily
integrating open source code.

Deliverables

A Rust polka-markets library having these features:

●​ Finite state machines: states + events
●​ Node interfaces
●​ Deal protocols
●​ Data storage

2.4 Serialize blockchain state to disk (task 7)

This task is coupled with task 2.1, as the pallets will mutate the blockchain state. The
outcome of this task delivers a code capable of storing data structures either for
on-chain workers or off-chain workers (using off-chain storage).

Deliverables

●​ tests that confirm proper state serialization
○​ optional: compare with Forest implementation

https://github.com/filecoin-project/go-fil-markets/blob/master/storagemarket/nodes.go
https://github.com/filecoin-project/go-fil-markets/blob/master/retrievalmarket/nodes.go
https://github.com/filecoin-project/go-fil-markets/tree/master/filestore
https://github.com/filecoin-project/go-fil-markets/tree/master/piecestore

2.5 Common consensus (task 8)

This task consists of two subtasks: common consensus mechanisms and collator
selection.

The common consensus mechanism assumes creating a code to handle differences
between the Substrate and Filecoin consensus. It’s deeply connected with the FVM
research task as the ability to use FVM inside the Substrate will be critical for
agreeing on the Filecoin status. If we choose to handle things inside the FVM, then
this task will focus on getting the internal state and mirroring it with Substrate to
record all the FVM changes on-chain. In any other way, this task will include creating
adapters to translate the state and prepare data to be placed inside the parachain
blocks.

The collator selection problem assumes creating a pallet with the collator selection
mechanisms based on the storage power. That pallet should promote nodes with
more power while still letting some other, smaller nodes take part in the collation
process. That’s needed to distribute rewards between the block producers and make
the whole process beneficial for each party.

Deliverables

●​ Block generation and collator selection
●​ Tests
●​ Documentation (Given that these mechanisms define a fundamental aspect of

the entire solution, it is essential to craft comprehensive documentation for
both subtasks. This documentation should describe in detail the
implementation approach, supplemented by visual representation using
UML).

3. polka-store

polka-store is a Rust executable, our storage provider. It is without blockchain
functionality, tethered to a collator node. It is responsible for performing all duties of a
storage provider (a.k.a. miner):

●​ storage min
●​ maintain file storage, sectors
●​ storage proving system
●​ paired with collator node, communicating over JSON-RPC

This is where the API is implemented, semi-porting Go code to Rust. We will be linking here
to several external crates and libraries.

Tasks:

●​ 3.1 External Libraries
●​ 3.2 Proof-of-Replication
●​ 3.3 Proofs-of-Spacetime

●​ 3.4 Remaining Functionality

Additional details may be found in our research article.

3.1 External Libraries (task 9)

This task consists of three subtasks: one major and two relatively minor.

1. Port dagstore to Rust

This is one of the libraries that we selected for porting from Go to Rust. It is a major
piece of functionality in the Filecoin ecosystem, being ”a sharded store to hold large
IPLD graphs efficiently, packaged as location-transparent attachable CAR files”.

The Go code consists of 42 files and 4634 lines of code. This subtask will cover:

●​ analyze the API
●​ create the Rust lib
●​ test suite
●​ benchmarking

2. Fork rust-fil-proofs

The Filecoin Proving Subsystem provides the storage proofs required by the
Filecoin protocol. It is implemented entirely in Rust as a series of partially
inter-dependent crates, some of which export C bindings to the supported API.

We will fork the library for use in polka-store.

3. Fork bellperson

bellperson is a fork of the bellman library. bellman is a crate for building
zk-SNARK circuits. It provides circuit traits and primitive structures, as well as
basic gadget implementations such as booleans and number abstractions.

We will fork the library for use in polka-store.

Deliverables
●​ 3rdparty code directory
●​ dagstore

○​ working library
○​ tests
○​ documentation (API readme)

●​ references to FIL changed to DOT
●​ working tests forked libraries

https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-solution.md#61--polka-store
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-solution.md#21-dagstore
https://github.com/filecoin-project/dagstore
https://github.com/filecoin-project/rust-fil-proofs
https://github.com/filecoin-project/bellperson
https://github.com/zkcrypto/bellman

3.2 Proof-of-Replication (task 10)

In the Filecoin storage lifecycle process, a Proof-of-Replication (PoRep) is generated
when a storage provider agrees to store data on behalf of a client.

NB: a storage provider who closes a storage deal with a client for a particular piece
of data distributes replicas only within his own storage. A client may avail themselves
of multiple storage providers for redundancy and/or security (to be handled efficiently
in the data on-ramp clients). There is no connection with the IPFS network, although
both IPFS and Filecoin use CIDs and may use the same fetch client (lassie).

During this process, the storage provider

●​ receives a piece of client data
●​ data is placed into a sector
●​ the sector is sealed by the storage provider
●​ an encoding is generated, which serves as proof that the SP has replicated a

copy of the data they agreed to store. The encoding uses:
○​ data which is sealed
○​ storage provider
○​ the time

●​ a proof is compressed.
●​ this result is submitted to the network as certification of storage.

Here it is only required to generate the proof.

This should be callable via a command line API similar to lotus.

Deliverables

●​ API code implemented to support PoRep
●​ tests

3.3 Proofs-of-Spacetime (task 11)

This task has two subtasks.

1. Generate a Window Proof-of-Storage

This proof is generated at intervals based on deadlines and partitions, as part
of an auditing process.

2. Generate a Winning Proof-of-Storage

This is issued to a miner upon winning a block auction.

In Filecoin, each miner actor is allocated a 24-hr proving period at random upon
creation. This proving period is divided into 48 non-overlapping half-hour deadlines

These both should be callable via a command line API similar to lotus.

Deliverables

●​ API code implemented to support Window PoSt
●​ API code implemented to support Winning PoSt
●​ tests

3.4 Remaining Functionality (task 12)

Here we implement the remaining API calls: Go code that needs to be either ported
or implemented from scratch. The specification of this task is defined in the results of
research task 1.2.​
​
Here are two examples.

1. From the Sectors module, method SectorsStatus: A sector number is
passed in, and a sector info structure is returned.​

SectorsStatus(ctx context.Context, sid abi.SectorNumber,
showOnChainInfo bool) (SectorInfo, error)

2. From the Market module, method MarketGetAsk: A structure is returned
including information about price, minimum and maximum piece sizes.

MarketGetAsk(ctx context.Context)
(*storagemarket.SignedStorageAsk, error)

Deliverables

●​ implementation of remaining API calls
●​ tests
●​ documentation (API specification)

4. polka-index
This is the indexer process. It handles indexes, which are a key-value mapping of CID's to
storage providers, including other metadata such as supported protocols.

Tasks:

●​ Research
●​ Implementation

polka-index has three purposes:

●​ store indices
●​ ingest indices
●​ respond to query requests.

Efficient indexing is of prime importance in order for clients to perform fast retrieval. To
improve content discoverability, indexer nodes are instantiated to store mappings of CIDs to
content providers for content lookup upon retrieval request.

In IPFS, this is handled through a Kademlia DHT (Distributed Hash Table). However, this
method does not scale well and is not terribly performant.

Filecoin has a network indexer instance running at cid.contact. When one inserts a CID
into the query field, an array of storage providers is returned. If we use the following CID,
bafybeic56z3yccnla3cutmvqsn5zy3g24muupcsjtoyp3pu5pm5amurjx4, a
returned provider will look something like this:

Peer Id: ​12D3KooWSQ1Qg74oMQ7uAHh8gtME2HdENJMiaoyLnjDQn3drvagg
Multiaddress: /dns/ipfs.va.gg/tcp/3747/http
Protocol: ​2336

cid.contact is an instance of their indexer at https://github.com/ipni/storetheindex.

We recommend implementing polka-index starting from the earlier Rust project,
https://github.com/vmx/storethehash, which Filecoin ported to Go in the above library.

Deliverables

4.1 Research (task 13)

●​ a specification of how the application would work
●​ documentation
●​ implementation plan

○​ software suite: applications & tools
○​ resource allocation

4.2 Implementation (task 14)
●​ working application
●​ tests
●​ documentation (API)

5. polka-fetch

Only one task here:

●​ Basic Functionality

The goal of this milestone is to provide file retrieval.

Note regarding file caching: This topic was discussed in our previous work here. Caching
is a hard problem – Filecoin has several teams working on it. While a comprehensive
solution is beyond the scope of this application, it is something we would be keen to address
after the completion of this project.

https://cid.contact
https://github.com/ipni/storetheindex
https://github.com/vmx/storethehash
https://github.com/eigerco/polkadot-native-storage/blob/main/doc/report/src/new-solution.md#63-polka-fetch

5.1 Basic Functionality (task 15)

There are two subtasks in this task:

1. fork rs-graphsync

This library is a Rust implementation of the GraphSync protocol. This protocol is used
to transfer content between systems for retrieval.

This is the Go version used by Filecoin.

Another option is to consider a simpler HTTP protocol. We would like to spend some
time during this task to research such alternatives.

2. Return a stored file via CID

Implement file retrieval, and get a file back.

Deliverables

●​ working code able to retrieve a file
●​ tests (unit and integration)
●​ documentation (instructions readme)

6. Deployment

Tasks:

●​ Collator Node
●​ Storage System

6.1 Collator Node (task 16)

Create necessary scripts and instructions to bootstrap a new collator node. Develop
instructions to maintain the node with the steps the user should follow e.g. update the
node, test connectivity with other parts of the system.

Deliverables

●​ scripts
●​ tests
●​ instructions and user guides

6.2 Storage System (task 17)

Create necessary scripts and instructions to bootstrap a new mining system. Use
Docker to containerize applications to provide a smooth user experience for setting
up new storage.

https://github.com/retrieval-markets-lab/rs-graphsync
https://github.com/ipfs/go-graphsync

Important is configuration, especially for large systems (e.g., 256GB + GPU, many
TBs of storage).

Deliverables

●​ scripts
●​ tests
●​ documentation
●​ system constraints

7. Delia
​
Delia is the first of two web apps we are proposing. It is an MVP which implements a service
for connecting storage clients with storage providers. Delia hides the low-level details for
creating a storage deal and processing the data to be stored. In contrast, Gregor, another
web app we propose, is a file aggregator.

●​ Delia is for making deals. Large pieces are uploaded (a specially created data file)
as a whole, and directly stored by a storage provider

●​ Gregor is a demo on-ramp for storing smaller amounts of data, even a single file.

Tasks:
●​ 7.1 Research
●​ 7.2 Implementation

○​ Economics
○​ Storage client and provider markets
○​ Delia implementation

The concept of Delia:

●​ instantiating a storage client
●​ finding a miner
●​ proposing a deal
●​ executing a deal

A protocol is executed over JSON-RPC between a running instance of Delia and a storage
provider.

This web app will be an MVP, a demo of how a working solution could be implemented. A
definitive solution is beyond the scope of this proposal, as it involves file depots and cloud
resources.

In the research phase, time will be spent studying the various solutions implemented by
Filecoin, specifically the boost library: https://github.com/filecoin-project/boost.

https://github.com/filecoin-project/boost

7.1 Research (task 18)

In the research phase, time will be spent studying the various solutions implemented
by Filecoin, specifically the boost library: https://github.com/filecoin-project/boost.

There will be integration with a storage client: part of the Markets library, capable of
interacting with a storage provider to create a deal. Much of that will involve
interaction between market entities storage provider and storage client.

Deliverables

●​ specification of how the application would work
●​ detailed plan of implementation

○​ software suite: applications & tools
○​ task breakdown

7.2 Implementation (task 19)

There are two subtasks here.

1. Economics

To maintain an equitable and mutually beneficial relationship between the customer
and the storage provider, a financial model should be defined. In this model, the
service provider continues to receive benefits for the provided services, and the
customer does not incur additional costs despite potential fluctuations in the token's
value as the DOT is not a stablecoin and its value may vary based on market
conditions.

Since decisions on this task should be based on the involvement of third parties
(community, stakeholders), organizational work should be done within the scope of
this task. This includes preparing and internally agreeing on financial models,
proposing them to stakeholders/community for discussion, and then implementing
the decision based on the consensus reached.

As a result, there should be defined a service-providing financial model (or models)
outlining the terms for service payments. Here are some potential options to
consider:

●​ All at once. Specify whether the price should be determined and billed as a
one-time payment for the entire storage time, when the deal is made on the
market. Additionally, determine if the size of each prolongation fee should be
defined in the future when the storage deal period ends, in a separate market
deal based on the new market prices.

●​ Subscription. Alternatively, there could be subscription-based relationships
where services are provided by the storage provider until separate payments
are provided by the client on an agreed interval basis in the market layer.

https://github.com/filecoin-project/boost

●​ Combined. It might be possible that the combination of previously described
strategies could be proposed to the client by the storage provider for flexibility
purposes.

An important point to consider while defining a service-providing financial model is
related to the "Subscription" based strategy. This involves directly anchoring the
pricing to a stable currency such as USD, calculating the service price based on the
cost of DOT equivalent to USD at the moment of fee charging, ensuring consistent
compensation value for each transaction and for each deal side.

2. Delia implementation

Build the complete web application per specification.

Research done in task 1.1 will be applied here.

Deliverables

●​ working versions of specified software applications & tools (MVP)
●​ tests
●​ documentation (instruction readme’s)

8. Gregor

This is the storage aggregator app, a demo web service specifically targeting smaller
amounts of data.

Tasks:

●​ 8.1 Research
●​ 8.2 Implementation

This server collects files and payments until a given threshold is reached. When that
happens, a piece is created. Thereafter, the data flow is similar to Delia.

It is still to be determined exactly how the confirmation of storage per client will be handled.

At a minimum:

●​ The client has a wallet
●​ The client receives a confirmation when the file content is in storage
●​ The client receives a CID upon upload

Just as with Delia, this web app will be an MVP, a demo of one possible working solution.

Deliverables

8.1 Research (task 20)

Deliverables
●​ specification of how the application would work
●​ detailed plan of implementation

○​ software suite: applications & tools
○​ task breakdown

8.2 Implementation (task 21)

Deliverables
●​ working versions of specified software applications & tools
●​ tests
●​ documentation (instruction readme’s)

1.3 Ecosystem Fit
Help us locate your project in the Polkadot/Substrate/Kusama landscape and what problems
it tries to solve by answering each of these questions:

Where and how does your project fit into the ecosystem?

●​ Polkadot Native Storage will be a system parachain. We are open to testing the
solution on Kusama too.

Who is your target audience (parachain/dapp/wallet/UI developers, designers, your own user
base, some dapp's users, yourself)?

●​ We hope to attract storage providers who aim to offer their storage on Polkadot.
●​ We hope that all developers in the ecosystem will utilize this storage network through

XCM.

What need(s) does your project meet?

●​ Native file and data storage in the Polkadot ecosystem.

Are there any other projects similar to yours in the Substrate / Polkadot / Kusama
ecosystem? If so, how is your project different?

●​ Crust Network is a storage network built on the Substrate framework. Crust aims to
provide a decentralized and incentivized storage protocol that allows users to
contribute their storage space and earn rewards in return.

Here are the main differences compared to Crust:

●​ Trusted Execution Environments are not used
●​ We want the fee token to be native DOT throughout (not CRU)

●​ Crust uses IPFS for actual storage, the parachain bridges to and offloads the storage
to IPFS; on the other hand, ours would be native storage provided by Polkadot
storage providers.

●​ While we plan to employ IPFS technology (e.g., CIDs, IPLD, etc), storage providers
are completely orthogonal to IPFS per se.

1.4 Future Plans
How you plan to finance the project in the future

●​ This storage network is intended to be a public good, a system parachain, we do not
want to monetize the network. We aim to get funding from the treasury for future
maintenance work.

How you intend to use, enhance, promote, and support your project in the short term and the
team's long-term plans and intentions in relation to it.

●​ Eiger is active in the web3 space due to our involvement in multiple ecosystems. We
plan to use our connections and socials to promote this work and let developers
know that Polkadot may soon have its own storage offering. Our long term plan is to
build this to production and maintain it in the future.

What are your plans on auditing and maintaining the work post implementation.

●​ This current proposal focuses on implementation of the storage system. After
completion of the current milestones we plan on doing external audits before
deployment to Kusama and Polkadot.

●​ As the network evolves, we plan to maintain and improve the solution. This will most
likely require additional audits to make sure major ongoing protocol-level changes do
not break anything.

1.5 Risks

1.​ Technical constraints: Implementation details affect architecture and design decisions.
While we've made a PoC which models several design choices, new technical constraints
may emerge. We should be flexible and agile in order to adapt to emergent situations in a
timely manner.

2.​ Time estimates: The project is complex and requires much work and not an insignificant
amount of research. We will need to carefully manage time estimates and ensure that we
can deliver the project on time.

3.​ External dependencies: Risks associated with changes to the Polkadot ecosystem and
other third-party dependencies, such as potential discontinuation of support or
development, breaking changes in various APIs, compatibility challenges, etc. We must
proactively plan and organize the necessary steps to identify and quickly resolve such
issues.

4.​ Easy onboarding: We must provide an intuitive process for onboarding storage providers
and collators. It may not be easy to achieve and will most likely be an iterative process.

5.​ Rewards: Storage providers and collators may not be interested in joining the network for
non-technical reasons. We should provide a good business model in order to make it
attractive.

6.​ Storage and retrieval complexity: We will need to provide a simple and intuitive interface
to make it attractive and easy to use for the majority of users. The complexity must not
be too high.

7.​ Security vulnerabilities: Like any software development, parachain code may potentially
have security vulnerabilities that could be exploited by malicious actors. We must outline
strategies for responding to and mitigating security incidents promptly. We should
discuss plans for routine security audits and assessments to identify and rectify
vulnerabilities

8.​ Integration: We must clearly define and test interfaces between the different system
parts. Each part in itself is a complex piece of software: they must all work smoothly
together.

2. Team

2.1 Team members

1.​ Kyle Granger (team leader)
2.​ Michael Eberhardt
3.​ Piotr Olszewski
4.​ Serhii Temchenko
5.​ Tomek Piotrowski
6.​ Karlo Mardesic
7.​ Eloy Peñamaría
8.​ Pierre Larger

2.2 Contact
●​ Contact Name: Daren Tuzi
●​ Contact Email: daren@eiger.co + hello@eiger.co
●​ Website: Eiger.co

2.3 Legal Structure
●​ Registered Address: Meritullinkatu 1B, 00170 Helsinki, Finland
●​ Registered Legal Entity: Eiger Oy
●​ Structure: Part of the Equilibrium group

mailto:daren@eiger.co
mailto:hello@eiger.co
https://www.eiger.co
https://www.eqg.co/

2.4 Experience
Eiger and the Equilibrium group as a whole (including Equilibrium Labs) have been working
on the decentralized web3 stack since 2018.

●​ We integrated Move to Substrate. Allowing builders to integrate the Move VM and
execute Move smart contracts. Anyone can now create a Move parachain on
Polkadot. https://x.com/Polkadot/status/1816109501394637034

●​ We are building Strawberry, our client implementation of JAM and are very close to
the first milestone. More updates on that soon.

●​ We have been working together with Forte since 2019, in building large scale
infrastructure for game to chain integrations.
(Money Transmitter License and BitLicense from the New York State Department of
Financial Services, we can operate with regulatory compliance)

●​ We implemented the rust implementation of IPFS. We also developed and
maintained the main implementation of Internledger in Rust.

●​ Pathfinder. The most advanced full node implementation of Starknet, the L2 on top of
ETH using STARK proofs. We work closely with their core team and ecosystem
partners who use it.

●​ Aleo core, the snarkOS and other developer tools under NDA. The privacy focused
smart contract L1 platform going live this year.

●​ Ziggurat. Network protocol testing framework for ZCash, XRP and Algorand. We
have found critical network vulnerabilities and reported to the core teams.

●​ We work very closely with Polygon Avail. Now known as Avail and released OpEVM.
●​ Hooks IDE. A browser based IDE to write, compile and execute contracts. Basically a

tool to onboard developers and simplify their workflow.
●​ Starsign. A Starknet multisig implementation written in Cairo
●​ Eclipse. a prototype system for storing zk-proofs of Solana votes on the Aleo

blockchain for the purpose of creating bridges.
●​ We help Membrane build all their backends and have done the Fireblocks

integration. (First EU regulated stablecoin EuroE)
●​ We helped Elusiv build some of their core privacy tech.
●​ Zcash UNIFFI. Exposing Rust bindings in other languages.
●​ We help Celestia build some of their core components in Rust and are building their

light node to run in the browser .
●​ We are building a smart contract library for Stellar Soroban.
●​ We are working to bridge Solana to Axelar.
●​ We are building integrations for Zksync.
●​ We are doing move spec testing for Aptos Move lang, similar to Gambit.
●​ We put an Ethereum light client on the Internet Computer to facilitate bridging.
●​ We helped Sovereign integrate Celestia into their modular SDK.

https://x.com/Polkadot/status/1816109501394637034
https://forte.io/
https://github.com/rs-ipfs/rust-ipfs
https://github.com/interledger-rs/interledger-rs/
https://github.com/eqlabs/pathfinder
https://starkware.co/starknet/
https://www.aleo.org/
https://github.com/AleoHQ/snarkOS
https://github.com/runziggurat
https://www.eiger.co/blog/introducing-opevm-the-next-generation-optimistic-evm-rollup
https://twitter.com/XRPLLabs/status/1463098630869602307
https://hooks-builder.xrpl.org/develop
https://github.com/eqlabs/starknet-multisig/
https://membrane.fi/
https://www.eiger.co/blog/elusiv-bringing-privacy-to-solana
https://github.com/eigerco/uniffi-zcash-lib
https://www.eiger.co/blog/enhancing-rust-rpc-client-and-nodes-for-celestia-network
https://stellar.org/
https://axelar.network/
https://zksync.io/
https://aptosfoundation.org/
https://docs.certora.com/en/latest/docs/gambit/index.html
https://www.eiger.co/blog/icp-light-client
https://www.sovereign.xyz/
https://github.com/Sovereign-Labs/nmt-rs

2.4.1 Team Code Repos
https://github.com/eigerco

Please also provide the GitHub accounts of all team members. If they contain no activity,
references to projects hosted elsewhere or live are also fine.

1.​ Kyle Granger https://github.com/kylegranger
2.​ Piotr Olszewski https://github.com/asmie
3.​ Serhii Temchenko https://github.com/serg-temchenko
4.​ Tomek Piotrowski https://github.com/tomekpiotrowski
5.​ Karlo Mardesic https://github.com/Rqnsom
6.​ Eloy Peñamaría https://github.com/eloylp
7.​ Pierre Larger https://github.com/pierre-l

2.4.2 Team LinkedIn Profiles
1.​ Kyle Granger https://www.linkedin.com/kyle-granger
2.​ Piotr Olszewski https://www.linkedin.com/piotr-olszewski
3.​ Serhii Temchenko https://www.linkedin.com/in/temchenko
4.​ Tomek Piotrowski https://www.linkedin.com/in/tomasz-piotrowski-17466b4/
5.​ Karlo Mardesic https://www.linkedin.com/in/karlo-mardesic/
6.​ Eloy Peñamaría https://www.linkedin.com/in/eloylp/
7.​ Michael Eberhardt https://www.linkedin.com/in/michael-eberhardt-bb15b0100/
8.​ Pierre Larger https://www.linkedin.com/in/pierre-larger-61729948/

2.5 Communication and reporting

All our work will be done open source so we welcome everyone to follow the progress in the
github issues and pull requests.

In addition to this we will push bi-weekly updates of our progress to a Polkadot forum post
similar to this one, so the community can easily follow the progress and ask questions in the
forum.

https://github.com/eigerco
https://github.com/kylegranger
https://github.com/asmie
https://github.com/serg-temchenko
https://github.com/tomekpiotrowski
https://github.com/Rqnsom
https://github.com/eloylp
https://github.com/pierre-l
https://www.linkedin.com/in/kyle-granger-746337151/
https://www.linkedin.com/in/piotr-olszewski-8a239939
https://www.linkedin.com/in/temchenko
https://www.linkedin.com/in/tomasz-piotrowski-17466b4/
https://www.linkedin.com/in/karlo-mardesic/
https://www.linkedin.com/in/eloylp/
https://www.linkedin.com/in/michael-eberhardt-bb15b0100/
https://www.linkedin.com/in/pierre-larger-61729948/
https://forum.polkadot.network/t/polkadot-native-storage/4551/5

3 Milestones/Cost Breakdown
This section should break the development roadmap down into milestones and deliverables.

3.1 Overview
●​ Total Estimated Duration: ~14 months
●​ Full-Time Equivalent (FTE): 112 FTE
●​ Total Costs: 2,800,000 USD
●​ Eiger address: 131MpMXeuKG6L27Ye23uzWr739KFbbrCBdiv39XZtnTCPwQB
●​ Contact: hello@eiger.co
●​ DOT pricing: ​

$7 as of Phase 1 referendum 12 Feb 2024, EMA30 as reported by Subscan.​
$4.438 as of Phase 2 referendum 10 Sep 2024, EMA30 as reported by Subscan. ​
Phase 3 referendum will be done in stablecoin.

This will be split into 3 phases:

1.​ Research, documentation and start of collator
Total amount in USD: $456,250
Total amount in DOT: 65,178 DOT
Resources: 18.25 FTE
Status: Work Completed

2.​ Collator, polka-store storage subsystem and delia research
Total amount: $443,750
Total amount in DOT: 99,988 DOT
Resources: 17.75 FTE
Status: Work Completed

3.​ polka-index + polka-fetch + Delia + Gregor

Total amount: $1,900,000
Total amount in USDT: 1,900,000
Resources: 76 FTE
Original estimate: 7 months from phase 2 completion​
April 2025 note: 90% already done, improvements continue

Follow our weekly updates here. ​
Check out the technical book at https://eigerco.github.io/polka-storage-book/

https://polkadot.polkassembly.io/user/Eiger
mailto:hello@eiger.co
https://polkadot.subscan.io/tools/charts?type=price
https://polkadot.subscan.io/tools/charts?type=price
https://forum.polkadot.network/t/polkadot-native-storage-updates/7021/23
https://eigerco.github.io/polka-storage-book/

3.2 Milestones

Milestones Tasks Deliverables Time Rates Costs Status

1. Research

1.1 Research lotus - report on lotus analysis
- full API specification:

4.5 FTE $25k per FTE​
​

FTE here means 1
engineer month

$112.5K done

1.2 Research lotus-miner - report on lotus-miner analysis
- full API specification:
- report on use or non-use of lotus-worker

4.5 FTE $112.5K done

1.3 Research FVM - for each actor/pallet
 - full API specification
 - extrinsics
- documentation

2.0 FTE $50.0K done

2. Collator Node 2.1 Port Actors to pallets - pallets
- tests
- documentation

3.5 FTE $87.5K done

2.2 Main Functionality - all API calls implemented
- tests
- JS/Node.js test client
- documentation

9.0 FTE $225.0K done

2.3 Markets - polka-markets library: FSM, nodes,
protocols, data storage

5.5 FTE $137.5K done

2.4 Serialize blockchain state to
disk

- tests that confirm proper state serialization 2.0 FTE $50.0K done

2.5 Common consensus - block generation
- tests

3.5 FTE $87.5K done

3. polka-store 3.1 External Libraries - 3rdparty code directory
- dagstore

3.5 FTE $87.5K done

- FIL references to changed to DOT
- working tests of forked libraries

3.2 Proof-of-Replication - implement PoRep
- tests

3.5 FTE $87.5K done

3.3 Proofs-of-Spacetime - implement Window PoSt
- implement Winning PoSt
- tests

4.5 FTE $112.5K done

3.4 Remaining Functionality - implementation of remaining API calls
- tests
- documentation

16.0 FTE $400.0K done

4. polka-index 4.1 Research - specification
- documentation
- implementation plan

2.5 FTE $62.5K done

4.2 Implementation - working application
- tests
- documentation

9.5 FTE $237.5K done

5. polka-fetch 5.1 Basic Functionality - working code
- tests
- documentation

4.5 FTE $112.5K done

6. Deployment 6.1 Collator Node - scripts
- tests
- documentation

2.5 FTE $62.5K Private and
public testnet

first

6.2 Storage System - scripts
- tests
- documentation
- system constraints

2.5 FTE $62.5K Private and
public testnet

first

7. Delia 7.1 Research - specification
- implementation plan

6.0 FTE $150.0K done but will
be improved

 7.2 Implementation - software & tools
- tests
- documentation

12.0 FTE $300.0K done but will
be improved

8. Gregor 8.1 Research - specification
- implementation plan

2.5 FTE $62.5K done

 8.2 Implementation - software & tools
- tests
- documentation

8.0 FTE $200.0K done

TOTAL 112 FTE $2,800K

Milestone task FTE and duration breakdown

	Polkadot Native Storage
	Table of contents
	
	1. Project
	1.1 Overview
	1.2 Details
	Milestone and Task Descriptions
	1. Research
	2. Collator node
	3. polka-store
	4. polka-index
	5. polka-fetch
	6. Deployment
	7. Delia
	8. Gregor

	1.3 Ecosystem Fit
	1.4 Future Plans
	1.5 Risks

	2. Team
	2.1 Team members
	2.2 Contact
	2.3 Legal Structure
	2.4 Experience
	
	2.4.1 Team Code Repos
	2.4.2 Team LinkedIn Profiles

	2.5 Communication and reporting

	
	
	3 Milestones/Cost Breakdown
	3.1 Overview
	3.2 Milestones
	
	

