
Performance Report 
 
Environment 
 
All experiments are tested on a NUMA machine Lenovo x3950, with Intel(R) Xeon(R) CPU at 
2.3GHz and 1.5 TB SSD, running Ubuntu 14.04, Kernel 3.19. There are 8 sockets and each has 
15 cores and 128GB physical DRAM. The sequential write bandwidths of the SSD is more than 
700 MB/s.   
 
I only used one socket, with 15 cores to run PG server. Because the cross-socket memory 
access is very slow in this machine. And clients are executed on the other sockets.  
 
Benchmarks: 
 
The benchmark code is in: 
https://github.com/liumx10/pg-bench 
I provided three benchmarks. TPCB is a standard OLTP benchmark. ssibench was used in a 
research paper which studied serailizable transactions.  Simple ssibench is transformed from 
ssibench. It has more conflicts but is not easy to abort transactions. So the conflict list can 
grow much longer. 
 
Methods 
 
I tried three methods to improve the speed of conflict tracking: 

1)​ Replace linked list with hash table 
2)​ Add an additional linked list to “skip”, just like a two-level skip list; 
3)​ Reduce the contention on the lock “SerializableFinishedListLock” by moving some 

operations out the protection of the lock. I explained why this operation is right in the 
email 
https://www.postgresql.org/message-id/5b6b452.16851.15cf1ec010e.Coremail.liu-mx15
@mails.tsinghua.edu.cn 

 
Performance  
 
Every test is executed 5 times. The row data is in the google sheet  
https://docs.google.com/spreadsheets/d/1-N1cnOsq5fYOxyhQw90x9TblkitCEwEB-jy0s2MJx
uo/edit?usp=sharing 
 
Here is the summary: (the number means KTPS) 
 
 original code hash table skip list finer lock 

simple ssibench 5.572 5.002 5.492 5.962 

ssibench 3.784 3.386 3.784 3.966 

tpcb 6.19 6.136 6.276 6.316 

 

https://github.com/liumx10/pg-bench
https://www.postgresql.org/message-id/5b6b452.16851.15cf1ec010e.Coremail.liu-mx15@mails.tsinghua.edu.cn
https://www.postgresql.org/message-id/5b6b452.16851.15cf1ec010e.Coremail.liu-mx15@mails.tsinghua.edu.cn
https://docs.google.com/spreadsheets/d/1-N1cnOsq5fYOxyhQw90x9TblkitCEwEB-jy0s2MJxuo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1-N1cnOsq5fYOxyhQw90x9TblkitCEwEB-jy0s2MJxuo/edit?usp=sharing


Comments 
 

1)​ Skip list is good at searching, but bad at inserting. Therefore the function 
“RWConflictExists” is faster, but the function “SetRWConflict” is slower. In the end the 
result shows that it has the same performance of the original code.  

2)​ Hash table also has the inserting problems. What’s more, it is slower when 
removing conflicts from hash table, which made more contentions on the lock 
“SerializableFinishedListLock” . Therefore it’s obviously slower than the original code. 

3)​ “fine-grained lock” has a better performance. But it has a worse performance when I 
tested it in another machine two weeks ago. Honestly, I don’t know why “reducing 
lock contention” drops the performance sometimes. My guess is in the email : 

https://www.postgresql.org/message-id/50422608.2673.15d4c5c99c8.Coremail.liu-mx15@m
ails.tsinghua.edu.cn 

https://www.postgresql.org/message-id/50422608.2673.15d4c5c99c8.Coremail.liu-mx15@mails.tsinghua.edu.cn
https://www.postgresql.org/message-id/50422608.2673.15d4c5c99c8.Coremail.liu-mx15@mails.tsinghua.edu.cn

