Department of Electrical and Computer Engineering

The University of Texas at Austin
EE 460N, Spring 2023

Problem Set 1

Due: Feb 20th, before class

Yale N. Patt, Instructor

Michael Chen, Kayvan Mansoorshahi, TAs

Instructions

You are encouraged to work on the problem set in groups and turn in one problem set for the
entire group. The problem sets are to be submitted on Gradescope. Only one student should
submit the problem set on behalf of the group, but everyone should create a gradescope
account and be tagged on the homework. The entry code is 9RPGX3.

Note: You are to turn in the student information sheet along with your picture on Sept. 16th as
well.

You will need to refer to the assembly lanquage handout and the LC-3b ISA, microarchitecture,
and state diagram documents on the course website.

Questions

Problem 1
Briefly explain the advantage of microarchitecture/ISA separation.

Problem 2

Classify the following attributes of LC-3b as either a property of its microarchitecture or ISA:
1. There is no subtract instruction in LC-3b.

The ALU of LC-3b does not have a subtract unit.

LC-3b has three condition code bits (n, z, and p).

The n, z, and p bits are stored in three 1-bit registers.

A 5-bit immediate can be specified in an ADD instruction

It takes n cycles to execute an ADD instruction.

There are 8 general purpose registers used by operate, data movement and control

instructions.

8. The registers MDR (Memory Data Register) and MAR (Memory Address Register) are
used for Loads and Stores.

9. A 2-to-1 mux feeds one of the inputs to ALU.

10. The register file has one input and two output ports.

No abkowbd

http://users.ece.utexas.edu/~patt/18f.460N/handouts/ch07.pdf
http://users.ece.utexas.edu/~patt/18f.460N/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/18f.460N/handouts/appC.pdf
http://users.ece.utexas.edu/~patt/18f.460N/handouts/state_machine.pdf

Problem 3
Both of the following programs cause the value x0004 to be stored in location x3000, but they
do so at different times. Explain the difference.
1. First program:
.ORIG x3000

.FILL x0004
.END
2. Second program:

.ORIG x4000
AND RO, RO, #0
ADD RO, RO, #4
LEA R1, A
LDW R1, R1, #0
STW RO, R1, #0
HALT

A L.FILL x3000
.END

Problem 4
At location x3E00, we would like to put an instruction that does nothing. Many ISAs actually
have an opcode devoted to doing nothing. It is usually called NOP, for NO OPERATION. The
instruction is fetched, decoded, and executed. The execution phase is to do nothing! Which of
the following three instructions could be used for NOP and have the program still work
correctly?

1. 0001 001 001 1 00000

2. 0000 111 000000000

3. 0000 000 000000000

For each of the three that cannot be used for NOP, explain why.

Problem 5
Consider the following possibilities for saving the return address of a subroutine:
1. In a processor register.
2. In a memory location associated with the subroutine; i.e., a different memory location is
used for each different subroutine.
3. On a stack.
Which of these possibilities supports subroutine nesting, and which supports subroutine
recursion (that is, a subroutine that calls itself)?

Problem 6
A small section of byte-addressable memory is given below:

Address Data
x0FFE xXA2
x0FFF x25
x1000 x0E
%1001 x1A
%1002 x11
x1003 x0C
x1004 x0B
x1005 x0A

Add the 16-bit two's complement numbers specified by addresses x1000 and x1002 if

1. the ISA specifies a little-endian format
2. the ISA specifies a big-endian format

Problem 7
Say we have 32 megabytes of storage, calculate the number of bits required to address a
location if

1. the ISA is bit-addressable

2. the ISA is byte-addressable

3. the ISA is 128-bit addressable

Problem 8
A zero-address machine is a stack-based machine where all operations are done using values
stored on the operand stack. For this problem, you may assume that its ISA allows the following
operations:

e PUSH M - pushes the value stored at memory location M onto the operand stack.

e POP M - pops the operand stack and stores the value into memory location M.
e OP - Pops two values off the operand stack, performs the binary operation OP on the
two values, and pushes the result back onto the operand stack.

Note: To compute A - B with a stack machine, the following sequence of operations are
necessary: PUSH A, PUSH B, SUB. After execution of SUB, A and B would no longer be on the

stack, but the value A-B would be at the top of the stack.

A one-address machine uses an accumulator in order to perform computations. For this
problem, you may assume that its ISA allows the following operations:

e LOAD M - Loads the value stored at memory location M into the accumulator.

e STORE M - Stores the value in the accumulator into Memory Location M.

e OP M - Performs the binary operation OP on the value stored at memory location M and
the value present in the accumulator. The result is stored into the accumulator (ACCUM
= ACCUM OP M).

A two-address machine takes two sources, performs an operation on these sources and stores
the result back into one of the sources. For this problem, you may assume that its ISA allows

the following operation:
e OP M1, M2 -Performs a binary operation OP on the values stored at memory

locations M1 and M2 and stores the result back into memory location M1 (M1 = M1 OP
M2).

Note 1: OP can be ADD, SUB, or MUL for the purposes of this problem.

Note 2: A, B, C, D, E and X refer to memory locations and can be also used to store temporary

results.
1. Write the assembly language code for calculating the expression (do not simplify the

expression):
X=(A+(BxC))x(D-(E+(DxC)))

In a zero-address machine

In a one-address machine

In a two-address machine

In a three-address machine like the LC-3b, but which can do memory to memory

operations and also has a MUL instruction.

2. Give an advantage and a disadvantage of a one-address machine versus a
zero-address machine.

Qo oo

Problem 9
The following table gives the format of the instructions for the LC-1b computer that has 8
opcodes.

Opcode 7 6 5 4 3 2 1 0
ADD 0 0 0 DR A SR
AND 0 0 1 DR A SR
BR(R) 0 1 0 N z P TR
LDImm 0 1 1 signed immediate
LEA 1 0 0 signed offset
LD 1 0 1 DR 0 TR
ST 1 1 0 SR 0 TR
NOT 1 1 1 DR 0 0 0
Notes:

e Interpretation of all instructions is similar to that of the LC-3b, unless specifically stated

otherwise.

e The destination register for the instructions LDImm and LEA is always register RO. (e.g.
LDImm #12 loads decimal 12 to register RO.)

e TR stands for Target Register. In the case of the conditional branch instruction BR, it
contains the target address of the branch. In the case of LD, it contains the address of
the source of the load. In the case of ST, it contains the address of the destination of the
store.

e ADD and AND provide immediate addressing by means of a steering bit, bit[2], labeled A.
If Ais 0, the second source operand is obtained from SR. If Ais 1, the second source
operand is obtained by sign-extending bits[1:0] of the instruction. A bit is called a
“steering” bit if its value “steers” the interpretation of other bits (instruction bits 1:0 in this
case).

e Bits labeled 0 must be zero in the encoding of the instruction.

1. What kind of machine (n-address) does the above ISA specification represent?

2. How many general purpose registers does the machine have?

3. Using the above instructions, write the assembly code to implement a register to register
mov operation.

4. How can we make a PC-relative branch? (HINT: You will need more than one LC-1b
instruction; also, note that the LEA instruction does NOT set condition codes)

Problem 10
Consider the following LC-3b assembly language program:
.ORIG x3000

AND R5, R5, #0
AND R3, R3, #0
ADD R3, R3, #8
LEA RO, B
LDW R1, RO, #1
LDW R1, R1, #0
ADD R2, R1, #0
AGAIN ADD R2, R2, R2
ADD R3, R3, #-1
BRp AGAIN
LDW R4, RO, #0
AND R1, R1, R4
NOT R1, R1
ADD R1, R1, #1
ADD R2, R2, R1

BRnp NO
ADD R5, R5, #1
NO HALT
B LFILL XFFOO
A LFILL X4000
.END

N

What does this program do? (in less than 25 words)

2. When the programmer wrote this program, he/she did not take full advantage of the
instructions provided by the LC-3b ISA. Therefore the program executes too many
unnecessary instructions. Show what the programmer should have done to reduce the
number of instructions executed by this program.

Problem 11
Consider the following LC-3b assembly language program.
.ORIG x4000

MAIN LEA R2,LO0
JSRR R2

JSR L1

HALT
L0 ADD RO,RO, #5
RET
L1 ADD R1,R1,#5
RET

1. Assemble the above program. Show the LC-3b machine code for each instruction in the
program as a hexadecimal number.
2. This program shows two ways to call a subroutine. One requires two instructions: LEA

and JSRR. The second requires only one instruction: JSR. Both ways work correctly in
this example. Is it ever necessary to use JSRR? If so, in what situation?

Problem 12
Consider the following two LC-3b assembly language programs.
.ORIG x4000 .ORIG x5000
MAIN1 LEA R3, L1 MAIN2 LEA R3, L2
Al JSRR R3 A2 JMP R3
HALT HALT
Ll ADD R2, R1, RO L2 ADD R2, R1, RO
RET RET

Is there a difference in the result of executing these two programs? If so, what/why is there a
difference? Could a change be made (other than to the instructions at Labels A1/A2) to either of
these programs to ensure the result is the same?

Problem 13
Use one of the unused opcodes in the LC-3b ISA to implement a conditionally executed ADD
instruction. Show the format of the 16 bit instruction and discuss your reasoning assuming that:
1. The instruction doesn't require a steering bit. (The ADD is a register-register operation).
2. The instruction requires a steering bit. (The ADD has both register-register and
register-immediate forms).

Problem 14
Discuss the tradeoffs between a variable instruction length ISA and a fixed instruction length
ISA. How do variable length instructions affect the hardware? What about the software?

Problem 15

The following program computes the square (k*k) of a positive integer k, stored in location
0x4000 and stores the result in location 0x4002. The result is to be treated as a 16-bit

unsigned number.

Assumptions:

e A memory access takes 5 cycles
e The system call initiated by the HALT instruction takes 20 cycles to execute. This does
not include the number of cycles it takes to execute the HATLT instruction itself.
.ORIG X3000

AND
LEA
LDW
LDW
ADD
LOOP ADD
ADD
BRP
STW

HALT

RO,
R3,
R3,
R1,
R2,
RO,
R2,
LOOP
RO,

RO,
NUM
R3,
R3,
R1,
RO,
R2,

R3,

NUM .FILL x4000

.END

#0

#0
#0
#0
R1
#-1

#1

1. How many cycles does each instruction take to execute on the LC-3b microarchitecture
described in Appendix C?

2. How many cycles does the entire program take to execute? (answer in terms of k)

3. What is the maximum value of k for which this program still works correctly? Note: Treat
the input and output values as 16-bit unsigned values for part 3. We will extend the
problem to 2's complement values in part 4.

4. How will you modify this program to support negative values of k? Explain in less than 30

words.

5. What is the new range of k?

Problem 16

Please answer the following questions:
1. In which state(s) in the LC-3b state diagram should the LD . BEN signal be asserted? Is

there a way for the LC-3b to work correctly without the LD . BEN signal? Explain.
2. Suppose we want to get rid of the BEN register altogether. Can this be done? If so,
explain how. If not, why not? Is it a good idea? Explain.

3. Suppose we took this further and wanted to get rid of state 0. We can do this by
modifying the microsequencer, as shown in the figure below. What is the 4-bit signal
denoted as A in the figure? What is the 1-bit signal denoted as B?

COMD]
COMDG

R IB<1l=

0,108 .10 O0TR<15: 12 LJ Lj
& &
Jebi Jed= I3 2= el Jeilr=
1 O
A

A6
4 6

Y Y

1 0 IRD
&

Address of hext slale

Problem 17

We wish to use the unused opcode “1010” to implement a new instruction ADDM, which (similar
to an IA-32 instruction) adds the contents of a memory location to either the contents of a
register or an immediate value and stores the result into a register. The specification of this
instruction is as follows:

Assembler Formats
ADDM DR, SR1, SR2
ADDM DR, SR1, imm5

Encodings
15 12 11 93 5 5 4 3 12 4] 15 1211 93 & 5 4 u}
I I I I I I I 1 I I I I I I I I 1 I I I I
1010 DR 5R1 |0|0 0| SR> 1010 DR SR1 1 mms
1 1
Operation
if (bit[5] == 0)
DR = Memory[SR1] + SR2;
else

DR = Memory[SR1] + SEXT (immb) ;
setcc (DR) ;

1. We show below an addition to the state diagram necessary to implement ADDM. Using
the notation of the LC-3b State Diagram, describe inside each “bubble” what happens in
each state, and assign each state an appropriate state number (state A has been done
for you). Also, what is the one-bit signal denoted as X in the figure? Note: Be sure your
solution works when the same register is used for both sources and the destination (eg.,
ADDM R1, R1, R1).

o Hint: states 26, 34, and 36-63 in the control store are available

o Hint: to make ADDM work when the same register is used for both sources and
destination, you will need to change the datapath. Part 2 asks you to show the
necessary changes to the datapath

39

BEM<—IR[11] & N + IR[10] & Z + IR[9] & P

[IRI15:12])
State Number
ADDM
' A 10
- ' B
o
X X
' C
. D

2. Add to the Data Path any additional structures and any additional control signals needed
to implement ADDM. Label the additional control signals ECS 1 (for “extra control signal
17), ECS 2, etc.

3. The processing in each state A,B,C,D is controlled by asserting or negating each control
signal. Enter a 1 or a 0 as appropriate for the microinstructions corresponding to states
A,B,C,D.

o Clarification: for ease of grading, only fill in the control values that are non-zero;
entries you leave blank will be assumed to be 0 when we grade

o Clarification: for the encoding of the control signals, see table C.1 of Appendix C.
For each control signal, assume that the 1st signal value in the list is encoded as
0, the the 2nd value encoded as a 1, etc.

£ . . e =
-E'_ g & [2 N
i e oL ¥ = F X
R ; o g oy ol e
= F S o @YTFE X HEST F O - - -
2 FEEFETLMLY T2y @ wEFE & ook & mE s
3 T 9999 F FFEF CFF9 §F g5 FRFFEEEE
& &8 vl £ & 55O
. = wWFaFfaf WJauf o JFo g o OO o0 o 3":\"-" T o o S RN g
I | N I B | | | |
al HEEEEEEEEEEEENEEEEEE | |
s| VPP PP PPt Pt | |
cp P PP PP | |

http://users.ece.utexas.edu/~patt/18f.460N/handouts/appC.pdf

Problem 18
The Address Control Logic in the LC-3b datapath of Figure C.3 in Appendix C allows the LC-3b
to support memory-mapped I/O. There are three inputs to this logic:
e 16-bit address in MAR. This signal can take the following values: xFE00, xFE02,
xFE04, xFEO06, and OTHER (any other address between x0000 and xFDFF).
e 1-bit control signal R.W. The access is a read access if this signal is R, write access
if it is W.
e 1-bit control signal MIO. EN. If this signal is 1, a memory or I/O access should be
performed in this cycle.
The logic has five outputs:
e 1-bit MEM. EN signal. Memory is enabled if this signal is 1.
e 2-bit select signal for INMUX. This signal can take the following values: KBDR, KBSR,
DSR, MEMORY.
e 1-bit LD.KBSR signal. KBSR will be load-enabled at the end of the current cycle if this
signal is 1.
e 1-bit LD. DDR signal. DDR will be load-enabled at the end of the current cycle if this
signal is 1.
e 1-bit LD.DSR signal. DSR will be load-enabled at the end of the current cycle if this
signal is 1.

Your task is to draw the truth table for this Address Control Logic. Mark don't care values with
“X”in your truth table. Use the conventions described above to denote the values of inputs and
outputs. Please read Section C.6 in Appendix C on memory-mapped |/O before answering this
question. Also, refer to table A.3 of Appendix A to find out the addresses of device registers.

Problem 19
Answer the following short questions:
1. A memory's addressability is 64 bits. What does that tell you about the sizes of the MAR
and the MDR?
2. We want to increase the number of registers that we can specify in the LC-3b ADD
instruction to 32. Do you see any problem with that? Explain.

Problem 20

Please go to the handouts section of the course web site, print and fill out the student
information sheet, and turn it in with a recognizable recent photo of yourself on
September 16th (the same day this problem set is due). Please submit an electronic copy.

http://users.ece.utexas.edu/~patt/17s.460N/handouts/360n.appC.pdf
http://users.ece.utexas.edu/~patt/17s.460N/handouts/new_byte.pdf

	Department of Electrical and Computer Engineering
	The University of Texas at Austin

	Instructions
	Questions
	Problem 1
	Problem 2
	
	Problem 3
	
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Problem 9
	Problem 10
	
	Problem 11
	Problem 12
	Problem 13
	Problem 14
	Problem 15
	Problem 16
	Problem 17
	Assembler Formats
	Encodings
	Operation
	Problem 18
	Problem 19
	Problem 20

