

Signed off by

Title Sip Split Test Plan

Version 1.0

Date 2025/09/17

The test plan for the SIP SPLIT website provides a detailed roadmap for ensuring the

application is functional, reliable, secure, and user-friendly. The test plan is structured and

comprehensive, covering all in-scope aspects (and some identified future elements) for the

SIP Split bill web application.

1. Introduction
This section provides an overview of the test plan.

Purpose:

To define the scope, objectives, schedule, and resources for testing the Sip Split web

application, ensuring it meets all functional and non-functional requirements.

Target Audience:

This document is intended for the QA team, developers, project manager, and product

owner.

System Under Test: SIP Split Web Application

2. Test scope
Clarify what is included and excluded from the test plan scope.

In scope

●​ Adding, editing, and deleting expenses.

●​ Splitting the bill equally.

●​ Responsive design for web browsers.

●​ OCR-enabled phone to scan and convert a paper bill to text.

●​ Column to insert the total number of users.

●​ Column to insert total bill (optional in scenarios where OCR doesn't work).

●​ Split bill button: To equally divide the total bill by the number of users/participants.

Out of scope

●​ User profile management.

●​ User registration and login.

●​ Group creation and management.

●​ Splitting the bill by percentages or other methods.

●​ Sending payment reminders.

●​ Tracking expense history within a group.

●​ Recording payments and settling debts.

●​ Third-party payment gateway functionality (beyond integration).

●​ Testing on unsupported browsers or operating systems.

●​ Specific mobile app testing (if it is a separate entity).

●​ Group analytics

3. Test strategy and approach
The testing approach and methodologies for this project shall be a combination of

functional, regression, usability, and performance testing.

Methodologies: A combination of functional, regression, usability, performance, and testing

will be used. Automated testing will be prioritized for critical and repetitive test cases, such

as regression tests.

Table 1: Testing Levels
Testing Type Description Performed By
Unit Testing To be performed by the

DevOps team to test individual
components.

DevOps team

Smoke Testing To ensure functionalities can
be iterated for future
enhancements.

Integration Testing To verify communication
between different parts of the
application, such as the
front-end and back-end APIs.

System Testing End-to-end testing of the
complete application flow.

Regression Testing If applicable
User Acceptance Testing (UAT) To be conducted by PO, PM,

BA, Developer, and UI/UX to
ensure the website meets
users' needs.

PO, PM, BA, Developer, UI/UX

4. Test environment and data
The required environment and data for testing shall be,

●​ Environment: TBD by Thea, PO, Developer, and QA

●​ Hardware: N/A

●​ Software:

-​ Web browsers: Chrome, Firefox, Safari,

-​ Operating systems: Windows, Android OS, Apple, macOS, and iOS.

●​ Test Data: Create and anonymize sample user data, groups, and expenses to cover

various scenarios (e.g., even split, custom amounts, bill entry).

5. Roles and responsibilities
Assigned clear responsibilities to team members.

Table 2: Roles & Responsibilities.
Role Responsibilities

QA Lead Oversees the test plan, manages the QA team,
and reports status to PM and PO

Developers Perform unit testing and assist QA in
reproducing and fixing bugs

Project Manager Participates in ALL tests and provides sign-off

Product Owner Provides sign-off for deliverables

6. Test deliverables
List of documents and artifacts that will be produced during the testing process.

●​ Test plan document.

●​ Test cases and scenarios.

●​ Test execution reports.

●​ Defect logs and reports.

●​ Summary report at the end of each test cycle.

7. Entry and Exit Criteria
Define the conditions for starting and stopping testing activities.

Table 3: Entry and Exit Criteria

Criteria Type Criteria Start of Testing End of Testing

Entry Criteria The test plan is reviewed and
signed off.

‘’ All features for the current
release are code-complete.

‘’ The test environment is set up
and stable.

Exit Criteria All test cases have been
executed.

‘’ A pre-defined percentage of
critical test cases have passed
(% to be decided by PM, QA,
and PO).

‘’ No open critical or high-severity
defects remain.

‘’ The test summary report is
signed off.

8. Test schedule
Table 4: Test Schedule (Timeline for testing, including key milestones.)

Phase Start Date End Date

Planning [Start Date] [End Date]

Execution [Start Date] [End Date]

Regression [Start Date] [End Date] (If Applicable)

UAT [Start Date] [End Date]

9. Test cases and scenarios
A breakdown of test cases, organized by test areas.

Table 5: Functional Test Scenarios

Test Area Scenario Applicability
Bill Entry Calculation with valid input (Happy path) APPLICABLE

‘’ Validates system rejects '0' bill amount ‘’
‘’ Validates system rejects 'number of people'

0, <2
‘’

‘’ Verify the system rejects negative values in
the total number of people field

‘’

Summary Display Navigation via the 'Home' button ‘’
‘’ Verify the system auto-calculates when

friends are added
‘’

‘’ Verify the system auto-calculates when
friends are removed

‘’

‘’ Test the ability to edit and delete existing
expenses.

APPLICABLE

Product Design Verify the website adapts to a portrait
orientation on a mobile phone

APPLICABLE

‘’ Verify functionality consistency on different
devices

APPLICABLE

‘’ Verify expense calculations with different
currencies.

Not APPLICABLE

Expense
Management

Test adding a new expense with a simple,
even split.

APPLICABLE

‘’ Verify that a user can add an expense and
assign different amounts to each group
member.

APPLICABLE

‘’ Verify that debt balances are accurately
updated after a payment is recorded.

APPLICABLE

‘’ Test the "Reset" functionality to zero out all
balances within a group.

APPLICABLE

Notifications and

Reminders
Verify that a user can send a payment
reminder to a group member.

NOT APPLICABLE

‘’ Test that notifications are correctly
delivered to users.

NOT APPLICABLE

User Management Verify that a new user can register with a
unique email and a valid password.

NOT APPLICABLE

‘’ Test the login process with valid and invalid
credentials.

NOT APPLICABLE

‘’ Verify the "Forgot Password" functionality. NOT APPLICABLE
Group Management Verify that a user can create a new group. NOT APPLICABLE

‘’ Test adding and removing members from a
group.

NOT APPLICABLE

‘’ Verify that group expenses and balances are
updated correctly when members are
added or removed.

NOT APPLICABLE

Table 6: Non-functional Test Scenarios

Testing Type Details Applicability
Usability Testing Verify that the website is easy to navigate and

understand. Test the intuitiveness of the bill
splitting workflow. Ensure all interface
elements are clear and logical.

APPLICABLE

Performance Testing Measure the response time for adding a new
expense under a simulated load of 15
concurrent users. Test the application's
stability with a large number of users and
groups.

APPLICABLE

Compatibility Testing Verify that the website functions correctly
across different web browsers (Chrome,
Firefox, Safari) and screen sizes (desktop,
tablet, mobile).

APPLICABLE

Security Testing Test for common vulnerabilities like SQL
injection and Cross-Site Scripting (XSS). Verify
that sensitive user data, such as balances, is
properly secured and not accessible to
unauthorized users.

NOT APPLICABLE

10. Risk management
Identify potential risks and outline mitigation strategies.

Table 7: Risk management grid.

Risk Mitigation

The tight project schedule and low-level
collaboration (except Thursday meetings)
may lead to inadequate test coverage.

Prioritize testing of core functionalities and
automate repetitive test cases where
necessary.

Critical bugs are found late in the testing
cycle.

Shift-left testing by integrating testing earlier
in the development process.

The test environment is unstable or
unavailable.

Automate environment provisioning and
clearly define the escalation process for
environment issues.

​

