تقديم مجموعات ميكاتيكية متذبذبة présentation des systèmes mécaniques oscillants

1: تعاریف:

			۱: تعریف:
الحركة التنبنبية الحرة	الحركة الدورية	الحركة التذبذبية	المجموعة الميكانيكية المتذبذبة
هي الحركة التنبذبية التي ينجز ها متنبذب ميكانيكي دون أن يكتسب طاقة ما من أي مجموعة خارجية بعد إحداث حركته.	هي حركة تتكرر مماثلة لنفسها في مدد زمنيةمنتساوية	هي حركة ذهاب و إياب حول موضع معين ، و هي حركة تميز المتنبنبات الميكانيكية .	هي مجموعة تنجز حركة دورية ، من ذهاب و إياب ، حول موضع توازنها المستقر

2: المتذبذبات المبكانبية

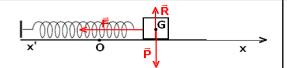
المناب ال				
نواس اللي	النواس المرن	النواس البسيط	النواس الوازن	
جهاز يتكون من سلك فلزي ثبت أحد طرفيه إلى حامل ، و الطرف الأخر إلى قضيب متجانس معلق من مركز قصوره ". مستقر .	" يتكون النواس المرن من جسم صلب مشدود بطرف نابض ذي لفات غير متصلة و كتاته مهملة. الطرف الآخر النابض مثبت بحامل ثابت".	هو كل نقطة مادية تتأرجح على مسافة من محور أفقي ثابت ". عمليا نحقق نواسا بسيطا بتعليق جسم صغير عالي الكثافة بطرف خير قابل للامتداد و ذي كتلة مهملة شدً طرفه الآخر إلى حامل ثابت.	" هو كل مجموعة غير قابلة التشويه يمكنها إنجاز حركة تنبنبية حول محور ثابت تحت تأثير وزنها".	
تمعلم الحركة ب:	تمعلم الحركة ب:	تمعلم الحركة ب:	تمعلم الحركة ب:	
الافصول الزاوي θ	الافصو لالخطي x	الافصول الزاوي θ	الافصول الزاوي θ	
تميز المجموعة	تميز المجموعة	تميز المجموعة	تميز المجموعة	
C عزم قصور القضيب $\operatorname{J}_{\Lambda}$ ثابتة لي السلك	صلابة النابض k +كتلة الجسم m	طول الخيط1 +كتلة الجسم m	عزم قصور الجسم J	

3: مميزات الحركة التذبذبية:

		· # * * * * * * * * * * * * * * * * * *
الدور الخاص	وسع الحركة	موضع التوازن المستقر
الدور الخاص T_0 لمتذبذب ميكانيكي حر و غير مُخمَد ، هو المدة الزمنية التي تفصل مرورين متتاليين للمتذبذب من موضع توازنه المستقر في نفس المنحى . T_0 ب T_0 .	وسع الحركة لمتذبذب ميكانيكي حر و غير مخمد هو القيمة القصوى الموجبة التي يأخذها المقدار الذي يعبر عن مدى ابتعاد أو انحراف المتذبذب عن موضع توازنه المستقر".	كل متذبذب ميكانيكي ينجز حركته التذبذبية حول موضع توازنه المستقر. - موضع التوازن المستقر هو الموضع الذي إذا زحزح عنه المتذبذب يعود إليه ليستقر فيه.

4: انظمة خمود الذبذبات الميكانيكية:

بفعل الاحتكاكات المائعة او الصلبة يتناقص وسعها تدريجيا مع الزمن ، إلى أن يتوقف عند موضع توازنه المستقر نسمي هذه الظاهرة "ظاهرة الخمود "


ب عبرہ میرد		الرحل ، إلى ال يتوت مساعر المساع		
	حالة الخمود الحاد		حالة الخمود غير الحاد	حالة غياب الخمود
النظام فوق الحرج	النظام الحرج	النظام تحت الحرج	النظام شبه دوري	النظام الدوري: مثالي
يستغرق المتنبذب وقتا طويلا للوصول إلى موضع توازنه بدون تنبذب.	يعود المتذبذب إلى موضع توازنه بعد إزاحته عنه بدون تذبذب	ينجز المتذبذب ذبذبة واحد قبل توقفه	يتناقص وسع الذبذبات مع الزمن إلى أن ينعدم	ييقى وسع الذبذبات ثابت مع الزمن
		1	O To	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Www.AdrarPhysic.Com

النواس المرن - Le pendule élastique

ا- دراسة ذبذبات نواس مرن:

				1- المعادلة التفاضلية:
اسقاط العلاقة على المحاور	القانون الثاني لنيوتن.	المعلم $R(o,i,j,k)$ مرتبط المعلم بالأرض محوره OX أفقي ،	القوى المطبقة على الجسم (S)	المجموعة المدروسة:
$0 = a_y \mathbf{P} = \mathbf{m} - \mathbf{R}$ $a_x = m \frac{d^2 x}{dt^2} \mathbf{K} \cdot \mathbf{x} = \mathbf{m} - \mathbf{m}$	$\vec{a}\mathbf{m}.=\vec{F}+\vec{p}+\vec{R}$ $\vec{a}\mathbf{m}.=\vec{i}\mathbf{K}.\mathbf{x}.\vec{j}-\mathbf{P}.\vec{j}-\mathbf{R}.$	$ \vec{j}\mathbf{R}.=\vec{R} $ $ \vec{j}\mathbf{P}.==\vec{p} $ $ \vec{i}\mathbf{K}.\mathbf{x}.==\vec{F} $	$\stackrel{ ightarrow}{R}$ تأثير السطح $\stackrel{ ightarrow}{P}$ وزن الجسم $\stackrel{ ightarrow}{F}$ قوة ارتداد النابض	الجسم الصلب (نابض ذو تلة مهملة)
		$x=0.\frac{d^2x}{d^2x} + \frac{k}{m}$	$k.x=0m\frac{d^2x}{2}+:$ ي المرن	المعادلة التفاضلية لحرة النواس

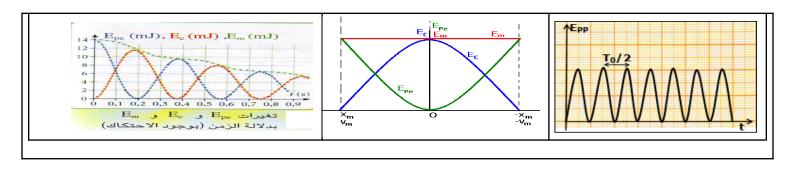
x>0 و \overrightarrow{i} معاکس لمنحی مطالا فإنه یطبق قوة جر حیث منحی \overrightarrow{F} معاکس لمنحی و \overrightarrow{i} و x<0 و \overrightarrow{i} عندما یکون النابض مطالا فإنه یطبق قوة دفع حیث منحی \overrightarrow{F} فی نفس منحی و \overrightarrow{i}

2- حل المعادلة التفاضلية:

T_{0}	\mathcal{X}_{m}	φ	$(\frac{2\pi}{T_0}t+\varphi)$	حلها یکتب علی شکل $x(t) = x_m \cos(rac{2\pi}{T}t + arphi)$
الدور الخاص ب s	الوسع amplitude ب(m).	الطور عند أصل التواريخ (t=0) ب(rad)	طور الذبذبات عند التاريخ t ب (rad).	T_0

3-تعبير الدور الخاص:

تعبير التسارع	تعبير السرعة	المعادلة الزمنية
$a_x = \ddot{x} = \frac{d^2x}{dt^2} = -x_m \cdot \left(\frac{2\pi}{T_0}\right)^2 \cos\cos\left(\frac{2\pi}{T_0}t + \varphi\right)$	$v_{x} = \dot{x} = \frac{dx}{dt} = -x_{m} \cdot \frac{2\pi}{T_{0}} \cos \cos \left(\frac{2\pi}{T_{0}}t + \varphi\right)$	$x(t) = x_m \cos(\frac{2\pi}{T_0}t + \varphi)$


		لدينا
<u></u>	بالمماثلة	$\frac{d^2x}{dt^2} = -x_m \cdot \left(\frac{2\pi}{T_0}\right)^2 \cos\cos\left(\frac{2\pi}{T_0}t + \varphi\right) = \left(\frac{2\pi}{T_0}\right)^2 x(t)$
$T_0 = 2\pi \cdot \sqrt{\frac{m}{k}}$	$-\left(\frac{2\pi}{T}\right)^2 = -\frac{k}{m}$	$\frac{dx}{dt^2} = -x_m \cdot \left(\frac{2\pi}{T_0}\right) \cos \cos \left(\frac{2\pi}{T_0}t + \varphi\right) = \left(\frac{2\pi}{T_0}\right) x(t)$
	$\left(\begin{array}{cc}T_0\end{array}\right)$ m	$\mathbf{x} \cdot \frac{d^2x}{dt^2} = -\frac{k}{m}$ من المعادلة التفاضلية لدينا

اا- الدراسة الطاقية للمجموعة (جسم صلب – نابض) في وضع أفقي:

الطاقة الميكانيكية لمجموعة	طاقة الوضع المرنة:	الطاقة الحركية:
$E_m = E_p + E_c$ هي مجموع الطاقة الحركية و طاقة الوضع في هذه اللحظة. $E_c = \frac{1}{2}m.v^2 \\ *$: الطاقة الحركية للمجموعة . • $E_p = E_{pp} + E_{pe} \\ *$: $E_p = E_{pp} + E_{pe} \\ *$: طاقة الوضع المرنة. $E_p = E_{pp} + E_{pe} \\ *$: $E_p = E_{pp} + E_{pe} \\ *$: (G ($E_{pp} = 0$ نامار من (G ($E_{pp} = 0$ المستوى الأفقي المار من ($E_p = 0$ المستوى الأفقي هي : $E_p = 0$ عند التوازن و باعتبار ($E_p = 0$ عند التوازن ($E_p = 0$ عند التوازن ($E_p = $	طاقة الوضع المرنة لمجموعة $\{$ جسم صلب $-$ نابض $\}$ في وضع أفقي هي الطاقة التي تختزنها هذه المجموعة من جراء تشويه النابض $E_{P,e}=rac{1}{2}k.x^2+cte$ و باختيار طاقة الوضع المرنة منعدمة في الموضع الموافق منعدمة في الموضع $\{$ $\{$ $\}$ $\}$ $\}$ $\}$ $\}$ $\}$ $\}$ $\}$ $\}$ $\}$	في كل لحظة : $E_C = \frac{1}{2}m.v^2$. • كتلة المتذبذب . • عته في • اللحظة t . • اللحظة . t

E_{m} و E_{c} و مخططات الطاقة المقابل ، تغيرات مخططات الطاقة

L		<u> </u>	3
l	احتكاكات ضعيفة غير مهملة		احتكاكات مهمة
L	الحدادات صلعيفه عير مهمته	الطاقة بدلالة السرعة او الافصول	الطاقة بدلالة الزمن

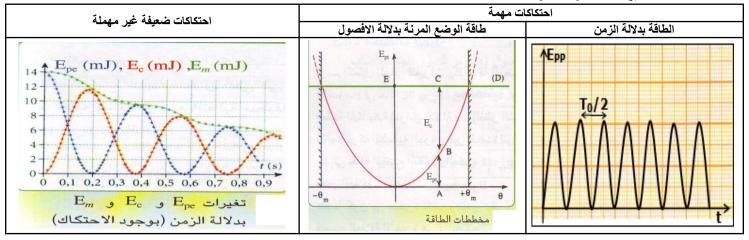
Www.AdrarPhysic.Com

- دراسة ذبذبات نواس لي: 1- المعادلة التفاضلية ·

7777	المعادلة التفاضلية	القانون الثاني لنيوتن.	تعبير العزم	القوى المطبقة على الجسم (S)	المجموعة المدروسة:
السلك العصيب حالة التوازب العصيب	$\ddot{\theta} + \frac{c}{J_{\Delta}} \cdot \theta = 0$	$\ddot{\theta} J_{\Delta} = M_{C} + (\overrightarrow{p} \mathbf{M}) (+ (\overrightarrow{R} \mathbf{M}))$ $\ddot{\theta} - C \cdot \theta = J_{\Delta}$	$0 = (\overrightarrow{R}\mathbf{M}($ $0 = (\overrightarrow{p}\mathbf{M}($ $M_{C} = -C. \theta$	تأثير المحور \overrightarrow{R} وزن القضيب مزدوجة اللي	القضيب

2- حل المعادلة التفاضلية:

			•	· · · · · · · · · · · · · · · · · · ·
T	θ	ρ	$(\frac{2\pi}{t}t+\varphi)$	حلها يكتب على شكل
0	m	7	T_0	$\theta(t) = \theta_m \cos(\frac{2\pi}{T} . t + \varphi)$
الدور الخاص ب s		الطور عند أصل التواريخ (t=0)		T_0
ş ÷ 0 >3	.(rad)÷	(rad)÷	.(rad)	


3-تعبير الدور الخاص:

تعيير التسارع	تعبير السرعة	و بير وو المعادلة الزمنية
$\ddot{\theta} = \frac{d^2}{dt^2} = - \int_{m} \left(\frac{2\pi}{T_0}\right)^2 \cos\cos\left(\frac{2\pi}{T_0}t + \varphi\right)$	$\dot{\theta} = \frac{d}{dt} = -\theta_m \cdot \frac{2\pi}{T_0} \cos \cos \left(\frac{2\pi}{T_0} t + \varphi\right)$	$\theta(t) = \theta_m \cos(\frac{2\pi}{T_0}.t + \varphi)$

$$T_0=2\pi.\sqrt{rac{J_\Delta}{C}}$$
 $T_0=2\pi.\sqrt{rac{J_\Delta}{C}}$ $T_0=2\pi.\sqrt{rac{J_\Delta}{T_0}}$ $T_0=2\pi.\sqrt{rac{J_\Delta}{T_0}}$

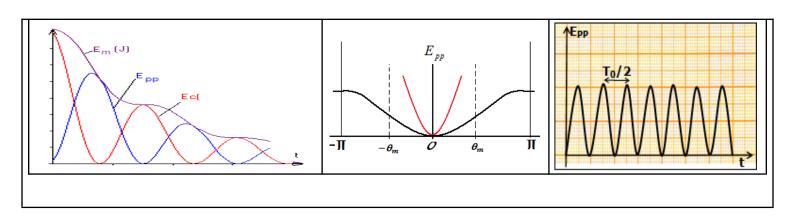
	 الدراسة الطاقية للمجموعة {قضيب 	
الطاقة الميكانيكية لمجموعة	طاقة الوضع للي:	الطاقة الحركية:
هي مجموع الطاقة الحركية و طاقة الوضع.	طاقة الوضع لللي لمجموعة (قضيب ـ سلك اللي) تختزنها هذه المجموعة من جراء تشويه سلك اللي ".	
$E_m = E_p + E_c$	$E_{P,t} = \frac{1}{2}C.\theta^2 + Cte$	$E_c = \frac{1}{2} J_{\Delta} . \dot{\theta}^2$
$E_m = \frac{1}{2}J_{\Delta}\dot{\theta}^2 + \frac{1}{2}C.\theta^2 + Cte$	ك و باختيار طاقة الوضع للي منعدمة في موضع التوازن المستقر	* عزم قصور القضيب: $^{J_{\Delta}}$
$L_m - \frac{1}{2} J_\Delta U + \frac{1}{2} C.U + Cle$	$E_{P,t} = \frac{1}{2} C.\theta^2$	السرعة الزاوية لدوران $\dot{ heta}$: المقضيب القضيب

 E_m و E_c مخططات الطاقة ، تغيرات مخططات الطاقة

النواس الوازن-Le pendule pesant

المجموعة القوى المطبقة : |- دراسة ذبذبات نواس الوازن: |- المعادلة التفاضلية : |- دراسة ذبذبات نواس الوازن: |- المعادلة التفاضلية |- المجموعة القوى المطبقة |- المعادلة التفاضلية |- المعادلة المعادلة المعادلة |- المعادلة التفاضلية |- المعادلة المعادلة |- ا

ľ	ز- حل المعادلة التفاضلية:				
	T_{0}	θ_m	φ	$(\frac{2\pi}{T_0}t+\varphi)$	حلها یکتب علی شکل $ heta(t) = heta_m \cos(rac{2\pi}{T}.t + arphi)$
	الدور الخاص ب s	الوسع amplitude	الطور عند أصل التواريخ (t=0)	طور الذبذبات عند التاريخ t ب	T_0


-تعبير الدور الخاص:			
تعبير التسارع	تعبير السرعة	المعادلة الزمنية	
$\ddot{\theta} = \frac{d^2}{dt^2} = - \int_{m} \left(\frac{2\pi}{T_0} \right)^2 \cos \cos \left(\frac{2\pi}{T_0} t + \varphi \right)$	$\dot{\theta} = \frac{d}{dt} = -\theta_m \cdot \frac{2\pi}{T_0} \cos \cos \left(\frac{2\pi}{T_0} t + \varphi\right)$	$\theta(t) = \theta_m \cos(\frac{2\pi}{T_0}.t + \varphi)$	

$$T_0=2\pi.\,\sqrt{rac{J_\Delta}{m.g.0G}}$$
 الدينا $T_0=2\pi.\,\sqrt{rac{J_\Delta}{m.g.0G}}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ $=-rac{m.g.0G}{J_\Delta}$ من المعادلة النفاضلية لدينا $=-rac{m.g.0G}{J_\Delta}$

|- الدراسة الطاقية للمجموعة (الجسم) طاقة الوضع الثقالية الطاقة الميكانيكية لمجموعة $E_{pp}=m.g.z+Cte$ طاقة الوضع الثقالية : * : كتلة النواس الوازن . * : شدة مجال الثقالة . * : أنسوب مركز قصوره ، على محور رأسي موجه نحو الأعلى . * $E_c = \frac{1}{2} J_{\Delta} . \dot{\theta}^2$ هي مجموع الطاقة الحركية و طاقة الوضع. Cte : ثابتة تتعلق بالحالة المرجعية. $E_m = E_p + E_c$ $E_{pp} = m.g.d(1 - \cos\theta)$ * عزم قصور الجسم. $E_m = \frac{1}{2} J_{\Delta} \cdot \dot{\theta}^2 + m.g.d(1 - \cos \theta)$ $\cos\theta \approx 1 - \frac{\theta^2}{2}$ وصغيرة θ السرعة الزاوية لدوران $\dot{\theta}$: القضيب و باختيار مرجع طاقة الوضع الثقالية موضع التوازن المستقر نكتب: $E_{pp} = m.g.d(1 - \cos\theta) = \frac{1}{2}m.g.d.\theta^2$

E_{m} هخططات الطاقة ، تغيرات $^{}$ و مخططات الطاقة ، م

Ι.			<u> </u>	<u> </u>	
П	احتكاكات ضعيفة غير مهملة	احتكاكات مهمة			
Ш		طاقة الوضع الثقالية بدلالة الافصول			الطاقة بدلالة الزمن

