
FLIP-1 - Fine-grained Recovery

This document has been moved to the Flink Wiki:
https://cwiki.apache.org/confluence/display/FLINK/FLIP-1+%3A+Fine+Grained+Recovery+from
+Task+Failures

Please comment in the discussion thread linked there.

This improvement proposal describes an enhancement that makes recovery more efficient by
restarting only what needs to be restarted and building on cached intermediate results.

Problem / Motivation

When a task fails during execution, Flink currently resets the entire execution graph and triggers
complete re-execution from the last completed checkpoint. This is more expensive than just
re-executing the failed tasks.

Streaming (DataStream) Jobs
For many streaming jobs, this behavior is not critical, because many tasks have all-to-all
interdependencies (keyBy, event time) with their predecessors (upstream) or successors
(downstream). In that case, operators usually cannot make progress anyways as long as one
task is not delivering input or accepting output. Full restart only implies that those tasks also
recompute their state, rather than being idle and waiting.
More fine grained recovery can help to reduce the amount of state that needs to be transferred
upon recovery. If only 1/100 operators need to recover their state, then the one operator has the
full bandwidth to the persistent store of the checkpoints, rather than sharing that bandwidth will
the other operators that recover their state.

For some streaming jobs, full restarts are unnecessarily expensive. In particular for
embarrassingly parallel jobs (no keyBy() or redistribute() operations), other parallel
subtasks/partitions can keep running, and the streaming program as a whole would make
progress.

Batch (DataSet) Jobs

Batch jobs do not perform any checkpoints and are hence completely restarted in case of a task
failure. Batch jobs frequently have all-to-all dependencies between operators, but those are not
necessarily pipelined, which makes it conceptually possible to have fine-grained restarts.

Proposal

The core change is to only restart the pipelined connected component of the failed task. This
should generalize the failure/recovery model.
We can develop this improvement in two steps:

Version (1) - Entire connected component is pipelined

That case assumes that all connections between operators are pipelined. The full connected
component needs to be restarted.
For jobs that have multiple components (typically embarrassingly parallel jobs) this gives the
desired improvement. For jobs with all-to-all dependencies, it will behave like the current
failure/recovery model.

With Independent pipelines

With all-to-all dependencies

Version (2) - Limit pipelined connected component at intermediate results

To further reduce the amount of tasks that need to be restarted, we can use certain types of
data stream exchanges. In the runtime, they are called “intermediate result types”, because
each data stream that is exchanged between operators denotes an intermediate result.

Caching Intermediate Result

This type of data stream caches all elements since the latest checkpoint, possibly spilling them
to disk, if the data exceeds the memory capacity.
When a downstream operator restarts from that checkpoint, it can simply re-read that data
stream without requiring the producing operator to restart. Applicable to both batch (bounded)
and streaming (unbounded) operations. When no checkpoints are used (batch), it needs to
cache all data.

Memory-only caching Intermediate Result

Similar to the caching intermediate result, but discards sent data once the memory buffering
capacity is exceeded. Acts as a “best effort” helper for recovery, which will bound recovery when
checkpoints are frequent enough to hold data in between checkpoints in memory. On the other
hand, it comes absolutely for free, it simply used memory that would otherwise not be used
anyways.

Blocking Intermediate Result

This is applicable only to bounded intermediate results (batch jobs). It means that the
consuming operator starts only after the entire bounded result has been produced. This bounds
the cancellations/restarts downstream in batch jobs.

Implementation Plan

Version two strictly builds upon version one - it only takes the intermediate result types into
account as backtracking barriers.

Version (1) - Task breakdown

●​ Change ExecutionGraph to not go into “Failing” status upon task failure

●​ Add Backtracking and Forward Cancellation. Only one global change (status update
beyond a single task execution) may happen in the ExecutionGraph concurrently.

Version (2) - Task breakdown

(a)​Extend backtracking to stop at Intermediate results that are available for the checkpoint
to resume from.

(b)​ Implement “Caching Intermediate Result”

(c)​ Implement “Memory-only Caching Intermediate Result”

(d)​Upon reaching a result that is not guaranteed to be there (like the “Memory-only Caching

Intermediate Result”), the ExecutionGraph sends a message to the result (TaskManager
holding it) to “pin” it, so it does not get released in the meantime. The response to the
“pin” command is “okay” in which case the backtracking stops there, or “disposed”, in
which case the backtracking continues.

Public API Changes
●​ Will affect the way failures are logged and displayed in the web frontend, since failures

do not lead the job to holistically go to recovery
●​ Number-of-restarts parameter or RestartStrategy may need to be interpreted

differently, referring to either to maximum-per-task-failures or to
maximum-total-task-failures

Rejected Alternatives

None so far

	FLIP-1 - Fine-grained Recovery
	Problem / Motivation
	Streaming (DataStream) Jobs
	Batch (DataSet) Jobs

	
	Proposal
	Version (1) - Entire connected component is pipelined
	Version (2) - Limit pipelined connected component at intermediate results

	
	Implementation Plan
	Version (1) - Task breakdown
	Version (2) - Task breakdown

	Public API Changes
	Rejected Alternatives

