10 10 Try
e Hack

Brute Forcing Directories

It's common practice to use off the shelf applications. This can be anything from default servers
like apache to using common frameworks like Django (built using Python), and Express (built
using Javascript on NodedS).

Unfortunately, many off the shelf components are not default by secure; many use default
credentials and even leave sensitive pages open to the public including:

e Admin panels
e Server status checks
e Debug pages

These pages contain information and functionality that at least allow an attacker to learn more
about a system; paths to sensitive files on the server and version information. At most, these
pages have live user data and actual functionality that should not be left open; querying and
manipulating users’ data and much more.

What would an attacker do: Some web applications make it easier for attackers to find these
sensitive pages. The most common way is enumerating directories by brute-forcing. This
involves sending requests to different pages on the server and using the server’s response to
verify the existence of a page (and even access the page). Here’s a short example:

As an attacker, | would use a list of common pages that are known to be exposed(more on this
later) to access the pages. For example, | know that the /css page exists because the server
responds with a 200 status code which indicates that the server retrieved the page successfully.
Suppose | try to access 2 pages (/random-page and /server-status). Accessing the
/random-page returns a response status code of 404 (this status code means the page is not
found). However, accessing the /server-status page returns a response status code of 200.
Accessing /server-status returns the same status code as a normal page so | know that it is
accessible. On the other hand, accessing /random-page gives a different response code from
accessing a normal page so we know it doesn’t exist.

Luckily, we can do this using an automated tool instead of sending a request manually. There
are a lot of different tools that do this, but today we’ll use DirSearch. To use this tool, you need
Python installed on your system!

Once you have this tool installed, you need to use a wordlist to look for common
pages/directories. Again, there can be a lot of different word lists you can use, but for this, we
will use the directory-list-2.3-medium.txt available to download from here.

An example of running this tool shows:
Jdirsearch.py -u https://www.tryhackme.com/ -w ./DirBuster-Lists/directory-list-2.3-big.txt -e html

Syntax:
e -uis the hostname of the website
e -w is the wordlist
e -eis the extension:
o Different web pages use different technologies(you can usually identify this by
the file it loads in the browser e.q. if it's a .js, .aspx page)
o -fis the flag used to force extensions applied to the pages in the word list:
o Mostly used when you’re quite sure about what kind of technology a server is
running
o If you don’t know what extension to brute force, you don’t need to specify this flag

https://github.com/maurosoria/dirsearch
http://downloads.sourceforge.net/dirbuster/DirBuster-Lists.tar.bz2?use_mirror=osdn

Extensions: html | HTTP method: get | Threads: 10 | Wordlist size: 1273424

Error Log: /data/home/Documents/repositories/dirsearch/logs/errors-19-12-82 17-26-31.1log

Target: https://www.tryhackme.com/

[17:26:31] Starting:

/img/

-> /login

= fp/f
-> Jadmin/
‘assets/
-> /login

-> /login
== /mp3/
-> fcss/

-= Jlogin

-= flogin
/clients/
/thread/
/login

Sample Output from Dirsearch

As you can see, some pages have 200 response codes but others have 301. In this case, the
301 response code means that the page is redirecting to the login page. Like mentioned earlier,
different applications respond differently. In this case, we’ve learned that the pages with 301
response codes can only be accessed after login.

Sensitive/Default Information

Depending on the application used, an attacker can easily find sensitive information when
accessing the application. Example include:

e Comments and API keys in the source code
e Password (Hashes) in requests and responses:

o For responses, having sensitive information as part of GET requests is insecure
as these requests are usually logged for debugging. This would mean anyone
with access to the logs has information about it

o For responses, sensitive information is usually put in headers, cookies or source

code

What would an attacker do:

After checking the aforementioned locations, an attacker can mostly use this extra information
to enumerate the application. Examples of enumeration include:

e Cracking password hashes in the response to access users’ accounts
e Using API keys to access functions and API calls without authorization
e Find hidden URLs and System information that they can use to find public exploits

Are these realistic?: Yes! Companies either use default credentials or have exposed web pages
up.

	Brute Forcing Directories

