How OthelloGPT computes if a cell is
mine or yours: a case study

In this note, I'll look into how OthelloGPT computes if non-blank cells are “mine” or “theirs” via a
case study.

I'll start by looking at how it does this for a specific cell at a specific move in a specific game,
then pull on the thread and see where it leads.

Ultimately, I'll argue that OthelloGPT implements a “mini-circuit” “If A4 is played AND B4 is not
blank AND C4 is not blank, update B4+C4+D4 towards “theirs in the world-model” across
all games, explaining the mechanism by which it implements the logic.

From this example, it's natural to hypothesize that OthelloGPT computes its world-model by
aggregating the contributions of many qualitatively similar mini-circuits. However, I'll leave
verification of this broader claim for future work.

C4 at move 5 in game 0 suggests a simple circuit

Since Transformers process information serially across model layers, | decided to start by
finding a cell/move/game where OthelloGPT “changes its mind” about whether the cell is “mine’
or “theirs” over the course of different layers.

Move index 5 in game 0 is the earliest move in game 0 where the model (almost) does this. At
move 5, the model goes from being confused about tile C4 in layer 0 - assigning ~equal

probabilities to whether it's “mine” or “theirs” - to being able to correctly tell it's “theirs” at layer 1.

Example probe outputs at resid_post_0 after move 5

P(Empty) P(Their's) P(Mine)

o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Example probe outputs at resid_post_1 after move 5

P(Empty) P(Their's) P(Mine)

F FO FL F2 F3 F4 | F5 | F6 F7

G GO Gl G2 G3 G4 G5 G6 G7

H HO Hl H2 H3 H4 H5 H6 H7

Can we understand the circuit in layers 0+1 that caused the model to “change its mind?”

To study this, I'll follow the same strategy that | used to trace back how the model
computes if a cell is blank or not blank in earlier work. (It might be useful to read that note
before this one.)

First of all, which component(s) of resid_post_1 makes a big negative contribution to the “C4 is
mine” direction? In layer one, the components resid_pre_1, attn_out 1, milp_out 1 project as
-0.0653, 0.1932, -0.7668 in this direction '. So let’s focus on mlp_out 1.

Looking at per-neuron contributions from milp_out 1, there seem to be especially large negative
contributions to the “C4 is mine” direction from a handful of individual neurons.

Projection of mlp 1 activations in the 'C4 is mine' direction at move 5 in game 0

Activation

0 500 1000 1500 2000

Neuron number

" Here and throughout this file, all numbers given are w.r.t. projection in the linear probe direction
“‘my_probe_normalized” found by Neel Nanda for OthelloGPT (see code for details). However, only the
ratios of such numbers and not their magnitudes are relevant for the story told throughout this note.

https://docs.google.com/document/d/1_q-R1eOL8jLSykJr_TUixabnzzyoETtxdr2yxDPARWE/edit#heading=h.2o11re6esj8a

Let’s dig into the first of these, L1N421.
Since W_in, W_out for a fixed neuron are vectors of length 512, we can directly project them in

the various probe directions. For L1N421, the projection of ingoing/outgoing weights in per-cell
“this cell is mine” directions are

In and out weights * 'my_probe' direction for neuron L1N421

My In My out
A
0.2
B
c 0.1
)
> 0
E
F -0.1
G
-0.2
H
0 2 4 6 0 2 4 6
X X

The RHS tells us that *if* L1N421 activates, it writes to the residual stream that squares
B4/C4/D4 are not mine (as indeed is the case in this example). So a big activation from it could in
part explain the model “changing its mind” about C4 being mine -> theirs in our example.

What caused L1N421 to activate at move 5 in game 0? Continuing to trace back,

- In earlier parts of layer 1, the layernormed projections of resid_pre 1 and attn 1 in the
W_in[layer 1, move 5, 421] direction are (3.622, -0.081) resp.

- Splitting resid_pre 1 into components, the direction gets similar contributions (0.998,
1.504, 1.121) from resid_pre 0, attn 0, and mlp O respectively.

- Splitting the mlp 0 contribution into per-neuron contributions in this direction, they’re
dominated by the firing of a single neuron, LON260:

Projection of per-neuron mlp 0 components in the mlp_pre(1)[:,421] direction at move 5 in game 0

0.6
L]

0.5

0.3

0.2

Acti

L]
“0.1 .

https://kran.ai/othelloscope/L1/N421/index.html

LON260 is the “A4 is not blank” neuron that | found in my blank vs. not blank note. | also
checked that the projection of resid_pre 0 in this direction spikes when ‘A4’ is played. 2

So in this example, resid_pre 0 and mlp 0 contribute to the firing of L1N421, hence the
model’s change of mind from “C4 is mine” to “C4 is yours” between layers 0 -> 1, via a
simple rule: “if A4 was just played, update things in the column below to ‘theirs’.”

This rule accounts for 20-25% of why OthelloGPT ‘changed its mind’ between layers 0
and 1 about who owns tile C4 at move 5 of game 0. 3

Refining the conjecture

Having found that in game 0, neuron L1N421 mediates a rule to upweight B4-C4-D4 towards
“theirs” when it gets a signal from layer 0 that A4 was just played, we’d like to understand if this
‘mini-circuit’ is robustly present in other games.

A modified conjecture from situations where the rule is wrong

Notably, in the ground-truth game of Othello, it need not be the case that playing A4 causes the
column of tiles below it to flip to “theirs”. Playing A4 could instead cause tiles to flip along row A
or one of two diagonals, leaving tiles in column 4 as either ‘blank’ or ‘mine’.

I's natural to ask what happens to the conjectured ‘mini-circuit’ in these situations. Does
L1N421 still (mis)fire, updating B4-C4-D4 towards ‘theirs’ (presumably to be corrected in later

layers)? Or does OthelloGPT somehow know to suppress L1N421 in these situations?

It turns out that the former happens if B4/C4 should be ‘mine’ and the latter if B4/C4 should be
‘blank’.

As a first step, let’s go through the focus games and pick out the ones where at least one of B4
or C4 does not flip to “theirs” when A4 is played.

There are 13/50 such games. In 6 of them, at least one of B4 or C4 is blank:

2 The attn 0 contribution to firing of L1N421 seems ~equal across the heads, and | didn't try to interpret it.
I'll give an example of a circuit involving an attention head below.

% In the sense taht L1N421 contributes to about 37% of the change of mind, and about 60% of its
activation can be attributed to A4 being played via resid_pre 0 and the associated firing of LON260 in mlp
0. (Besides L1N421, another 30% of the direct contribution to the ‘change of mind’ from mlp 1 come from
the firing of the next two neurons L1N1845 and L1N865 resp, both of which also fire sparsely and nudge
multiple tiles in the column below A4 towards being ‘theirs’.)

https://docs.google.com/document/d/1_q-R1eOL8jLSykJr_TUixabnzzyoETtxdr2yxDPARWE/edit#heading=h.2o11re6esj8a
https://kran.ai/othelloscope/L1/N1845/index.html
https://kran.ai/othelloscope/L1/N865/index.html

- Game index 3, move index 50; B4 is blank
- Game index 11, move index 28; B4 is blank
- Game index 15, move index 41; B4 is blank
- Game index 33, move index 25; B4 is blank
- Game index 36, move index 28; C4 is blank
- Game index 41, move index 36. B4 is blank

and in another 7 at least one of B4 or C4 is ‘mine’ instead of ‘theirs’:

- Game index 4, move index 35; C4 is mine
- Game index 12, move index 50; C4 is mine
- Game index 23, move index 25; B4 and C4 are mine
- Game index 26, move index 11; B4 and C4 are mine
- Game index 32, move index 54; C4 is mine
- Game index 39, move index 57; C4 is mine
- Game index 47, move index 40; C4 is mine.

On the other hand, from the Othelloscope page for L1N421, we see that it almost always
activates when A4 is played, with six exceptions: precisely the six in the top list.

This leads us to make the modified conjecture that

OthelloGPT has a mini-circuit “A4 is played AND B4 is not blank AND C4 is not blank ->
update weights of B4+C4+D4 towards “theirs”,

mediated via the firing or not of neuron L1N421, which appears to follow this rule across all
focus games. *°

How the model mechanistically checks that B4 is not blank

4 By eyeballing the Othelloscope page of L1N421 in this case, we get the same info as a spectrum plot,
since the rule that we think it implements can be read off directly from the input string. Neurons in later
layers may mediate logical rules involving learned features where this won’t be the case.

® This circuit mistakenly fires, directionally nudging the model’s representation of cells B4/C4/D4 the
wrong way, when B4 and C4 are not blank but should be “mine” instead of “theirs”. In the 7 games where
this happens, the model takes longer to settle on the ‘correct’ state for B4/C4. Namely,
- Game index 4, move index 35; C4 is mine C4 is ‘theirs’in L1, confused in L2 and ‘mine’ in L3
- Game index 12, move index 50; C4 is mine C4 is ‘theirs’in L2, confused in L3, ‘mine’ in L4
- Game index 23, move index 25; B4 and C4 are mine B4 is ‘theirs’in L2, confused in L3, ‘mine’in L4
C4 is ‘theirs’ in L2, confused in L3, ‘mine’in L4
- Game index 26, move index 11; B4 and C4 are mine B4 is ‘theirs’ in LO, confused in L1,L2, ‘mine’in L3
C4 is confused in LO-L2, ‘mine’ in L3

- Game index 32, move index 54; C4 is mine C4 is confused in LO-L2, ‘mine’ in L3
- Game index 39, move index 57; C4 is mine C4 is ‘theirs’in LO, confused in L1,L2, ‘mine’in L3
- Game index 47, move index 40; C4 is mine. C4 is confused in LO, ‘mine’in L1.

where | label a square as theirs/mine if P(theirs/mine) > 0.8, else confused.

https://kran.ai/othelloscope/L1/N421/index.html

We can go further and mechanistically understand how the model implements the logic “B4 is
not blank — Don't fire L1IN421 — Don’t nudge the weights of B4+C4+D4 towards ‘theirs”.

To do this, let’s look at how the model does it for an example then generalize to other games.
Example: move index 28 in game 11

In game 11, move 28, where B4 is blank when A4 is played, L1N421 doesn’t fire when A4 is
played. We’d like to understand why not.

To see why, let's compare the inputs to mip_pre(1)[:,421] in game 11 at move 28 with the inputs
to mlp_pre(1)[:421] for game 0 that we found on page 3.

In game 11, the contributions to mlp_pre(1)[:,421] from resid_pre(1) and attn(1) are fairly small:
(0.785, -0.305) resp, whereas the contribution from resid_pre(1) in game 0 was large. This
suggests that something changes in resid_pre(1) depending on if B4 is played before A4 or not.

The contributions from resid_pre(1) can in turn be broken down into (1.16, 0.20, -0.58) from
resid_pre(0), attn_out(0), mip_out(0) resp. The direct contribution of resid_pre(0) is actually
similar in magnitude and kind in games 11 and 0,

Contribution to mlp_pre(1)[:,421] from direct embedding in game 11

Contribution from resid_pre
1.5

1 [RRLEEE)) trace O

0.5
[

-0.5
0 10 20 30 40 50

but something different seems to be going on at mip(0).

Looking at per-neuron components, the difference between these two games is clear. Compare
the following plot for game 11 to the same for game 1 at the bottom of page 3:

Projection of per-neuron mlp 0 components in the mlp_pre(1)[:,421] direction at move 28 in game 11

0.4 °

0.2

-0.2

Activation

-0.4

-0.6

-0.8

0 500 1000 1500 2000

Neuron number

While L1N421 is incentivised to fire by the firing of the A4 “move detector” neuron LON260 in
both cases, it gets an even larger negative signal from a different neuron, LON377, in game 11.

Looking at the Othelloscope page for LON377, it fires in precisely the five focus games 3, 11, 15,
33, 41 where A4 appears before B4. So we conjecture that LON377 is responsible for telling
L1N421 not to fire and turning off our mini-circuit if B4 is blank.

Which inputs to LON377 cause it to behave differently depending whether A4 appears before
B47? The natural guess is that it's attn 0 and not resid_pre 0, since this requires us to pass
information from earlier sequence positions to the move where A4 is played. And indeed,
comparing inputs to LON377 in games 0 and 11,

Contribution to mlp_pre(0)[:,377] from earlier parts of layer 0 in game 11

Contribution from resid_pre

ZW/\/\/\/\/\/\/\W
0
-2

0 10 20 30 40 50

Contribution from the attention layer

Contribution to mlp_pre(0)[:,377] from earlier parts of layer 0 in game 0

Contribution from resid_pre

0 10 20 30 40 50

Contribution from the attention layer

we see that in both cases, the projection of resid_pre 0 in the W_in(0)[:,377] direction is
qualitatively the same, while the projection of attn 0 in this direction is different.
Understanding how LON377 “knows” if B4 appears before A4 in the input string

To finish this section, we’ll give a mechanistic account of how LON377 ‘knows’ to fire iff B4 does
not appear before A4 in the input string.

https://kran.ai/othelloscope/L0/N377/index.html

Per-head contribution

Let’'s see how the per-head contributions in attn 0 to mlp_pre(0)[:,377] change depending on
whether ‘B4’ appeared earlier in the input string.

Here I've plotted the per-head contributions to mlp_pre(0)[:,377] at whichever position ‘A4’
appears across all 50 focus games. Games 3, 11, 15, 33, 41 are the ones where ‘B4’ appears

after ‘A4’ in the input string.

Per-head contributions to mlp_pre(0)[:,377] from attention layer 0 at the sequence position where "A4" appears

Head number

22 24 26 28 30 32 34 36 38 40 42 44 46 48

Game number

Heads 0.1, 0.4, 0.5 seem responsible for keeping track of this across all focus games.

We'd like to verify that heads 0.1, 0.4, 0.5 are passing information specifically about ‘B4’ to the
position where ‘A4’ is played. To see this, we expand the per-head contribution in the index k.
Recall that attn_out is a product of contributions from attn_v and attn_pattern, summed over an
internal index k that runs over the sequence positions. ©

Below | plot the per-k contribution for head 0.4 (where | checked manually that the plots for
heads 0.1, 0.5 look qualitatively the same):

& More precisely, the thing that we plotted above for head 4 was attn_pattern[head_idx = (1,4,5), seq_q =
where ‘A4’ appears, seq_k] @ attn_v[seq_k, head_idx = (1,4,5), d_head] @ w_O[head_idx = (1,4,5)] @
W _in[0,: 377]. We can plot the red and blue parts separately, as we did in the blank vs. not blank file. If
we did this here, we would see that the attention patterns (blue part) are actually relatively constant for
these heads, so their role in life is to pass in large signals from the value part (red part), which spikes
negatively when the B4 token appears.

Head 4 contribution to mip_pre(0)[:,377] from attention layer O at the seq_q position where "A4" appears, expanded in seq_k

0
40
-0.2
-0.4
20,
-0.6
10
-0.8
0
0 10 20 30 40

Game number

seq_k

Comparing the above plot to a plot of the sequence position where token B4 is played (marked
below in purple if before A4, in yellow if after A4),

Position where token B4 is played (in purple if before A4, in yellow if after A4)

seq_pos

Game number

we see that these heads’ projections in the W_in[0,: 377] direction are large and negative
exactly when B4 is played, in games where B4 is played before A4.

(There’s presumably a similar mechanistic explanation in layers 0+1 for why L1N421 gets
suppressed when C4 is blank, but | haven't tried to find it.)

Summary
To recapitulate,
e We found evidence that OthelloGPT contains a ‘mini-circuit’ in layers 0+1 which says

“A4 is played AND B4 is not blank AND C4 is not blank — update internal representation
of B4+C4+D4 towards being “theirs”.”

e Mechanistically, we found that
o The update on B4+C4+D4 comes from the firing of neuron L1N421.

o The logic “B4 is not blank” is mediated by an earlier neuron LON377, which fires
to inhibit L1N421 iff the token for B4 does not appear before the one for A4 in the
input string.

o The information about whether B4 appears before A4 in the input string is passed
to LON377 through attention heads 0.1, 0.4, 0.5, which send a large negative
signal from the key position where B4 is played to inhibit LON377 iff B4 appears
before A4 so is visible to the attention head.

e This circuit “explains” 20-25% of why OthelloGPT “changes its mind” about whether C4
is blank at move 5 in game 0 between layers 0 and 1. We conjecture that it's one of very
many heuristic rules by which OthelloGPT aggregately learns the board state.

	How OthelloGPT computes if a cell is mine or yours: a case study
	C4 at move 5 in game 0 suggests a simple circuit
	Refining the conjecture
	A modified conjecture from situations where the rule is wrong
	How the model mechanistically checks that B4 is not blank

	Summary

