Chapter 15 Outline Water and Aqueous Systems

Section 15.1 – Water and Its Properties

A water molecule has a	because the oxygen is much
more than the hyd	drogens.
• This strong cause	s water molecules to have strong
for each other. Thes	e attractions are called
·	
describes many o	f the properties of water such as
	_•
• is one of the few substance	ces in which the solid state is
than the liquid sta	te.
• This is the reason that ice	_ in
water.	
■ The structure of is a regular	
framework of water molecu	ules
arranged like a	
• When ice, the framework	and the water molecules
pack close together, making the liqu	uid than the ice.

Section 15.1 Assessment

- 1. What causes the high surface tension and low vapor pressure of water?
- 2. How would you describe the structure of ice?

Section 15.2 – Homogeneous Aqueous Systems

An _		is water that contains			substances.		
• In a		, the dissolving medium is the, and the disso		e dissolved			
parti	icles are	the	·				
• A		_ dissolves a		·			
• As in	ıdividual :	solute	_ break o	away from c	z	, the ne	gatively
and	positively	/ charged _	bec	come surrou	nded by _		molecules
and	the ionic	crystal		.•			
■ As	<i>5</i> +	cation	3 3 3	a rule,	solven	ts such a _.	
	28- <mark>@</mark> 108+			dissolve			_solutes
				such as	•		
■ As	S+ 028-	8 0 -		a rule,	solv	ents such	а
		anion 🍎	8		dissolve	e	solutes
such	n as						
• This r	elationsh	ip can be s	ummed	up in the ex	pression "_		_
		•					
- An _		is a com	pound tl	hat conduc	ts an		_ when it is
in ar	n aqueou	ıs solution o	r in the m	nolten state.			
• All _	C	ompounds	are elec	trolytes bec	ause they a	dissolve in	to
• A	e	lectrolyte_	bre	eaks into	·		
• A	ele	ctrolyte onl	y	breaks in	nto		
■ A su	bstance [.]	that does n	ot condu	uct electricit	y is a		_•

• Some	compound	ds are nonelectrolytes in a	but become
electrolytes	when	in water.	
- A compou	nd that conta	ins is called a	·
In writing th	e formula of a	a hydrate, use a to conn	ect the of
the compo	ound and the	of water molecules p	oer formula unit.
• Example:			
Section 15.2 A	ssessment		
1. In the form	ation of a solu	ition, how does the solvent dif	fer from the solute?
2. Describe w	hat happens	to the solute and the solvent v	vhen an ionic
compound	ls dissolves in v	water.	
3. Why are all	ionic compo	unds electrolytes?	
4. How do yo	u write the for	mula for a hydrate?	
5. Which of th	e following su	bstances dissolve to a signific	ant extent in water?
a. CH ₄	b. KCl	с. Не	
d. MgSO₄	e. HCI	f. NaHCO ₃	
Section 15.3 –	Heterogeneo	ous Aqueous Systems	
• A	is a mixtur	re from which particles	upon standing
because th	ne solute parti	cles are very	
An example	e is	·	

 A is a heterogeneous mixture containing particles that are
than a but larger than a
• A colloid's particles do not with time.
• A colloid's particles are to be separated by
• Examples include
Section 15.3 Assessment
1. How does a suspension differ from a solution?
2. What distinguishes a colloid from a suspension and a solution?
3. Could you separate a colloid by filtering?