
Design Doc: Enable Video Capture
Service for Chromium for ChromeOS

This Document is Public​
Authors: chfremer@chromium.org

One-page overview

Summary
Chromium for ChromeOS currently runs a (legacy) video capture stack that is integrated
into the Browser process. The goal is to switch to using the video capture service, which has
already rolled out on Windows, Mac OS, and Linux, (not ChromeOS), on M61 and is in the
process of rolling out on Android. As is the case on Windows, Mac OS, and Linux, the goal is
to run the service in a dedicated unsandboxed utility process. Sandboxing is a future goal
beyond the scope of this rollout.

Platforms
ChromeOS

Teams Involved
WebRTC-MTV team (point of contact: chfremer@chromium.org)
ChromeOS camera capture (point of contact:jcliang@chromium.org)

Bug
Launch bug

Code affected
Video capture library (media/capture/video/*)
Browser-side video capture stack (content/browser/renderer_host/media/*)

mailto:chfremer@chromium.org
https://docs.google.com/document/d/1RLlgEdvqRA_NQfSPMJLn5KR-ygVzZ2MRgIy9yd6CdFA/edit?usp=sharing
https://docs.google.com/document/d/1Kg5S6K8rwIqMVzo4lbipy_rxjxO9zqKdYrnxSvLJZkg/edit?usp=sharing
https://docs.google.com/document/d/1Kg5S6K8rwIqMVzo4lbipy_rxjxO9zqKdYrnxSvLJZkg/edit?usp=sharing
mailto:chfremer@chromium.org
mailto:jcliang@chromium.org
https://bugs.chromium.org/p/chromium/issues/detail?id=820608

Design
For the video capture service in general, see this design doc.
The service has already rolled out on other platforms with M61. On ChromeOS, there are
the following differences that need to be addressed:

1.​ A gpu::GpuMemoryBufferManager* and a MojoJpegDecodeAcceleratorFactoryCB
(and, soon, also a MojoJpegEncodeAcceleratorFactoryCB) need to be passed to the
media::VideoCaptureDeviceFactory. This is to enable support for
hardware-accelerated MJPEG decoding in the CameraHalServer.

2.​ A media::VideoCaptureJpegDecoderFactoryCB needs to be passed to the
VideoCaptureDeviceClient. This is to enable support for hardware-accelerated
MJPEG decoding at the level of VideoCaptureDeviceClient.

Proposed solution for 1:
In the (legacy) non-service case, the gpu::GpuMemoryBufferManager* dependency is
satisfied by providing a global instance owned by the Browser process. The
MojoJpegDecodeAcceleratorFactoryCB dependency is satisfied by delegating to an instance
of viz.mojom.GpuService available to the Browser process.

To satisfy both dependencies in the service case, a simple solution would be to have the
Browser process inject them into the video capture service right after it connects. To this
end, the video capture service would expose a new method in interface
DeviceFactoryProvider

 InjectGpuDependencies(GpuDependencies gpu_dependencies);

with

 interface GpuDependencies {
 CreateJpegDecodeAccelerator(media.mojom.JpegDecodeAccelerator&
accelerator);
 CreateJpegEncodeAccelerator(media.mojom.JpegEncodeAccelerator&
accelerator);
 CreateGpuMemoryBuffer(gfx.mojom.GpuMemoryBufferId id,
 gfx.mojom.Size size,
 gfx.mojom.BufferFormat format,
 gfx.mojom.BufferUsage usage)
 => (gfx.mojom.GpuMemoryBufferHandle buffer_handle);
 DestroyGpuMemoryBuffer(gfx.mojom.GpuMemoryBufferId id,
 gpu.mojom.SyncToken sync_token);
 };

https://docs.google.com/document/d/1RLlgEdvqRA_NQfSPMJLn5KR-ygVzZ2MRgIy9yd6CdFA/edit
https://chromium-review.googlesource.com/c/chromium/src/+/917932
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_factory.h?q=VideoCaptureDeviceFactory&dr=CSs&l=34
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_factory.h?q=VideoCaptureDeviceFactory&dr=CSs&l=34
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_client.h?dr=CSs&l=41
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_client.h?dr=CSs&l=41
https://cs.chromium.org/chromium/src/content/browser/renderer_host/media/media_stream_manager.cc?q=MediaStreamManager&dr=CSs&l=497
https://cs.chromium.org/chromium/src/content/browser/renderer_host/media/media_stream_manager.cc?q=MediaStreamManager&dr=CSs&l=498
https://cs.chromium.org/chromium/src/content/browser/renderer_host/media/media_stream_manager.cc?dr=CSs&l=102
https://cs.chromium.org/chromium/src/services/viz/privileged/interfaces/gl/gpu_service.mojom?q=gpu_service.mojom&dr
https://cs.chromium.org/chromium/src/content/browser/renderer_host/media/service_video_capture_provider.cc?q=service_video_capture_provider&dr=C&l=127
https://cs.chromium.org/chromium/src/services/video_capture/public/mojom/device_factory_provider.mojom?dr=CSs
https://cs.chromium.org/chromium/src/services/video_capture/public/mojom/device_factory_provider.mojom?dr=CSs

To satisfy the MojoJpegDecodeAcceleratorFactoryCB dependency, the service would then
delegate to gpu_dependencies.CreateJpegDecodeAccelerator. To satisfy the
gpu::GpuMemoryBufferManager* dependency, it could obtain a connection to
viz.mojom.GpuService via gpu_dependencies.ConnectToGpuService and use that
to create a viz::ServerGpuMemoryBufferManager.

Proposed solution for 2:
A possible solution would be to use the MojoJpegDecodeAcceleratorFactoryCB from 1. to
do the accelerated MJPEG decoding inside VideoCaptureDeviceClient. This would require
correspondingly modifying VideoCaptureDeviceClient and VideoCaptureGpuJpegDecoder.

Implementation Plan

CL Title/Link CL Description Status

[Video Capture Service]
Support accelerated
jpeg decoding

[Video Capture Service] Support accelerated jpeg
decoding

* Move/rename class
content::VideoCaptureGpuJpegDecoder to
 media::VideoCaptureJpegDecoderImp and break
dependencies to |content| in order to make it
reusable for the video capture service
* Inject dependencies on gpu_service from
Browser into video capture service. I chose this
solution of having the video captuer service
"share" the Browser's connection to gpu_service,
since I could not see any straightforward way to
get a dedicated connection from the video capture
service to the gpu_service.

Landed

[Video Capture Service]
Operate jpeg decoder
IO to gpu process on
separate thread

[Video Capture Service] Operate jpeg decoder IO
to gpu process on separate thread

Adds a dedicated thread to the video capture
service for operating the IO between the capture
device and the gpu process for acceleraged Mjpeg
decoding.

This fixes a deadlock during shutdown of video
capture in the video capture service after a

Landed

https://cs.chromium.org/chromium/src/services/video_capture/device_factory_provider_impl.cc?dr=C&l=61
https://cs.chromium.org/chromium/src/components/viz/host/server_gpu_memory_buffer_manager.h?q=ServerGpuMemoryBufferManager&dr=CSs
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_client.h?dr=CSs&l=41
https://cs.chromium.org/chromium/src/media/capture/video/video_capture_device_client.h?dr=CSs&l=41
https://cs.chromium.org/chromium/src/content/browser/renderer_host/media/video_capture_gpu_jpeg_decoder.h?dr=CSs&l=36
https://chromium-review.googlesource.com/c/chromium/src/+/971302
https://chromium-review.googlesource.com/c/chromium/src/+/971302
https://chromium-review.googlesource.com/c/chromium/src/+/971302
https://chromium-review.googlesource.com/c/chromium/src/+/1102878
https://chromium-review.googlesource.com/c/chromium/src/+/1102878
https://chromium-review.googlesource.com/c/chromium/src/+/1102878
https://chromium-review.googlesource.com/c/chromium/src/+/1102878

session that uses the accelerated jpeg decoder.
See the crbug for details.

The deadlock and the fix for it can currently only
be provoked/verified manually by running a
ChromeOS device with a camera attached and
command-line flag
--enable-features=MojoVideoCapture. Getting
coverage in automated integration testing is
possible but requires modification of the fake
video capture device implementation, see
crbug/852606

[Video Capture Service,
ChromeOS] Separate
startup of
CameraHalDelegate
from instantiation of
VideoCaptureDeviceFac
tory

Separate startup of CameraHalDelegate from
instantiation of
VideoCaptureDeviceFactory by extracting the
corresponding constructs into a new class
CameraHalContext and creating an instance in
MediaStreamManager.

For ChromeOS builds that us the
cros_camer_service for video capture, the
CameraHalDelegate must be started as part of
Chrome startup. This startup has for now been
tied to the instantiation of
VideoCaptureDeviceFactoryChromeOS. With the
move to the VideoCaptureService, the
instantiation of
VideoCaptureDeviceFactoryChromeOS no longer
happens on Chrome startup, but instead happens
on-demand and potentially more than once.

Landed

Metrics

Success metrics
The rollout will be considered successful if it does not significantly change any of the
existing tests or UMA stats for video capture.

●​ Media.VideoCaptureManager.Event
●​ Media.VideoCaptureService.Event
●​ Media.VideoCapture.DelayUntilFirstFrame

https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008
https://chromium-review.googlesource.com/c/chromium/src/+/1107008

TODO: Do we already collect metrics showing the usage of accelerated MJPEG decode in
ChromeOS devices? Do we collect factors such as CPU usage for that as well?

Regression metrics
Same as above.

Experiments
No experiment planned beyond the standard experiment-controlled rollout.

Rollout plan
Use a standard experiment-controlled rollout targeting M69. This matches what has been
done for rolling out the service on other platforms with the rationale being that changes to
video capture behavior are heavily device dependent and therefore warrant the extra
safety of being able to quickly roll things back if issues emerge.

Core principle considerations

Speed
No change in runtime resources is expected

Security
No change

Privacy considerations
No change

Testing plan
There are three independent variables influencing which code paths are taken when doing
video capture on ChromeOS:

●​ Video Capture Service: enabled vs. disabled (let's call this VCS vs. NonVCS)
●​ Camera Delivers Mjpeg: yes vs. no (let's call this Mjpeg vs. NonMjpeg)
●​ Video Capture Implementation: cros_camera_service vs. Linux V4L2 (let's call this

CCS vs V4L2). The CCS is a ChromeOS service for video capture on ChromeOS that

enables access to the cameras for both Chrome and the Android Runtime. It is
currently enabled for the following 3 boards: soraka, nautilus, dru.

All 8 possible combinations of these variables need to be tested.

Test Coverage in Chromium Commit Queue (CQ)
There are integration tests running in the Chromium CQ the exercise video capture for all 4
combinations of VCS vs. NonVCS and Mjpeg vs. NonMjpeg. These tests use a fake device
and a fake jpeg decoder. The tests run on all platforms-specific builds, including for
ChromeOS.

Test Coverage in WebRTC Bots
There are integration tests running on WebRTC Bots that exercise video capture using a
real webcam. These tests run on Windows, Mac, Linux, and Android. They do not run on
ChromeOS. Since accelerated Mjpeg decoding is currently only enables on ChromeOS,
these tests only cover the NonMjpeg cases (aside from a bit of factory logic up until the
point where it is decided that jpeg decoding is disabled).

Test Coverage in ChromeOS Autotests
●​ We have a test to make sure we don't fallback to use SW decoder. It is based on the

CrOS camera basic functional test. The test CL is here.
https://chromium-review.googlesource.com/c/chromiumos/third_party/autotest/+/9
58742

●​ We also have another test to just test the MojoChannel and Jpeg Decode function
(https://chromium-review.googlesource.com/c/chromiumos/platform/arc-camera/+/
721403/33/common/jpeg/jpeg_decode_accelerator_test.cc). There is no autotest for
it since the first one covers this case.

TODO: Get more clarity on what test coverage there is on ChromeOS for general video
capture via, e.g. Autotests, performance tests.

How to test manually
In general, it is sufficient to test if displaying video from a local camera works. To this end, a
suitable test page is
https://webrtc.github.io/samples/src/content/getusermedia/resolution/.

To test the Mjpeg cases, navigate to
https://webrtc.github.io/samples/src/content/getusermedia/resolution/ and choose a
resolution of HD or higher. Webcams typically use Mjpeg for HD or higher resolutions,
especially when being connected via USB2. To confirm that Mjpeg is being used, navigate to
chrome://histograms/Media.VideoCaptureGpuJpegDecoder.InitDecodeSuccess and check if

https://chromium-review.googlesource.com/c/chromiumos/third_party/autotest/+/958742
https://chromium-review.googlesource.com/c/chromiumos/third_party/autotest/+/958742
https://chromium-review.googlesource.com/c/chromiumos/platform/arc-camera/+/721403/33/common/jpeg/jpeg_decode_accelerator_test.cc
https://chromium-review.googlesource.com/c/chromiumos/platform/arc-camera/+/721403/33/common/jpeg/jpeg_decode_accelerator_test.cc
https://webrtc.github.io/samples/src/content/getusermedia/resolution/
https://webrtc.github.io/samples/src/content/getusermedia/resolution/

an event for InitDecodeSuccess was collected. A new such event should be generated for
each video capture session where hardware-accelerated Mjpeg decoding is being used. To
test the nonMjpeg cases, use a resolution of QVGA or VGA. To confirm it is NonMjpeg,
check that no additional event for InitDecodeSuccess has been generated.

Switching between VCS and NonVCS cannot be done from the browser UI directly, since
this is controlled via a Finch flag and/or command-line flag. To manually force VCS or
NonVCS, the command-line flag --enable-features=MojoVideoCapture or
--disable-features=MojoVideoCapture needs to be passed to the Chrome executable. To
confirm that VCS is being used, navigate to
chrome://histograms/VideoCaptureService.Event. In the VCS case, events other than event
0 will be generated. In the NonVCS case, an event 0 will be generated (and no other events)
once during Chrome startup.

To test the CCS cases, use a ChromeOS device with one of the following boards: soraka,
nautilus, dru. To confirm that CCS is being used, navigate to chrome://media-internals and
check the Capture API in the Video Capture tab. Note that CCS currently does not yet
support external cameras, so testing must be done using the integrated cameras. If CCS is
used, it should say “Camera API2 Limited”. If V4L2 is used it will say “V4L2 SPLANE”. To test
the V4L2 cases, use a ChromeOS device with any board other than the ones for CCS.

Manual test coverage
Manual tests performed by chfremer@ on 06/21/2018 using local build including the first 3
CLs listed above boards guado (for V4L2) and fizz (for CCS). Results:

Mjpeg vs.
NonMjpeg

VCS vs NonVCS V4L2 vs CCS Test Result Notes

NonMjpeg NonVCS V4L2 Pass

Mjpeg NonVCS V4L2 Pass

NonMjpeg VCS V4L2 Pass

Mjpeg VCS V4L2 Pass

NonMjpeg NonVCS CCS Pass

Mjpeg NonVCS CCS Pass

NonMjpeg VCS CCS Pass

Mjpeg VCS CCS Pass

Followup work
Remove legacy code path as soon as the video capture service has been rolled out on all
platforms. ChromeOS is the last remaining platform.

	Design Doc: Enable Video Capture Service for Chromium for ChromeOS
	One-page overview
	Summary
	Platforms
	Teams Involved
	Bug
	Code affected

	Design
	Implementation Plan
	Metrics
	Success metrics
	Regression metrics
	Experiments

	Rollout plan
	Core principle considerations
	Speed
	Security

	Privacy considerations
	Testing plan
	Test Coverage in Chromium Commit Queue (CQ)
	Test Coverage in WebRTC Bots
	Test Coverage in ChromeOS Autotests
	How to test manually
	Manual test coverage

	Followup work

