
Roadmap for Apache Arrow in R
The goal of this document is to identify some broad deliverables for an R interface to the Arrow
C++ libraries and other parts of the Arrow ecosystem (such as Spark support, etc.).

This is a public Apache Arrow community document. Please request edit access if you wish to
add or make changes

Motivation: Prototypical Initial User Stories
Send and receive IPC payloads, read Arrow memory from disk
Read and write open standard columnar files (Parquet, ORC, Feather)
Interact with Arrow RPC servers (aka Arrow Flight)
Execute queries using Arrow-native database client
Arrow-based backend for data frame manipulations

Development tooling, packaging, deployment
Build tooling, development workflow
Continuous integration

Packaging and Deployment

Low-level Memory / IO support
Buffers and memory pools
File-like objects

Columnar Format Bindings + R interop
Arrow columnar data structure APIs

arrow::DataType (and subclasses)
arrow::Field
arrow::Schema
arrow::Array
arrow::ChunkedArray
arrow::Column
arrow::RecordBatch
arrow::Table

R data structure conversions

IPC / Messaging Protocol Support

Data access
Parquet files
ORC files
CSV Files

HiveServer2 Database Client

SparkR + sparklyr Integration

Analytic functions for Arrow columnar data

Plasma Object Store support

Motivation: Prototypical Initial User Stories

Send and receive IPC payloads, read Arrow memory from disk
Receiving payload use case

●​ Piece of memory arrives in R through some means, is wrapped in arrow::Buffer
●​ arrow::Buffer is interpreted as arrow::RecordBatch/Table using arrow::ipc utilities
●​ result either manipulated directly as Arrow data, or converted immediately to native R

memory format

Sending payload use case

●​ R data structure (e.g. data.frame) is converted to arrow::Table
●​ arrow::Table written to some arrow::io::OutputStream using either stream or file protocol
●​ OutputStream is closed, or result of completed write (for InMemoryOutputStream) is

retrieved as arrow::Buffer, to be utilized elsewhere

Read and write open standard columnar files (Parquet, ORC, Feather)
●​ The user has a single file or collection of files that they wish to read into memory as an R

data.frame
●​ A function read_parquet can act on a file or directory to read one or more files at once
●​ Results returned either directly to R data.frame or as wrapped arrow::Table

Interact with Arrow RPC servers (aka Arrow Flight)
●​ Connect to RPC server at host and port
●​ List available dataset
●​ Request dataset, receive arrow::Table

Execute queries using Arrow-native database client
●​ Connect to server
●​ Execute SQL query
●​ Receive results as arrow::Table

Arrow-based backend for data frame manipulations

Development tooling, packaging, deployment

Build tooling, development workflow
Source build instructions on:

●​ Linux, macOS
●​ Windows

Code style and linting

●​ Running clang-format, cpplint on R-C++ codebase
●​ Is there a standard R code tidying tool?

Local unit testing

●​ Tools in use
●​ Document procedure for running unit tests

Continuous integration
●​ Linux builds - Travis CI
●​ macOS builds - Travis CI

○​ This may be optional to avoid making the build matrix too large
●​ Windows builds

Packaging and Deployment
●​ Develop multi-platform deployment strategy -- how will users install a complete package

on primary Linux distros (RedHat 6 and up, Debian/Ubuntu), macOS, and Windows?
○​ Installation should include Arrow libraries with dependencies either bundled or

statically linked, and optional packages (Parquet, etc.)
●​ How to get Arrow into CRAN, work with install.package

Low-level Memory / IO support

Buffers and memory pools
●​ Interact with arrow::Buffer objects
●​ Create Buffer from byte-providing R sources
●​ Wrap arrow::MemoryPool, access default memory pool and see total_bytes_allocated()

File-like objects
We should minimally wrap the file-like objects so that they can return arrow::Buffer objects to be
used in IPC and other areas

●​ io::OSFile -- regular operating system files
●​ MemoryMappedFile
●​ HdfsFile

Columnar Format Bindings + R interop
The objective is to offer the R user reasonably complete access to the Arrow in-memory
columnar format and support for converting between R’s native memory representations and the
Arrow format.

Arrow columnar data structure APIs
see http://arrow.apache.org/docs/cpp/namespacearrow.html

arrow::DataType (and subclasses)

●​ Create supported arrow::DataType

arrow::Field
●​ Create arrow::Field

arrow::Schema
A Schema defines the column names and types for a RecordBatch or Table

●​ Create arrow::Schema

arrow::Array
An Array is an atomic columnar data array containing all contiguous / non-chunked memory

●​ Index single elements in Array
●​ Call Slice
●​ Call Array cast

arrow::ChunkedArray
A ChunkedArray is a collection of one or more Array objects. It is the basic data container used
to create Table instances. Each Array must have the same type

http://arrow.apache.org/docs/cpp/namespacearrow.html

●​ Create arrow::ChunkedArray
●​ Call Cast
●​ Call Slice

arrow::Column
The “Column” data structure is a named ChunkedArray

●​ Create arrow::Column
●​ Call Cast

arrow::RecordBatch
An ordered string-named sequence of equal-length Arrays

●​ Create arrow::RecordBatch
●​ Call Cast with new Schema
●​ Call Slice

arrow::Table
Like RecordBatch, but each logical column is a chunked array. Each column does not have to
have the same chunking layout as the others.

●​ Create arrow::Table
●​ Call Cast with new Schema
●​ Call Slice

R data structure conversions
●​ Convert from arrow::Array types to R vectors
●​ Convert from R vectors to arrow::Array types in two modes

○​ With type inference (arrow::array(r_vector))
○​ WIth explicit type (e.g. arrow::array(r_vector, type=...))

●​ Decide on conversion API for types unsupported in R
●​ Convert from data.frame to arrow::RecordBatch (unchunked) or arrow::Table (possibly

chunked)
○​ With type inference
○​ With schema provided

●​ Convert from arrow::RecordBatch or arrow::Table to data.frame
●​ Convert to Arrow nested types from nested data.frame or tibble

○​ Including type inference

IPC / Messaging Protocol Support
See https://github.com/apache/arrow/blob/master/format/IPC.md

●​ Read “stream” IPC format
○​ see ipc::RecordBatchStreamReader

●​ Read “file” IPC format
○​ see ipc::RecordBatchFileReader

●​ Write stream IPC format
○​ see ipc::RecordBatchStreamWriter

●​ Write “file” IPC format
○​ see ipc::RecordBatchFileWriter

●​ Create individual IPC messages
○​ ipc::SerializeSchema
○​ ipc::SerializeRecordBatch

Data access

Parquet files
●​ Read and write single Parquet files from arrow::Table
●​ Read multiple Parquet files (or a partitioned dataset) a single logical dataset
●​ Read partitioned dataset with partition-level predicate filters
●​ Read individual subtrees from a partitioned dataset by partition key (e.g. only read files

for single year and month)
●​ Write non-partitioned or partitioned datasets from R data.frame with minimum of code

ORC files
●​ Provide analogous ORC support to the Parquet support above

CSV Files
●​ Read CSV files in RecordBatch chunks

HiveServer2 Database Client

SparkR + sparklyr Integration
Make available to R users the Arrow-Spark integration that already exists in Spark >= 2.3.0

SparkR Integration

Sparklyr Integration
The relevant work is happening under sparklyr/pull/1611, so far, we have identified the following
API requirements, which are already covered in other sections in this document:

-​ arrow::RecordBatch
-​ arrow::Schema
-​ IO support with support for RecordBatchFileWriter

See also sparklyr/R/arrow_data.R for a initial prototype interoperating with Spark using
reticulate.

Analytic functions for Arrow columnar data
As there are more of these available, we should define R APIs to invoke them on in-memory
Arrow data.

Plasma Object Store support
Create bindings to use the Plasma client to read and write various objects to shared memory
managed by Plasma.

https://github.com/rstudio/sparklyr/pull/1611
https://github.com/rstudio/sparklyr/blob/3121b52973f7d44ab5600c304b35faafae333901/R/arrow_data.R#L45-L65

	Roadmap for Apache Arrow in R
	Motivation: Prototypical Initial User Stories
	Send and receive IPC payloads, read Arrow memory from disk
	Read and write open standard columnar files (Parquet, ORC, Feather)
	Interact with Arrow RPC servers (aka Arrow Flight)
	Execute queries using Arrow-native database client
	Arrow-based backend for data frame manipulations

	Development tooling, packaging, deployment
	Build tooling, development workflow
	Continuous integration
	Packaging and Deployment

	Low-level Memory / IO support
	Buffers and memory pools
	File-like objects

	Columnar Format Bindings + R interop
	Arrow columnar data structure APIs
	arrow::DataType (and subclasses)
	arrow::Field
	arrow::Schema
	arrow::Array
	arrow::ChunkedArray
	arrow::Column
	arrow::RecordBatch
	arrow::Table

	R data structure conversions

	IPC / Messaging Protocol Support
	Data access
	Parquet files
	ORC files
	CSV Files
	HiveServer2 Database Client

	SparkR + sparklyr Integration
	Analytic functions for Arrow columnar data
	Plasma Object Store support

