G.SRT.4

Prove and apply theorems about triangles. Theorems include but are not restricted to the following: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

G.SRT.4 OH.2024.Q4

Triangle ABC and triangle DBE are shown. \overline{DE} is parallel to \overline{AC} .

Marsha wants to prove that the side lengths of triangle DBE are proportional to those of triangle ABC.

An incomplete proof is given.

Statements	Reasons	
1. DE∥ AC	Given	
2. ∠ BAC ≅ ∠ BDE	Corresponding angles of parallel lines are congruent.	
3. ∠ BCA ≅ ∠ BED	Corresponding angles of parallel lines are congruent.	

Which statement and reason would be the **best** next step in the proof?

- \triangle AD = DB because D is the midpoint of \overline{AB} .
- Triangle ABC is similar to triangle DBE by AA.
- © Triangle ABC is similar to triangle DBE by ASA.
- ① $\frac{AB}{DB} = \frac{BC}{BE}$ because corresponding sides of similar triangles are in proportion.

G.SRT.4 OH.2021.Q22

A triangle JLM and line segment KN are given.

A proof of $\frac{JK}{JL} = \frac{JN}{JM}$ is shown.

Statements	Reasons	
△ JLM	Given	
?	Given	
∠JNK = ∠JML ∠JKN = ∠JLM	Corresponding angles are congruent.	
△ JKN = △ JLM	Angle-angle similar triangle postulate	
$\frac{JK}{JL} = \frac{JN}{JM}$	Corresponding parts of similar triangles are proportional.	

Which statement must be added to the given to keep this proof valid?

- JE ⊥ EM
- ® KN ⊥ LM
- © JE || EM
- KN □ LM

G.SRT.4 OH.2018.Q4

Mark is proving the Pythagorean Theorem. He draws right triangle JKL with altitude $\overline{\rm JM}$. First he proves $\Delta \rm JKL \sim \Delta MKJ$ and $\Delta \rm JKL \sim \Delta MJL$ using the Angle-Angle criterion. The rest of his proof is shown with some steps missing.

Statements	Reasons	
 ∆JKL~∆MKJ and ∆JKL~∆MJL 	Angle-Angle criterion	
2. $\frac{JK}{LK} = \frac{MK}{JK}$ and $\frac{U}{LK} = \frac{ML}{U}$	Corresponding sides of similar triangles are proportional	
 (JK)² = LK • MK and (LJ)² = LK • ML 	3. Multiplication property of equality	
4.	4.	
5.	5.	
6. MK + ML = LK	6. Segment addition postulate	
7. $(JK)^2 + (LJ)^2 = (LK)^2$	7. Substitution	

Which two steps are missing from the proof?

G.SRT.4 OH.2017.Q37

James correctly proves the similarity of triangles DAC and DBA as shown.

His incomplete proof is shown.

	Statements		Reasons	
1.	$m \angle CAB = m \angle ADB = 90^{\circ}$	1.	Given	
2.	$m \angle ADB + m \angle ADC = 180^{\circ}$	2.	Angles in a linear pair are supplementary.	
3.	90° + m∠ADC = 180°	3.	Substitution	
4.	m∠ADC = 90°	4.	Subtraction property of equality	
5.	∠CAB ≅∠ADB ∠CAB ≅∠ADC	5.	Definition of congruent angles	
6.	∠ABC ≅∠DBA ∠DCA ≅∠ACB	6.	Reflexive property of congruence	
7.	\triangle ABC \sim \triangle DBA \triangle ABC \sim \triangle DAC	7.	?	
8.	\triangle DBA \sim \triangle DAC	8.	Substitution	

What is the missing reason for the seventh statement?

- CPCTC
- AA postulate
- C All right triangles are similar.
- Transitive property of similarity

G.SRT.4 OH.PT.Q21

Triangle PQR is shown, where ST is parallel to RQ.

Marta wants to prove that $\frac{SR}{PS} = \frac{TQ}{PT}$.

Place a statement or reason in each blank box to complete Marta's proof.

Statements Reasons		
 ST ■ RQ 	1. Given	
2. ∠PST ≅ ∠R and ∠PTS ≅ ∠Q	If two parallel lines are cut by a transversal, then corresponding angles are congruent.	
 △PQR ~ △PTS 	3.	
4.	4.	
 PR = PS + SR, PQ = PT + TQ 	Segment addition postulate	
$6. \frac{PS + SR}{PS} = \frac{PT + TQ}{PT}$	6. Substitution	
7. $\frac{PS}{PS} + \frac{SR}{PS} = \frac{PT}{PT} + \frac{TO}{PT}$	7. Commutative property of addition	
8. $\frac{SR}{PS} = \frac{TQ}{PT}$	Subtraction property of equality	

$\frac{PR}{PS} = \frac{PQ}{PT}$	$\frac{PS}{SR} = \frac{PT}{ST}$	∠P ≅ ∠P
AA Similarity ASA Similarity		SSS Similarity
Reflexive property	Segment addition postulate	Corresponding sides of similar triangles are proportional.
Corresponding sides of similar triangles are congruent.	If two parallel lines are cut by a transversal, then alternate interior angles are congruent.	If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.