
Captured Surface Switching - Working
Doc

Abstract

This document is a working document to develop an API for captured surface switching and
complements the discussion on the github issue thread:
https://github.com/w3c/mediacapture-screen-share-extensions/issues/4

The intention is to provide a place to list terms, proposals and topics of discussions in a more
structured way.

Status of This Document

This document is not complete. It is subject to major changes and, while early experimentations
are encouraged, it is therefore not intended for implementation.

This document was published by the Web Real-Time Communications Working Group as a
working document for collaboration on designing the API for captured surface switching.

As a working document, it does not imply endorsement by W3C and its Members.

This document may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the
group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose
the information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 03 November 2023 W3C Process Document.

Scope
In the first step, we would like to solve the following:

1.​ Cross-type surface-switching
2.​ Add audio-sharing after the fact
3.​ Frame delivery is clearly separated for the captured surfaces before and after the switch.

https://github.com/w3c/mediacapture-screen-share-extensions/issues/4
https://www.w3.org/groups/wg/webrtc
https://www.w3.org/policies/patent-policy/
https://www.w3.org/groups/wg/webrtc/ipr
https://www.w3.org/policies/patent-policy/#def-essential
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/process/20231103/

4.​ Cross-class surface-switching. Solve the polymorphism either by getting rid of it
(specifically: BrowserCaptureMediaStreamTrack), or by surfacing tracks with the full
capabilities of the current source

Definition of Terms

Surface Track
A surface track is a MediaStreamTrack whose source is a single captured surface.

Session Track
A session track is a MediaStreamTrack that spans a capture session from the time it is created,
capturing media from any surface selected by the user during the session from that point on.

Hybrid Track
A hybrid track is a MediaStreamTrack that spans a capture session from the time it is created,
capturing media from any surface selected by the user during the session from that point on,
while maintaining feature parity with a surface track of the first source. Similar to a session track
except not a feature-limited abstraction. Also similar to a surface track for the source at time of
creation.. An alternative to the session/surface split.

Basic Models

Injection model
In the injection model, existing tracks are automatically updated to share the new captured
surface selected by the user. Applications do not need to do anything for this to work.

This is what is used in the existing tab-switching functionality in Chrome and the
window/screen-switching introduced in MacOS 14.

Switch-track model
To use the switch-track model, an application need to specify an opt-in, and add an
event-listener:

getDisplayMedia({mode: "switch-track", …})

controller.onsourceswitch = event => {

 video.srcObject = event.stream;

};

When the user switches to a new surface:

1.​ Tracks capturing the old surface are ended.
2.​ An event is posted to the application with a new MediaStream containing

MediaStreamTracks for the new surface.

Since old tracks end and new tracks are created for each switched surface, these tracks are by
definition surface tracks.

Extensions to the Injection Model
The existing injection model as used for, e.g., tab-switching in Chrome has limitations when it
comes to cross-type-switching, late addition of audio and keeping frames clearly separated
between different captured surfaces.

This section presents a series of extensions to the model to mitigate these limitations.

Surface-switching events
Some applications need to react to surface switches. To that end, applications can listen to
surface-switching events on the CaptureHandler:

controller.onsurfaceswitch = event => {

 // React to the surface switch

};

This event is fired after the properties have been updated to reflect the new captured surface for
all tracks associated with the capture.

Cross-type surface switching
Some applications adapt their behavior to what type of surface they share. In the case of
existing applications they typically check the type of the track returned from getDisplayMedia
and then expect the type to remain constant throughout the capture. For backward compatibility
with such applications, an opt-in should be specified to enable cross-type surface switching:

getDisplayMedia({allowCrossTypeSurfaceSwitching: “include”});

Initially, the default value for this option will need to be “exclude”, but hopefully, the default value
can be changed to “include” at some point in the future.

JavaScript

JavaScript

Auto pause
Auto-pause is an extension to the injection model intended to avoid transmitting frames during
the surface-switching transition period.

With auto-pause, frame-delivery is stopped before the surface switching occurs. After the
surface-switch, applications are allowed time to set up the capture before frame-delivery is
resumed.

Shape #1: Opt-in, events and enabled-false
This proposal consists of three parts.

1. Extend getDisplayMedia()’s input to allow opt-in

// ...getDisplayMedia({..., autoPause: true, ...});
partial dictionary DisplayMediaStreamOptions {
 boolean autoPause = false;
};

2. Define events that are fired when a switch happens

These events fire independently of DisplayMediaStreamOptions.autoPause’s value.

// controller.addEventHandler('surfaceswitch', ...);
partial interface CaptureController {
 EventHandler onsurfaceswitch;
};

3. Specify that auto-paused tracks get their enabled-field set to false.

Whenever the user interacts with the operating system and/or the user agent in a manner indicating
their intention to change the captured surface, the user agent MUST perform the following steps:

1.​ Stop emitting frames on the old tracks.

https://www.w3.org/TR/screen-capture/#dom-displaymediastreamoptions

2.​ Queue a task to:
1.​ If autoPause is true, then for each track in CaptureController.[[AssociatedTracks]], set

track.enabled to false. (This newly introduced internal slot, AssociatedTracks, contains
all tracks returned by gDM and their clones.)

2.​ Change the sources for the video track and potentially the audio track.
3.​ Fire an Event on named "surfaceswitch" at this.

Shape #2

A possible API shape for this is that applications can add a handler CaptureController:

controller.postSurfaceSwitchingHandler = async () => {

 // Perform setup, then resolve the returned promise.

};

When the promise returned from the handler is resolved, frame-delivery is resumed.

If no handler has been set on the CaptureController, frame-delivery is resumed immediately.

Late audio
With the late-audio extension, a user agent is allowed to add audio to an ongoing capture after
the capture has started. To do this, the user agent includes a muted audio track if the application
requests audio and the user does not share audio, and if the user at a later time enables
audio-sharing, the audio track is unmuted.

This behavior is already allowed according to the screen-capture spec [link]:

If the user agent knows no audio will be shared for the lifetime of the stream it MUST
NOT include an audio track in the resulting stream.

This means: If a user agent provides an option to enable audio sharing after the capture has
started, it does not know that no audio will be shared for the lifetime of the stream, and it then
MAY include an audio track in the resulting stream.

However, for backward compatibility with applications that use the presence of an audio-track to
determine if a user shared audio or not, a hint should be added to enable this behavior:

getDisplayMedia({allowLateAudio: “include”});

https://www.w3.org/TR/screen-capture/#dom-capturecontroller
https://www.w3.org/TR/mediacapture-streams/#dom-mediastreamtrack-enabled
https://dom.spec.whatwg.org/#event
https://webidl.spec.whatwg.org/#this
https://www.w3.org/TR/screen-capture/#:~:text=options%20%3D%20%7B%7D)%3B%0A%7D%3B-,getDisplayMedia,-Prompts%20the%20user

Initially, the default value for this option should be “exclude”, but hopefully, the default value can
be changed to “include” at some point in the future.

Hybrid Models

Multi-track model
The multi-track model combines the injection model and a modified switch-track model. The
goal is to make both modes of operations available in parallel, while keeping things simple for
applications that only need to use one of them.

With this model, getDisplayMedia returns a session track that works similarly to the injection
model:

video.srcObject = await getDisplayMedia({...}); // session track

Applications that want to use the add-track model, can subscribe to an onnewsource event:

controller.onnewsource = event => {

 video.srcObject = event.stream; // surface tracks

};

await getDisplayMedia({controller, ...});

It is also possible to receive both these tracks in parallel:

controller.onnewsource = event => {

 video1.srcObject = event.stream; // surface tracks

};

video2.srcObject = await getDisplayMedia({controller, ...}); // session track

Note that, unlike onsourceswitch events, the onnewsource event is sent for every captured
surface, including the first one. The reason for this is that getDisplayMedia needs to return the
session-track used for the injection-model-like mode of operation.

The relationship between the session track and the surface tracks is discussed in the variants
below

Multi-track model with a mixing-track
In the mixing-track variant, the session-track is a proxy-track for the underlying surface-tracks
and just relays the media from them. Operations performed on a session track are delegated to
the underlying surface track and changes to the surface tracks are exposed through the session
track.

When the user switches to a new captured surface, the session track is switched over from the
old tracks to the tracks for the new surface.

Polyfill sketch
The mixing-track can be polyfilled on top of the add-track model, at least for video tracks (using
VideoTrackGenerator).

Sketch for illustrative purposes using nonstandard language:

//TODO: Replace MediaStreamTrackGenerator with VideoTrackGenerator

sessionTrack = new MediaStreamTrackGenerator("video");

controller.onnewsource = event => {

 processor = new MediaStreamTrackProcessor(e.stream.getVideoTracks()[0]);

 //TODO: release locks before second call to pipeTo

 processor.readable.pipeTo(sessionTrack.writable);

};

await getDisplayMedia({controller, ...});

Multi-track model with independent tracks
With independent tracks, the session track and surface tracks act as clones of each other.

To avoid burdening applications with stopping tracks that they don’t need, the track types
requested need to be specified in a parameter, e.g.,

controller.onnewsource = ({stream}) => {

 video.srcObject = stream;

};

await getDisplayMedia({controller, trackTypes: [“surface”], ...});

The trackTypes parameter can also work as an opt-in so it is still sufficient with one parameter to
enable this model.

Late decision model
The late-decision model leaves the decision of injection up to the application at the time of the
switch. The goal is to remain flexible to downstream needs and allow for an optimal decision
based on the most recent information. No opt-in is required.

With this model, getDisplayMedia returns a hybrid track that supports the injection model (no
event is fired at this time):

video.srcObject = await getDisplayMedia({controller, ...}); // contains

hybrid tracks

The application can register for events to learn of the user switching source (without committing
to intervening):

controller.onsourceswitch = event => {

 if (!toInjectOrNot(video.srcObject, event.stream)) {

 video.srcObject.getTracks().forEach(track => track.stop());

 video1.srcObject = event.stream.clone(); // contains new hybrid tracks

 }​
};

The UA stops the event tracks synchronously behind the event handlers who need to clone
them if they wish to use them, for a clean handoff. The UA also holds back new content frames
from injection tracks until that point.
​
The app can make a different decision on whether to inject or not each time the user switches
source.​
​
The user agent is responsible for updating the properties of the track to match its new source,
including making sure any no-longer-supported methods (e.g. cropTo()) fail with
InvalidStateError.

Topics for discussion
This section is intended for topics that apply to multiple different models so that they can be
discussed in one place.

Events vs Callbacks
TBD

Preventing content bleed during switch
TBD

Use Cases

1. Presenting the Capture in a Video Element
This example is intended to capture the simple case of a capture-agnostic application that just
wants to present the video part of the capture.

1a. Injection Model
video.srcObject = await getDisplayMedia();

1b. Switch-track Model
getDisplayMedia({controller, mode: "switch-track", …})

controller.onsourceswitch = event => {

 video.srcObject = event.stream; // flickers from HTMLVideoElement’s load

algorithm

};

1c. Multi-track model with a mixing-track
video.srcObject = await getDisplayMedia({controller, mode: “multi-track”,

...});

1d. Multi-track model with independent tracks
video.srcObject = await getDisplayMedia({controller, trackTypes: “session”,

...});

1e. Late decision model
video.srcObject = await getDisplayMedia();

2. Write each surface into a separate file

2a. Injection model with Events and Auto-pause
stream = await getDisplayMedia({controller, audio: true, …});
mediaRecorder = new MediaRecorder(stream);
controller.onsourceswitch = event => {
 mediaRecorder.stop()
 mediaRecorder = new MediaRecorder(stream);
}

Each recording will start after a new surface has been selected, and auto-pause guarantees that
no old frames will be written.

2b. Switch-track Model
getDisplayMedia({controller, audio: true, mode: "switch-track", …});
controller.onsourceswitch = event => {
 new MediaRecorder(event.stream);
}

2e. Late decision Model
let stream = await getDisplayMedia({controller, audio: true});
controller.onsourceswitch = event => {
 stream.getTracks().forEach(track => track.stop());
 new MediaRecorder(stream = event.stream.clone());
}
controller.onsourceswitch({stream});

3. Write an entire session into a single file

3a. Injection Model
new MediaRecorder(await getDisplayMedia({controller, audio: true});

3e. Late decision Model
new MediaRecorder(await getDisplayMedia({controller, audio: true});

4. VC: Transmit if predicate(surface), pause while
!predicate(surface)

4a. Injection model with Events and Auto-pause
controller.onsourceswitch = event => {
 peerConnection.getSenders()[0].track.enabled =
predicate(event.stream);
}

4b. Switch-track Model
Comment moved
controller.onsourceswitch = async event => {
 // For simplicity, assume video-only.
 const [videoTrack] = event.stream.getVideoTracks();
 videoTrack.enabled = predicate(event.stream);
 await peerConnection.getSenders()[0].replaceTrack(videoTrack);
}

4e. Late decision model
controller.onsourceswitch = event => {
 peerConnection.getSenders()[0].track.enabled =
predicate(event.stream);
}

5. VC: Share X1 then X2 over a peer connection, potentially
adding or removing audio
Assume a pre-negotiated audio sender.

5a. Injection model with Late audio
peerConnection.call(..., await getDisplayMedia(...));

With Late-audio, any added audio will be injected into the existing audio-track and the
audio-track becoming unmuted. If audio is removed, the audio-track will be muted.

5b. Switch-track Model
controller.onsourceswitch = async event => {
 const [videoTrack] = event.stream.getVideoTracks();
 const audioTrack =
 event.stream.getAudioTracks().length > 0 ?
 event.stream.getAudioTracks()[0] :
 null;
 await Promise.all([
 peerConnection.getSenders()[0].replaceTrack(videoTrack),
 peerConnection.getSenders()[1].replaceTrack(audioTrack)
]);
}

5e. Late decision model
controller.onsourceswitch = async event => {
 peerConnection.getSenders().forEach(({track}) => track.stop());
 const [videoTrack] = event.stream.getVideoTracks();
 const [audioTrack] = event.stream.getAudioTracks();
 await Promise.all([
 peerConnection.getSenders()[0].replaceTrack(videoTrack),
 peerConnection.getSenders()[1].replaceTrack(audioTrack)
]);
}

6. Switching between tabs where one is cropped (Region
Capture)
A web page that crops to a content-area when self-capturing, but leaves other surfaces
uncropped.

6a. Injection Model with Auto-pause
stream = await getDisplayMedia({controller, …});
controller.postSurfaceSwitchingHandler = async () => {

 if (isSelfCapture()) {

 return stream.getVideoTracks()[0]

 .cropTo(contentAreaCropTarget);

 }

};

6b. Switch-track Model
controller.onsourceswitch = async event => {

 if (isSelfCapture()) {

 await event.stream.getVideoTracks()[0]

 .cropTo(contentAreaCropTarget);

 }

 sink = event.stream;

};

6e. Late decision Model
controller.onsourceswitch = async event => {

 if (isSelfCapture()) {

 await event.stream.getVideoTracks()[0]

 .cropTo(contentAreaCropTarget);

 }

 sink.getTracks().forEach(track => track.stop());

 sink = event.stream;

};

7. Playback of Audio and Video Capture in a Video Element
This is intended to capture switching from a source without audio to one with audio, for more
rare local playback use cases like audio visualizers or audio modifier apps designed for
headsets.

7a. Injection Model with Late Audio
video.srcObject = await getDisplayMedia({audio: true});

With Late-audio, any added audio will be injected into the existing audio-track and the
audio-track becoming unmuted. If audio is removed, the audio-track will be muted.

7b. Switch-track Model
getDisplayMedia({audio: true, controller, mode: "switch-track", …})

controller.onsourceswitch = event => {

 video.srcObject = event.stream; // flickers from HTMLVideoElement’s load

algorithm

};

7e. Late decision model
video.srcObject = await getDisplayMedia({audio: true, controller});​
controller.onsourceswitch = event => {​
 // avoids flicker from HTMLVideoElement’s load algorithm

 const [oldtrack] = video.srcObject.getAudioTracks();​
 const [newtrack] = event.stream.getAudioTracks();​
 if (!oldtrack && newtrack) {​
 video.srcObject.addTrack(newtrack.clone());

 }

}

8. Write similar parts of a session into a single file, but separate
files for parts that differ on application-determined criteria, e.g.
capture type, resolution, presence of audio, origin?
An application might want to keep recording into the same file or switch to a new file based on
what the user switched to and/or from.

8a. Injection model with Events and Auto-pausestream = await
getDisplayMedia({controller, audio: true, …});
mediaRecorder = new MediaRecorder(stream);
controller.onsourceswitch = event => {
 if (!toKeepRecordingOrNot(stream)) {
 mediaRecorder.stop()
 mediaRecorder = new MediaRecorder(stream);
 }
}

8e. Late decision Model
let stream = await getDisplayMedia({controller, audio: true});
new MediaRecorder(stream);
controller.onsourceswitch = event => {
 if (!toKeepRecordingOrNot(event.stream)) {
 stream.getTracks().forEach(track => track.stop());
 new MediaRecorder(stream = event.stream.clone());
 }
}

9. Diverging downstream needs from different consumers in the
app: preview, transmitter, and recorder
A VC app might have multiple consumers of the same capture session through cloned tracks
(combining the other use cases). E.g. a preview area (use case 1), a transmission component
(use cases 4 and 5), and a record function (use case 3 or 7). The app might prefer a different
choice for each component, specifically injection for the recorder when possible, and new tracks
for everything else.

9c/d. Multi-track model
controller.onnewsource = event => {

 video.srcObject = event.stream;

 const [videoTrack] = event.stream.getVideoTracks();
 await peerConnection.getSenders()[0].replaceTrack(videoTrack);
};

new MediaRecorder(await getDisplayMedia({controller, /*opt-in*/});

where the opt-in is

●​ mode: “multi-track” for the mixing-track variant, and
●​ trackTypes: [“session”, “surface”] for the independent-tracks variant.

9e. Late decision Model
const stream = await getDisplayMedia({controller, audio: true});
const preview = new PreviewComponent(stream, controller);
const recorder = new RecorderComponent(stream.clone(), controller);
const transmit = new TransmissionComponent(stream.clone(),
controller);

// Each component can independently choose injection or not

class Component {
 constructor(stream, controller) {
 this.stream = stream;
 controller.addEventListener('sourceswitch',
this.handler.bind(this));
 }
}
class PreviewComponent extends Component {};
class RecorderComponent extends Component {};
class TransmitComponent extends Component {};

	Captured Surface Switching - Working Doc
	Abstract
	Status of This Document

	Scope
	Definition of Terms
	Surface Track
	Session Track
	Hybrid Track

	Basic Models
	Injection model
	Switch-track model

	Extensions to the Injection Model
	Surface-switching events
	Cross-type surface switching
	Auto pause
	Shape #1: Opt-in, events and enabled-false
	1. Extend getDisplayMedia()’s input to allow opt-in
	2. Define events that are fired when a switch happens
	3. Specify that auto-paused tracks get their enabled-field set to false.

	Shape #2

	Late audio

	Hybrid Models
	Multi-track model
	Multi-track model with a mixing-track
	Polyfill sketch

	Multi-track model with independent tracks

	Late decision model

	Topics for discussion
	Events vs Callbacks
	Preventing content bleed during switch

	Use Cases
	1. Presenting the Capture in a Video Element
	1a. Injection Model
	1b. Switch-track Model
	1c. Multi-track model with a mixing-track
	1d. Multi-track model with independent tracks
	1e. Late decision model

	2. Write each surface into a separate file
	2a. Injection model with Events and Auto-pause
	2b. Switch-track Model
	2e. Late decision Model

	3. Write an entire session into a single file
	3a. Injection Model
	3e. Late decision Model

	4. VC: Transmit if predicate(surface), pause while !predicate(surface)
	4a. Injection model with Events and Auto-pause
	4b. Switch-track Model
	4e. Late decision model

	5. VC: Share X1 then X2 over a peer connection, potentially adding or removing audio
	5a. Injection model with Late audio
	5b. Switch-track Model
	5e. Late decision model

	6. Switching between tabs where one is cropped (Region Capture)
	6a. Injection Model with Auto-pause
	6b. Switch-track Model
	6e. Late decision Model

	7. Playback of Audio and Video Capture in a Video Element
	7a. Injection Model with Late Audio
	7b. Switch-track Model
	7e. Late decision model

	8. Write similar parts of a session into a single file, but separate files for parts that differ on application-determined criteria, e.g. capture type, resolution, presence of audio, origin?
	8a. Injection model with Events and Auto-pausestream = await getDisplayMedia({controller, audio: true, …});
	8e. Late decision Model

	9. Diverging downstream needs from different consumers in the app: preview, transmitter, and recorder
	9c/d. Multi-track model
	9e. Late decision Model

