
HTTP Archive metrics research

Features worth looking at:
#standardSQL
SELECT DISTINCT feature, pct_urls
FROM `httparchive.blink_features.usage`
WHERE yyyymmdd >= '20190601'
 AND pct_urls > 1/100 AND pct_urls < 99/100
ORDER BY pct_urls DESC

https://gist.github.com/foolip/cffdec7a236bf3c21406bef13383456f creates a table for each
feature, which can then be queried all together:

#standardSQL
SELECT
 _TABLE_SUFFIX AS feature,
 TRUE AS used,
 COUNT(*) AS pages,
 APPROX_QUANTILES(fcp, 100)[OFFSET(10)] / 1000 AS q10,
 APPROX_QUANTILES(fcp, 100)[OFFSET(50)] / 1000 AS q50,
 APPROX_QUANTILES(fcp, 100)[OFFSET(90)] / 1000 AS q90
FROM `blink-httparchive-research.foolip.pages_mobile_feature_*`
WHERE used IS NOT NULL
GROUP BY feature

UNION ALL

SELECT
 _TABLE_SUFFIX AS feature,
 FALSE AS used,
 COUNT(*) AS pages,
 APPROX_QUANTILES(fcp, 100)[OFFSET(10)] / 1000 AS q10,
 APPROX_QUANTILES(fcp, 100)[OFFSET(50)] / 1000 AS q50,
 APPROX_QUANTILES(fcp, 100)[OFFSET(90)] / 1000 AS q90
FROM `blink-httparchive-research.foolip.pages_mobile_feature_*`
WHERE used IS NULL
GROUP BY feature

ORDER BY feature ASC, used DESC

https://gist.github.com/foolip/cffdec7a236bf3c21406bef13383456f

Saved as
`blink-httparchive-research.foolip.pages_mobile_fcp_by_feature_use`.

Observations from sorting that table by high/low 10th, 50th and 90th percentile:

SELECT *
FROM
`blink-httparchive-research.foolip.pages_mobile_fcp_by_feature_use`
WHERE pages > 5140970 * 0.01 AND pages < 5140970 * 0.99
ORDER BY q90 DESC

●​ Percentiles for all pages are 3.5s, 6.1s and 10.6s
●​ Sync XHR is associated with higher FCP, especially in 90th percentile. However, it’s only

used on ~2% of sites, compared to ~5% of page views.
●​ DocumentUnloadFired is hit more than sync XHR and gets almost as bad FCP. Looks

like normally this is hit after FCP, but it’s still unclear why it fires more often pages with
bad FCP.

●​ CSSSelectorWebkitMediaControls leads to higher FCP. It looks like this is because it’s
used in a common WordPress style sheet, and most likely WordPress sites have a
higher FCP than average. (How to confirm?)

●​ TransformUsesBoxSizeOnSVG leads to higher FCP and is widely used. But why?
normalize.css appears in some pages, does that make things slower?

●​ A bunch of use counters are hit on almost all pages and aren’t interesting
○​ Not using those very common features is associated with lower FCP, this is

probably explained by small sites just using less features, avoiding <form> isn’t
itself a plausible explanation.

●​ Using LinkRelPreload is associated with marginally lower FCP

	HTTP Archive metrics research

