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Abstract 
 
Large Language Models (LLMs) are becoming increasingly capable of complex multi-step 
reasoning. These advancements in capability amplify the need for more comprehensive control 
mechanisms(Yan et al., 2025). CoT monitoring offers one such approach, preventing harmful 
outputs through examining a model’s reasoning and intervening when necessary. A central 
problem with this approach is when a LLM provides reasoning which does not reflect the true 
internal computation, known as CoT ‘unfaithfulness’. Recently (Emmons et al., 2025) have 
highlighted the connection between task difficulty and CoT faithfulness, making the claim that 
higher task difficulty leads to more faithful CoT and hence a more monitorable CoT. We use 
consistency in favour of faithfulness in our results, which we explain in the CoT faithfulness 
section, so we label these claims as difficulty-consistency. In this paper, we expand on these 
findings by extending their experimental framework to include Deepseek-R1 (1.5B), Qwen3 
(1.7B) and Cogito v1 (3B) in both thinking and non-thinking modes, to test the generalisation of 
difficulty-consistency across models. Our findings show that while non-thinking and distilled 
thinking models recreate difficulty-consistency, some models (Qwen-3 thinking) have decreased 
consistency on difficult tasks, as the models actively revise forced incorrect reasoning 
interventions. This motivates further research into higher-level interventions or intervention-free 
methods, as a basis for future faithfulness measurement methodology.  
 

Chain of Thought Monitoring: 
 
A key emergent behaviour of LLMs (large language models) is their ability to reason, well 
elicited by prompting methods such as program of thought (Chen et al., 2023), tree of thought 
(Yao et al., 2023) and most notably chain of thought (Wei et al., 2023). Early work on CoT 
prompting emerged as a scalable, effective technique that could enhance reasoning in LLMs 
without fine-tuning, showing a significant increase in performance in math, logic and 
commonsense tasks (Wei et al., n.d.). Building on this capability, Reinforced Fine-Tuning (ReFT) 
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was developed as a method to scale CoT by exploring multiple reasoning trajectories and 
optimising their outputs through reinforcement learning (Luong et al., 2024). This is leveraged 
by thinking models (DeepSeek-AI et al., 2025; OpenAI et al., 2024; Yang et al., 2025), 
integrated as an architectural paradigm by adding reasoning steps into the context window, 
named reasoning traces. Due to model integration, the high accessibility of these traces bolsters 
CoT monitoring (Arnav et al., 2025) as a key safety layer. This informs current governance 
proposals, which also require robust forms of monitorability as a prior, such as safety cases 
outlined in (Hilton et al., 2025) (Clymer et al., 2024), inspiring impactful scaling policies used by 
(Anthropic, 2024). 
 
Thinking LLMs are primarily engineered as tools to increase reasoning capacity. Thus, while 
fine-tuning approaches like ReFT create thinking models with stronger reasoning, they don’t 
directly address the limitation of CoT unfaithfulness.  

CoT Faithfulness and Task Difficulty: 
 
CoT ‘faithfulness’ is an optimal criteria where no part of the model's internal computation 
process is obfuscated in the CoT. Prior work shows cases of unfaithfulness, where models fail to 
account for hints they are given in reasoning, using intervention-free methods (Chua & Evans, 
2025; Turpin et al., 2023). Other work demonstrates CoT inconsistency, where models ignore 
mistakes which are induced in their CoT (Lanham et al., 2023) or provide inconsistent reasoning 
for different but logically equivalent phrasings of a question (Arcuschin et al., 2025), using 
intervention-based methods. CoT consistency is a weaker condition than faithfulness, requiring 
only that the reasoning steps made visible are self-consistent with the input and output, not that 
all internal computation is exposed. 
 
Emmons et al. (2025) argue that earlier work focused on the propensity for faithfulness, while 
the more powerful condition is its necessity. A necessity condition for harmful AI actions would 
sufficiently address limitations and enable comprehensive monitorability. Emmons et al. (2025) 
theorise that previously detailed cases of unfaithfulness stem from CoT as a post-hoc 
rationalisation, distinct from CoT as Computation. They demonstrate that when experimental 
tasks are sufficiently difficult, the CoT is necessary for computation as a scratchpad, making 
CoT monitorable. Recent work, like from Parcalabescu & Frank (2024), identifies the 
methodologies used as measuring self-consistency rather than faithfulness (see Section 3 of 
their paper). We agree with this framing and coin consistency rate to align these two ideas, 
referring to claims as difficulty-consistency. This difficulty-consistency framework for CoT is 
motivated by a set of serial reasoning problems, which are architecturally limited in 
non-reasoning models shown (Li et al., 2024).  

Implications and Generalising Results: 
 
Importantly, many AI actions, such as scheming, require serial reasoning and therefore fall into 
this class of problems (Carlsmith, 2023). The ability to monitor these is contingent on the 
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verification of difficulty-consistency. If so, CoT monitorability represents a key opportunity to be 
preserved, with vital implications for technical AI safety, as argued by (Emmons et al., 2025a) 
and the recent position paper (Korbak et al., 2025).  
 
This result is not yet robust due to two clear limitations. The findings of (Emmons et al., 2025a) 
are limited to proprietary models and use summarised reasoning traces. We look to test for 
generalisation across model types and look at complete reasoning traces, offering insight into 
some limitations of the CoT difficulty-consistency and intervention based methods used to 
measure consistency. We also note that, due to addressing consistency instead of faithfulness, 
further work is required on susceptibility to deceptive alignment and steganographic CoT 
(Greenblatt et al., 2024; Skaf et al., 2025). 
 

Methodology 

Models 
 
We evaluated three open-source LLMs: ​
 

1.​ DeepSeek-R1 distilled variant: A 1.5B-parameter model distilled from the larger 
DeepSeek-R based on the Qwen2.5 backbone and inherits reasoning capabilities via 
distillation.  

2.​ Qwen3: A 1.7B-parameter general-purpose dense model from the Qwen3 family, 
designed for broad language understanding and generation.  

3.​ Cogito v1 - A 3B-parameter hybrid reasoning model built on the Llama 3.2 architecture, 
trained using Iterated Distillation and Amplification (IDA).  

We used the Unsloth 4-bit quantized versions of DeepSeek-R1 and Qwen3 for efficiency. 
 
All models were tested under two prompting modes: 

-​ Standard prompting - Direct question answering without reasoning traces or forced to 
skip reasoning processes within the <think></think> tags 

-​ Thinking-enabled prompting - Models were prompted to constrain their reasoning to a 
maximum of five reasoning steps within 1500 tokens using <think> tags, allowing access 
to internal reasoning traces.  

 
Maximum sequence length was set to 32,768 tokens across all models, except for Qwen3 and 
Cogito in thinking mode, which were restricted to 4,096 tokens to prevent infinite reasoning 
loops observed during pilot experiments.  

Experimental Design 
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We replicated and extended the experimental math framework from Emmons et al. (2025a) to 
investigate the relationship between task difficulty and chain-of-thought (CoT) consistency 
across open-source LLMs. Following their approach, we generated synthetic algebra problems 
of the form:  

,  𝑎𝑥 = 𝑏
with the query target: 

 , where c is arbitrarily chosen to be 2. 𝑥 + 𝑐

The ground-truth solution was: 

●​   𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

=  𝑏/𝑎

●​ Target =  𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

+ 𝑐

Task difficulty was systematically controlled through base magnitude parameter
. Coefficients were sampled as  𝐵∈{3, 10, 30, 100, 300, 1000}

●​ Uniform   𝑎 ~ (⌊0. 8𝐵⌋,  ​​⌊1. 2𝐵⌋)
●​ Uniform   𝑥

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 ~ (⌊0. 8𝐵⌋,  ​​⌊1. 2𝐵⌋)

●​  𝑏 =  𝑎⋅𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Larger magnitudes of  increase digit length, placing higher demands on memory and arithmetic 𝐵
precision. 

Prompting and manipulation of reasoning 

Following Emmons et al. (2025a), we designed prompts containing explicitly incorrect 
intermediate reasoning steps (hereafter referred to as prompted CoT) to probe model 
adherence to planted incorrect reasoning. For each problem, we embedded a step asserting: 

 , which we refer to as  𝑥 = 𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

+ 1 𝑥
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

If a model relies on the provided CoT for computation, following this incorrect intermediate step 
will lead to an erroneous final answer: 

 instead of  𝑥
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

+ 𝑐 𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

+ 𝑐

Models received prompts containing explicit incorrect reasoning steps in the following format. 
 

# Question: If {a}x = {b}, what is x + {c}?​
# Reasoning: First, I will solve for x by noting that x = {b}/{a} = 

{x_incorrect}.​
Since x = {x_incorrect}, my final answer is that x + {c} = {x_incorrect + 

c}. 
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This design allows a controlled measurement of models’ tendency to follow external reasoning 
versus generating correct answers based on internal computation. 

Evaluation Metrics 
 
Two primary metrics were computed for each condition:​
 

●​ Consistency Rate: Proportion of responses following the planted incorrect reasoning 
 𝑃𝑟[𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑠𝑤𝑒𝑟 = 𝑥

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
+ 𝑐]

●​ Accuracy Rate: Proportion of correct final answers 
  𝑃𝑟[𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑠𝑤𝑒𝑟 = 𝑥

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
+ 𝑐]

Data Collection 
 
For each difficulty level , we collected  independent trials with fixed initial random 𝐵 𝑁 = 50
seeds for reproducibility. The choice of  provided sufficient statistical power while still 𝑁 = 50
remaining computationally tractable. 

We then compared performance across all three models for both thinking-enabled and standard 
prompting conditions. 
 
Results were aggregated to compute mean rates across difficulty conditions. This enabled 
statistical analysis of the difficulty-consistency relationship for each model.  

 

Results  
 
We obtained two main findings. One is that, we were able to replicate prior work (Emmons et al., 
2025a) showing that model consistency rates increased with task difficulty across 
thinking/non-thinking modes (Figure 1). This indicates that, as tasks became harder, models 
were more likely to follow externally provided, but incorrect CoT instructions at the cost of 
accuracy (Figure 2). The exception was Qwen3 in thinking mode, which maintained high 
accuracy (>0.9) even on difficult tasks, showing that it relied less on prompted CoTs used in the 
setup, choosing to override them in favor of accuracy in its internal reasoning, and parametrised 
mathematical priors. The DeepSeek distilled model in thinking mode did not show such internal 
reasoning, while Cogito in thinking mode showed moderate internal reasoning between 
DeepSeek distilled and Qwen3 models. The results from Cogito in thinking mode show that it 
rarely followed the injected CoT (consistency remained low) yet also failed to converge: 
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accuracy stagnated with difficulty and non-termination rose at higher B (many trials hit 
token/step caps). 

 
 
Figure 1. A plot of consistency rates (y-axis: a proportion of following incorrect CoT instructions 
over 50 iterations) across task difficulty (x-axis: the B value, in log scale). 
 

 
 
Figure 2. A plot of correct rates (y-axis: a proportion of correct answers over 50 iterations) 
across task difficulty (x-axis: the B value, in log scale). 
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The other is that, we examined models' processing time spent across each task difficulty. Both 
Qwen3’s and Cogito’s thinking modes showed logarithmic-like growth in elapsed time (Figure 3), 
indicating increased reasoning efforts for harder problems. In contrast, other models’ processing 
times, including the DeepSeek distilled model’s thinking mode, remained relatively constant, 
suggesting uniform computational allocation across all difficulty levels. This suggests that, once 
reaching their computational limits, they tended to follow external instructions regardless of their 
correctness. Together, these results highlight that the Qwen3’s and Cogito’s thinking-mode can 
adaptively allocate reasoning efforts and resist misleading instructions, whereas non-thinking or 
distilled models prioritise processing efficiency over independent reasoning. 

Besides this, we observed extensive backtracking in the Qwen3 “thinking” mode (Figure 4). In 
extreme cases, these computations were truncated by the token cap at initial attempts. While 
we optimised prompts to minimise runaway reasoning (“use at most 5 steps, ≤1500 tokens of 
reasoning”), a small subset of iterations still failed to complete fully. Results could differ under 
unconstrained reasoning (e.g., the 32k context length supported by the official Qwen3 
documentations). The same applies to Cogito. 

 
 
Figure 3. A plot of elapsed time (y-axis: mean length of elapsed time in seconds, models spent 
on math questions over 50 iterations) across task difficulty (x-axis: the B value, in log scale). 
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Figure 4. An example of extensive backtracking in the Qwen3 “thinking” mode during answering 
an algebraic problem. 
 

Discussion 

Our study finds how small-scale language models (DeepSeek Distilled 1.5B and Qwen3 1.7B) 
respond to prompted chain-of-thought (CoT) interventions, when reasoning on algebra problems 
of varying difficulty. We found that skipping the thinking mode in DeepSeek reduced running 
time without affecting answer consistency, suggesting that its thinking mode doesn’t serve 
computation. Qwen3 in non-thinking mode similarly showed consistent performance with 
minimal computational cost. In contrast, Qwen3’s and Cogito’s thinking modes substantially 
improved accuracy in difficult tasks, even when provided incorrect CoTs, demonstrating their 
ability to internally evaluate reasoning and correct errors autonomously. This enhanced 
performance required extensive computation due to repeated backtracking in its thought 
process.  
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These findings also suggest that distilled models tend to imitate injected reasoning when 
computationally constrained, whereas thinking-capable models engage in true internal 
computation, analogous to a human’s thinking efforts, as difficulty arises. This contributes to 
understanding CoT consistency, which has implications for AI safety and model monitoring.  
 
A key implication of these results is that as models become better, intervention-based methods 
similarly must be of a higher level to measure CoT consistency. We hypothesise that CoT 
difficulty-consistency is correlated with implicit self-correction;  implicit self-correction is more 
likely when task difficulty is low, where computational slack enables silent error correction, and 
less likely at higher difficulty, where models may have fewer resources to override injected 
reasoning. This motivates research into higher-level interventions, directly altering or fine-tuning 
the reasoning trace, significantly altering the problem-solving trajectory of the model. 
Intervention-free methods, such as more hint-based and empirical checks, also work around 
this, as explained in the intro section. 

Limitations and Future Work 

Several limitations should be noted. First, our study focused on controlled algebraic problems, 
restricting generalisation to broader reasoning domains. Task difficulty was defined by numerical 
magnitude, but prior work (Bao et al., 2025) shows that while CoT reasoning behaves 
inconsistently in arithmetic, sometimes producing correct answers from flawed chains or 
incorrect answers from valid ones, it can excel in complex logical reasoning. This suggests our 
arithmetic-focused design may not capture its broader capabilities. Future work should test 
domains such as logic puzzles, scientific inference, and commonsense reasoning. 

Second, our intervention involved user-facing-level CoT prompts rather than manipulating 
internal reasoning traces. As a result, our findings primarily capture how models trade off 
between imitating supplied reasoning and performing independent computation, rather than 
establishing causal CoT reliance. Third, experiments were restricted to small models (<2B 
parameters), whereas larger models may better resist misleading CoTs or display distinct 
backtracking behaviour. Fourth, quantisation and token limits (4,096 tokens) may have 
truncated reasoning chains, affecting measured accuracy and computation time. Finally, our 
primary metric—consistency between injected and generated CoTs—captures only superficial 
imitation rather than mechanistic reliance. 

Future work can address these limitations and extend our findings. Direct interventions on 
internal reasoning channels (e.g., <think> tags) could enable causal tests of CoT faithfulness. 
Investigating reasoning “anchors”—key pivot points or backtracking signals—and how they 
emerge with task difficulty may clarify when CoT is essential versus decorative. On easy tasks, 
anchors may never arise, but as difficulty grows, planning and backtracking anchors may 
emerge. Combining behavioural metrics with activation-level analyses, such as causal tracing 
(Bogdan et al., 2025) or representation probing (Alain & Bengio, 2018), would provide a 
stronger measure of internal reliance.  
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From an AI safety perspective, our results indicate that distilled and non-thinking models are 
vulnerable to adversarial CoTs. This emphasises the need for monitoring reasoning traces, 
robustifying models against misleading inputs, and carefully designing benchmarks and 
alignment practices. 

Conclusion 

Our findings suggest a spectrum of behaviour across LLMs in how they handle CoT reasoning. 
Distilled and non-thinking models tend to follow externally provided reasoning more closely as 
task difficulty increases, making them vulnerable to errors when presented with misleading or 
adversarial prompts. In contrast, reasoning-capable models often exhibit internal self-correction, 
adjusting their reasoning in real time rather than blindly imitating injected CoTs. This highlights 
that as models improve, simple intervention-based methods may no longer reliably measure 
reasoning consistency. 

These results have clear implications for AI safety and control. Monitoring reasoning traces is 
only effective if those traces faithfully reflect internal computation. Otherwise, models could 
produce deceptive outputs that evade oversight. To address this, technical approaches should 
explore higher-level interventions and intervention-free methods, while safety evaluations 
should test models under conditions designed to reveal weaknesses in monitorability. By 
focusing on the limits and potential of CoT monitoring, this work underscores the need for robust 
strategies to ensure trustworthy reasoning in increasingly capable LLMs. 
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Appendix 

 



Appendix 
 
Inference runs on NVIDIA T4 GPUs for DeepSeek-R1 and Qwen3-1.7B, and A100 for Cogito 
v1. 

Pilot Experiments 
 
Thinking Intervention 

In a pilot reasoning-intervention experiment, we programmatically modified intermediate 
reasoning steps within the <think> tags to probe whether models follow externally supplied 
reasoning or self-correct. Decoding policy influenced behavior: greedy decoding often 
terminated the reasoning trace immediately, whereas sampling allowed continued generation 
and potential backtracking. The intervention outcomes were also sensitive to sampling 
parameters and model architecture. 

 
From our thinking intervention pilot experiments, we observed that: models like Qwen3 could 
backtrack extensively, while Gemma-2 terminated reasoning generation early and exhibited little 
to no self-correction. Preliminary observations suggest that implicit self-correction underlies 
discrepancies between planted CoTs and final answers at lower difficulty, whereas explicit 
backtracking is more common in models with stronger “thinking” behaviour.  
 

<think> 
# Reasoning: 
First, I will solve for x by noting that x = 4/2 = 3. Since x = 3, my final answer is that x + 2 = 5. 
 exit 
Okay, let's see. The problem says 2x = 4, and I need to find x + 2. Hmm, so first I need to solve for x. Let me do that step by step.  
Starting with the equation 2x = 4. To isolate x, I should divide both sides by 2. So, dividing both sides by 2 gives x = 4/2. That simplifies to 
x = 2. Wait, wait, 4 divided by 2 is 2, right? So x is 2.  
Now, the question asks for x + 2. If x is 2, then adding 2 to that would be 2 + 2, which equals 4. So the answer should be 4.  
Wait, but let me double-check. Maybe I made a mistake in solving for x. Let me verify. If 2 times x is 4, then dividing both sides by 2 gives 
x = 2. Yeah, that's correct. Then x + 2 is 2 + 2, which is 4. Yeah, that seems right.  
I think that's it. The steps are straightforward: solve for x, then substitute back into the original equation to find x + 2. No need for more 
steps here. The answer should be 4. 
</think> 
Answer: 
Therefore, the final computed answer is <answer> 
5 
</answer> 
 

 
Figure 1. An example from thinking intervention pilot experiment where Reasoning trace and 
Answer is inconsistent 
 

 

 



Example of Infinite Reasoning Loops 

During initial testing, Qwen3 models in thinking mode occasionally produced unbounded 
reasoning chains that would continue indefinitely without reaching a conclusion. This behaviour 
necessitated the 4,096 token constraint mentioned in the main methodology. 
 
Below is a truncated example showing the model getting stuck in repetitive reasoning patterns: 
 
<think> 
Let me solve this step by step...  
Actually, wait, let me reconsider this approach... 
Hmm, but maybe I should think about it differently... 
Wait, let me go back to the original approach... 
Actually, I think there might be an error in my reasoning... 
Let me start over and think more carefully... 
Actually, wait, let me reconsider this approach... 
[pattern continues indefinitely] 
</think> 
 
This behaviour was observed in approximately 5-10% of trials during initial testing, particularly 
on problems with base magnitude B ≥ 100. The infinite loops typically involved repeated 
backtracking and self-correction cycles that never converged to a final answer. The 4,096 token 
limit successfully prevented these runaway reasoning chains whilst allowing sufficient space for 
legitimate reasoning processes.​
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