Swift Server APIs: Security stream meeting 1

Initial Agenda:
e Current discussion status roundup
e Review of BlueSSLService, a layer on top of OpenSSL and macOS Secure Transport
libraries: BlueSSLService Review

If you have items you want to make sure are on the agenda, please add them below:

Attendees:

Chris Bailey

David Sperling - scope of the group
Gelareh Taban

Alfredo Delli Bovi

Bill Abt

Alex Blewitt

Minutes:

Scope:

- not just SSL/TLS, but also crypto, keychain/certificate management, etc which crypto
depends on what's available (and whether there’s requirements above/beyond what we get
from the macOS and/or OpenSSL/LibreSSL libs).

BlueSSLService:
This itself covers SSL/TLS - there’s no crypto services etc in there.

- Provides a service that adds onto an existing socket library (currently BlueSocket, but
could be easily modified to work with other socket implementations).

- Uses OpenSSL and SecureTransport

- Initial implementation used OpenSSL everywhere, and then switched to
SecureTransport on macOS as the additional work was done.

- APIs are (very) different between OpenSSL and SecureTransport. The docs on
SecureTransport were a challenge.

- Configuration - OpenSSL provides much more flexibility. On macOS you’re pretty
much limited to pkcs#12 - so that’s all it supports there. Question for Luke
Hiesterman as to why that might be (or if there’s more support that we're not aware
of). APIs exist for dealing with other formats but are not exposed.

- Cipher Suites: SecureTransport uses the hex IANA value to select cipher suites.
OpenSSL lets you use text abbreviations (corresponding to the IANA values), as well
as AND/OR logic. Again, documentation for Secure Transport was a big challenge.

- OpenSSL vs LibreSSL

- Only OpenSSL provides FIPS certification.
- Are there any other FIPS certified forks of OpenSSL? We don'’t think so.


https://drive.google.com/open?id=0B0hPvQQbfrmpWFRTMHdWWElJYVE

- Additionally most of the forks are subsets. This is not necessarily a bad thing
as they remove a lot of insecure or unused functionality which are in
OpenSSL because of legacy.

- Reusing OS libs also makes it easier to get FIPS certification as they are
already certified on macOS and iOS and there is a certified version of
OpenSSL available for Linux.

Usage:
- 6 protocol methods need to be implemented in the socket library.
- Added a method in the SSL service to let you override the connection verification
process to allow for specialized connection verification on an application basis.

The current differences are they you actually get more capabilities on Linux from OpenSSL.
- Do we need support for PEM, etc? Probably - it's much more prevalent elsewhere.

BlueSSLService doesn’t work on iOS because some of the SecureTransport APIs aren’t
exposed.

BlueCryptor attempts to do the same thing for Crypto - using CommonCrypto on iOS and
macOS, and OpenSSL on Linux.

- The thing missing on macOS /iOS is RSA, which is there (in CommonCrypto) but not
exposed.

- Similar to the issue with other file formats in BlueSSLService, RSA is there in the
library, but not exposed publicly. In OpenSSL, RSA is available and the API is similar
enough to the CommonCrypto API that it could be easily exposed in BlueCryptor as
well.

Nothing has been tried for the keychain services...
- Keychain services is great on macOS/iOS, but no equivalent in Linux
- Linux just relies on certificates etc being present on the file system
- Alot of Linux servers, particularly Java based ones, use a CMS (Certificate
Management System) to manage certificates and keys. This is similar to the services
provided by the Keychain APl on Apple platforms.

Should we use BlueSSLService and BlueCryptor as a prototype implementation, and use
that to work on the API surface?
- This seems like a reasonable approach



