
Lecture 2: Introduction to Machine Learning
Systems Design [Draft]

CS 329S: Machine Learning Systems Design (cs329s.stanford.edu)
Prepared by Chip Huyen & the CS 329S course staff
Reviewed by Andrey Kurenkov, Luke Metz, Laurens Geffert
Errata and feedback: please send to chip@huyenchip.com

Note:
1. See the course overview and prerequisites on the first lecture slides.
2. The course, including lecture slides and notes, is a work in progress. This is the first time

the course is offered and the subject of ML systems design is fairly new, so we (Chip +
the course staff) are all learning too. We appreciate your:

a. enthusiasm for trying out new things
b. patience bearing with things that don’t quite work
c. feedback to improve the course.

https://huyenchip.com
https://twitter.com/andrey_kurenkov
https://twitter.com/Luke_Metz
mailto:chip@huyenchip.com
https://docs.google.com/presentation/d/1XKBXoLW3ED3FcvDRK3jfQeIlLCK2QTnsoZeopR6ziRQ/edit?usp=sharing

1. Goals of machine learning systems design 3
Reliability 3
Scalability 4
Maintainability 4

Importance of subject matter experts 5
Collaboration among cross-functional teams 5

Adaptability 5

2. Different types of machine learning systems 5
Online prediction vs. batch prediction 6
Edge computing vs. cloud computing 8

Benefits of machine learning on the edge 8
Online learning vs. offline learning 10

3. Iterative process 11

4. Project scoping 13
Goals and objectives 13

Goals 13
Objectives 14

Multiple objective optimization (MOO) 14
Constraints 15
Evaluation 16
When to use machine learning 16

Example use cases 20
When not to use machine learning 22

Four phases of machine learning adoption 23
Phase 1: Before machine learning 23
Phase 2: Simplest machine learning models 24
Phase 3: Optimizing simple models 25
Phase 4: Complex systems 25

5. Case studies 25

1. Goals of machine learning systems design
Machine learning systems design is the process of defining the interface, algorithms1, data,
infrastructure, and hardware for a machine learning system to satisfy specified requirements.

Most ML courses only cover the ML algorithms part. In this course, we won’t teach you
different ML algorithms, but we’ll look at the entire system.

Requirements vary from use case to use case. Here are the four main requirements that the
systems we’ll be studying should have.

1. Reliable
2. Scalable
3. Maintainable
4. Adaptable

Reliability
The system should continue to perform the correct function at the desired level of
performance even in the face of adversity (hardware or software faults, and even human error).

“Correctness” might be difficult to determine for ML systems. For example, your system might
call the function “.predict()” correctly, but the predictions are wrong. How do we know if a
prediction is wrong if we don’t have ground truth labels to compare it with?

1 Algorithms include both machine learning algorithms and other algorithms.

When traditional software systems, you often get a warning, e.g. systems crash or runtime error
or 404. However, ML systems fail silently. Users don’t even know that the system has failed and
might have kept on using it as if it was working.

An example of possibly a silent fail of Google Translate

Scalability
As the system grows (in data volume, traffic volume, or complexity), there should be reasonable
ways of dealing with that growth.

Scaling isn’t just scaling up -- expanding the resources to handle growth. In ML, it’s also
important to scale down -- reducing the resources when not needed. For example, at peak, your
system might require 100 GPUs. However, most of the time, your system needs only 10 GPUs.
Keeping 100 GPUs up all the time can be costly, so your system should be able to scale down to
10 GPUs.

An indispensable feature in many cloud services is autoscaling: automatically scale up and down
the number of machines depending on usage. This feature can be tricky to implement. Even
Amazon fell victim to this when their autoscaling feature failed on Prime Day, causing their
system to crash. An hour downtime was estimated to cost it between $72 million and $99
million2.

Maintainability
There are many people who will work on an ML system. They are ML engineers, DevOps
engineers, subject matter experts (SMEs). They might come from very different backgrounds,
with very different languages and tools, and they should all be able to work on the system
productively.

2 https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7

Importance of subject matter experts
Subject matter experts (doctors, lawyers, bankers, farmers, stylists, etc.) are not only users but
also developers of ML systems. SMEs are often overlooked in the design of ML systems, but
many ML systems wouldn’t work without subject matter expertise.

Most people only think of subject matter expertise during the data labeling phase -- e.g. you’d
need trained professionals to label whether a CT scan of a lung shows signs of cancer. However,
an ML system would benefit a lot to have SMEs involved a lot more steps, such as:

● problem formulation
● feature engineering
● error analysis
● model evaluation
● reranking predictions
● user interface: how to best present results to users and or to other parts of the system

Collaboration among cross-functional teams
There are many challenges that arise from having multiple different profiles working on a
project. For example, how do you explain ML algorithms limitations and capacities to SMEs
who might not have engineering or statistical backgrounds? To build an ML system, we want
everything to be versioned, but how do you translate domain expertise (e.g. if there’s a small dot
in this region between X and Y then it might be a sign of cancer) into code and version that?
Good luck trying to get your doctor to use Git.

To help SMEs get more involved in the development of ML systems, many companies are
building no-code/low-code platforms that allow people to make changes without writing code.

Adaptability
To adapt to changing data distributions and business requirements, the system should have some
capacity for both discovering aspects for performance improvement and allowing updates
without service interruption.

Because ML systems are part code, part data, and data can change quickly, ML systems need to
be able to evolve quickly. This is tightly linked to maintainability. We’ll go more into this later!

2. Different types of machine learning systems
Before we start designing an ML system, let’s take a look at the existing machine learning
systems and see if we can find some patterns. We’ll be categorize different systems based on
three aspects:

● How their ML models serve their predictions (batch prediction vs. online prediction)

● Where the majority of computation is done (edge computing vs. cloud computing)
● How often their ML models get updated (online learning vs. offline learning)

This section provides an overview of these types of systems. We’ll be going deeper into how to
implement them in the future in lectures about deployment.

Caution against categorical thinking

This categorization provides an anchor to think about the requirements and limitations of
different systems. It’s not a guide. Seemingly different ways of doing things might be
fundamentally similar, and the choices don’t have to be mutually exclusive. For example, you
don’t have to do only batch predictions or only online predictions -- you can do both. If you’re
doing batch predictions, switching to online predictions might be easier than you think. You
shouldn’t think about whether to do batch predictions or online predictions, but how best to
address your problem. Focus on solutions, not techniques.

Putting things in buckets might cause organizations to get stuck in one way of doing things
without realizing that the other way isn’t that different but can provide much more value. If
you’re interested in learning more about the dark side of “categorical thinking”, check out this
great HBR psychology article3.

Online prediction vs. batch prediction
If you’ve ever used the AI platforms offered by popular cloud providers like AWS or Google
Cloud, you’ll see that they offer two options for making predictions: batch prediction and
online prediction (sometimes called HTTP prediction).

⚠Misnomer warning⚠

The terms online prediction and batch prediction can be confusing. Both can make
predictions for multiple samples (in batch) or one sample at a time.

I suspect the reason companies don’t use online prediction vs. offline prediction is because if
you put your models on the cloud, then predictions are technically made “online” - over the
Internet.

● Batch prediction is when predictions are generated asynchronously and periodically
(e.g. every four hours or whenever triggered). The predictions are generally stored
somewhere such as in SQL tables or CSV files and retrieved as needed. Batch prediction

3 Thanks ZhenZhong Xu for sharing this!

https://hbr.org/2019/09/the-dangers-of-categorical-thinking
https://twitter.com/zhenzhongxu

is good for when you don’t need the results immediately, but want to process a high
volume of samples.

Batch prediction can also be used as a trick to reduce latency for more complex models.
Generating predictions on the spot for each incoming query might take too long, but
retrieving a precomputed query might be faster.

One common use case of batch prediction is recommendation systems -- generating
recommendations for users every few hours and only pull out the recommendation for
each user when they log into the system.

You don’t have to use all the predictions generated. For example, you can make
predictions for all customers on how likely they are to buy a new product, and reach out
to the top 10%.

● Online prediction is when predictions are generated as requests arrive and returned as
responses. Online prediction is necessary when you need the prediction immediately for
each data sample, e.g. you want to know whether a transaction is fraudulent as soon as it
happens.

Online prediction and batch prediction don’t have to be mutually exclusive. One hybrid solution
is that you do online prediction for default, but for common queries, predictions are precomputed
in advance and pulled out as needed to reduce latency when it takes longer to make a prediction
than to retrieve a result.

In many applications, online prediction and batch prediction are used side by side for different
use cases. For example, food ordering apps like DoorDash and UberEats use batch prediction to
generate restaurant recommendations -- it’d take too long to generate these recommendations
online because there are many restaurants. However, once you click on a restaurant, food item
recommendations are generated using online prediction.

Batch prediction is a workaround for when online prediction isn’t cheap enough or isn’t fast
enough (or legacy systems force you to use batch prediction because it’d be too expensive to
update your infrastructure to online prediction). Why generate 1 million predictions in advance
and worrying about storing and retrieving them if you can generate each prediction as needed at
the exact same cost and same speed? Online prediction can also allow many use cases previously
impossible with batch prediction.

As hardware becomes more customized/powerful, better techniques are developed to allow
faster, cheaper online predictions, it will make sense to switch to online prediction.

Batch prediction Online prediction

Frequency Periodical (e.g. every 4 hours) As soon as requests come

Useful for Processing accumulated data when
you don’t need immediate results
(e.g. recommendation systems)

When predictions are needed as
soon as data sample is generated
(e.g. fraud detection)

Optimized High throughput Low latency

Input space Finite: need to know how many
predictions to generate

Can be infinite

Examples Netflix recommendations Google Assistant speech recognition

Edge computing vs. cloud computing
ML models are compute-intensive. If the devices where the ML models are used aren’t powerful
enough to handle the needed computation, the computation has to be done on a server.

Edge computing is when the large chunk of computation is done on the edge (browsers, phones,
laptops, smart watches, cars, security cameras, robots), whereas cloud computing is when the
large chunk of computation is done on the cloud (hosted servers).

For cloud computing, you’d need network connections to be fast enough to transfer data between
devices and servers.

For edge computing, you’d need edge devices that:
● are powerful enough to handle the computation
● have enough memory to store ML models and load them into memory
● have enough battery or be connected to an energy source to power the application for a

reasonable amount of time (running a full-sized BERT on your phone, if your phone is
capable of doing that, is a very quick way to kill its battery).

Benefits of machine learning on the edge
Edge computing has become a buzzword in the recent year for a reason. There are many benefits
for ML systems to be on the edge.

1. Can work without (Internet) connections or with unreliable connections
Cloud computing relies on stable connections. It wouldn’t work for situations where there
is no connection (e.g. many companies have strict no-Internet policy because of privacy
concerns) or connections are unreliable (e.g. rural areas or developing countries).

Caveat: edge computing means that you don’t need connections to execute computation,
but your systems might still need connections to function. For example, ETA estimation
needs Internet connections to receive external traffic information to provide accurate
estimations.

2. Don’t have to worry about network latency
Requiring data transfer over network might make some use cases impossible because of
network latency. In many cases, network latency is a bigger bottleneck than inference
latency.

3. Fewer concerns about privacy
ML on the edge means that your systems will less likely have to send user data over
networks, which can be intercepted. Cloud computing often means storing data of many
users in the same place, which means a breach can affect many people4. Edge computing
also makes it easier to comply with regulations (e.g. GDPR) about how user data can be
transferred or stored.

Caveat: edge computing doesn’t mean no privacy concerns. In some cases, edge
computing might make it easier for attackers to steal user data, e.g. they can just take the
device with them!

4. Save on server cost
The more computations we can push to the edge, the less servers we’ll need, and the less
we’ll have to pay for servers.

Because of the many benefits of edge computing over cloud computing, companies, both startups
and large companies, are in a race to develop more powerful hardware optimized for different
ML use cases. We’ll dig deeper into edge devices and edge computing in future lectures.

Future of ML: online and on-device

As hardware becomes more powerful and optimized for ML, I believe that ML systems will
transition to making online prediction on-device. In addition to making predictions on-device,
people are also working on techniques that enable ML model training over edge devices (e.g.
federated learning5), and we’ll go over this in the future lectures.

5 Federated Learning: Collaborative Machine Learning without Centralized Training Data
4 Nearly 80% of Companies Experienced a Cloud Data Breach in Past 18 Months (Security magazine, 2020)

https://www.securitymagazine.com/articles/92533-nearly-80-of-companies-experienced-a-cloud-data-breach-in-past-18-months

Online learning vs. offline learning
Online learning is a really exciting but underexplored area of ML. It’s also hard to do so few
companies are actually doing it, but I believe more and more companies will do it in the future.
Below are a few differences between online learning and the traditional offline learning that most
people are more familiar with. Online learning requires different infrastructure and some mental
shift, which (again) we will cover in the future.

Offline learning Online learning

Iteration cycle Periodical (months) Continual (minutes)

This is different from continuous --
learning with every coming sample!

Batch size Thousands to millions Hundreds

Data usage Each sample seen multiple times
(epochs)

Each sample seen at most once

Evaluation Mostly offline evaluation Offline evaluation as sanity check
Mostly relying on online evaluation
(A/B testing)

Online learning doesn’t mean offline learning. The companies that have most successfully used
online learning also train their models offline in parallel and then combine the online version
with the offline version.

If the infrastructure is set up right, there’s no fundamental difference between online learning and
offline learning, just a hyperparameter to tune, e.g. how big is the (micro)batch, how often to
evaluate your model.

3. Iterative process
Before deploying my first ML system, I thought it’d go like this.

1. Collect data
2. Train model
3. Deploy model
4. Profit

But in reality, it went something like this. Here is one common workflow that you might
encounter when building an ML model to predict whether an ad should be shown when users
enter a search query6.

1. Choose a metric to optimize. For example, you might want to optimize for impressions --
the number of times an ad is shown.

2. Collect data and obtain labels.
3. Engineer features.
4. Train models.
5. During error analysis, you realize that errors are caused by wrong labels, so you relabel

data.
6. Train model again.
7. During error analysis, you realize that your model always predicts that an ad shouldn’t be

shown, and the reason is because 99.99% of the data you have is no-show (an ad

6 Praying and crying not featured but present through the entire process.

shouldn’t be shown for most queries). So you have to collect more data of ads that should
be shown.

8. Train model again.
9. Model performs well on your existing test data, which is by now two months ago. But it

performs poorly on the test data from yesterday. Your model has degraded, so you need to
collect more recent data.

10. Train model again.
11. Deploy model.
12. Model seems to be performing well but then the business people come knocking on your

door asking why the revenue is decreasing. It turns out the ads are being shown but few
people click on them. So you want to change your model to optimize for clickthrough
rate instead.

13. Start over.

There is a lot of back and forth between different steps, making the process more of a cycle than
a waterfall. There are six main steps in this cycle.

1. Project scoping
A project starts with scoping the project, laying out goals & objectives, constraints, and
evaluation criteria. Stakeholders should be identified and involved. Resources should be
estimated and allocated.

2. Data management

Data used and generated by ML systems can be large and diverse, which requires scalable
infrastructure to process and access it fast and reliably. Data management covers data
processing, data control, data storage, and data consumer.

3. ML model development
From raw data, you need to create training datasets and possibly label them, then generate
features, train models, optimize models, and evaluate them. This is the stage that requires
the most ML knowledge and is most often covered in ML courses.

4. Deployment
After a model is developed, it needs to be made accessible to users.

5. Monitoring and maintenance
Once in production, models need to be monitored for performance decay and maintained
to be adaptive to changing environments and changing requirements.

6. Business analysis
Model performance needs to be evaluated against business goals and analyzed to generate
business insights. These insights can then be used to eliminate unproductive projects or
scope out new projects.

4. Project scoping

Goals and objectives

Goals
While most companies want to convince you otherwise, the sole purpose of businesses,
according to the Nobel-winning economist Milton Friedman, is to maximize profits for
shareholders7. The ultimate goal of an ML project or any project within a business is, therefore,
to increase profits.

Aside: non-profits are, of course, exceptions from this rule. There are a lot of exciting
applications of ML/AI for social good.

● environment (climate change, deforestation, flood risk, etc.)
● public health
● education (intelligent tutoring system, personalized learning)

ML projects might have goals that directly or indirectly improve the bottom line. Directly such
as increasing sales (conversion rates), cutting costs. Indirectly such as higher customer
satisfaction, increasing time spent on a website.

7 A Friedman doctrine‐- The Social Responsibility Of Business Is to Increase Its Profits (Milton Friedman,
The New York Times Magazine 1970).

The financial effect of an indirect goal can be confusing. An ML model that gives customers
more personalized solutions can make them happier which makes them spend more money on
your services. The same ML model can also solve their problems faster which makes them spend
less money on your services.

Example: when building a ranking system for a newsfeed, some of the possible goals are:
1. minimize the spread of misinformation
2. maximize revenue from sponsored content
3. maximize users’ engagement

Objectives
Goals define the general purpose of a project. Objectives define specific steps on how to realize
that purpose. For example, the goal of a ranking system for a newsfeed is to maximize users’
engagement and the objectives are:

1. Filter out spam
2. Filter out NSFW content
3. Rank posts by engagement: how likely users will click on it

However, because of the questionable ethics of optimizing for engagement (extreme posts get
more engagements -> promotions of more extreme ideas89), we want to create a more wholesome
newsfeed. So we have a new objective: maximize users’ engagement while minimizing the
spread of extreme views and misinformation. So we added two new objectives:

1. Filter out spam
2. Filter out NSFW content
3. Filter out misinformation
4. Rank posts by quality (let’s pretend for now that we know how to measure quality)
5. Rank posts by engagement: how likely users will click on it

Multiple objective optimization (MOO)

Now our objective 4 and 5 might be conflicting with each other. For example, a post might be
very engaging but of questionable quality -- where should that post go?

Let’s take a step back to see what exactly each objective does. To rank posts by quality, we first
need to predict posts’ quality, which can be achieved by trying to minimize quality_loss: the
difference between each post’s predicted quality and its true quality.

9 The Making of a YouTube Radical (NYT, 2019)
8 Facebook Employee Raises Powered by ‘Really Dangerous’ Algorithm That Favors Angry Posts (SFist, 2019)

https://www.nytimes.com/interactive/2019/06/08/technology/youtube-radical.html
https://sfist.com/2020/09/24/facebook-employee-raises-powered-by-really-dangerous-algorithm-that-favors-angry-posts/

Similarly, to rank posts by engagement, we first need to predict the number of clicks each post
will get, which can be achieved by trying to minimize engagement_loss: the difference between
each post’s predicted clicks and the actual number of clicks it gets.

One approach is to combine these two losses into one loss and train one model to minimize that
loss.

loss = 𝛼 quality_loss + 𝛽 engagement_loss

You can tune tune 𝛼 and 𝛽 to meet your need. To learn how to choose 𝛼 and 𝛽, you can check out
Pareto optimization, an area of multiple criteria decision making that is concerned with
mathematical optimization problems involving more than one objective function to be optimized
simultaneously. Also check out this great paper on applying Pareto optimization for ML because,
the authors claimed: “machine learning is inherently a multiobjective task10”.

A problem with this approach is that each time you tune 𝛼 and 𝛽, you’ll have to retrain your
model.

Another approach is to train two different models, each optimizing one loss. So you have:
● quality_model that minimizes quality_loss and outputs the predicted quality of each post
● engagement_model that minimizes engagement_loss and outputs the predicted number of

clicks of each post

You can combine the outputs of these two models and rank posts by these combined values:
𝛼 quality_model(post) + 𝛽 engagement_model(post)

Now you can tweak 𝛼 and 𝛽 without retraining your models.

In general, when there are multiple objectives, it’s might be a good idea to decouple them
because:

● It’s easier for training:
○ Optimizing for one objective is easier than optimizing for multiple objectives

● It’s easier to tweak your system without retraining models
● It’s easier for maintenance since different objectives might need different maintenance

schedules. For example, spamming techniques evolve much faster than the way post
quality is perceived, so spam filtering systems need updates at a much higher frequency
than quality ranking systems.

Constraints
A project’s constraints rule out impossible solutions.

10 Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies (Jin and Sendhoff, IEEE 2008)

https://en.wikipedia.org/wiki/Multi-objective_optimization
https://en.wikipedia.org/wiki/Multi-objective_optimization
https://en.wikipedia.org/wiki/Multi-objective_optimization
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.2352&rep=rep1&type=pdf

● Time
● Performance

○ Baselines: What are you comparing the system to?
■ Example: existing solutions, simple solutions, human experts, competitors

solutions, etc.
○ Usefulness threshold: how fast/good the solution needs to be for it to be useful?

■ Example: self-driving cars need human-level performance to be useful. A
system that predicts what word a user will type next on their phone
doesn’t.

○ Performance tradeoffs: what’s more important -- false negatives or false
positives?

■ Example: covid screening must not have false negative (patients with
covid shouldn’t be classified as no covid). Fingerprint unlocking must not
have false positive (unauthorized people shouldn’t be given access)

○ Interpretability: Does the solution need to be interpretable? If yes, to whom?
○ Confidence measurement: Does the solution need confidence measurement, e.g.

how confident the model is about a prediction?
■ If yes, what is the confidence threshold a prediction has to pass to be

usable? What do you want to do with predictions below that
threshold—discard it, loop in humans, or ask for more information from
users?

● Budget
○ What is the maximum initial budget?
○ What needs to be accomplished to increase the budget?

● Stakeholders
○ Who, both internal and external, will be affected by the project?
○ Who needs to be informed about the project?

● Privacy
○ Privacy requirements for annotation, storage, third-party solutions, cloud services,

regulations
■ Can data be shipped outside organizations for annotation?
■ Can the system be connected to the Internet?
■ How long can you keep users data?

● Technical constraints
○ Is there any tool or system that the solution must be compatible with?

■ Legacy infrastructure is a huge bottleneck for organizations to adopt ML.

Evaluation
● How to evaluate the system’s performance, both during development and deployment?

○ If you need ground truth labels, how can they be generated or inferred from users’
reactions?

● How to tie model performance to business goals and objectives?

When to use machine learning
Despite an incredible amount of excitement and hype generated by people both inside and
outside the field, ML is not a magic tool that can solve all problems. Even for problems that ML
can solve, ML solutions might not be the optimal solutions.

Before starting an ML project, you might want to ask whether ML is necessary11 and whether the
cost-benefit equation for ML makes sense.

To understand what problems ML can solve, let’s take a step back and understand what ML is:

Machine learning is an approach to learn complex patterns from existing data and use these
patterns to make predictions on unseen data.

We’ll look at each of the underlined keyphrases in the definition to understand its implications to
the problems ML can solve.

1. Patterns: there are patterns to learn
It’d be foolish to build an ML system to predict the next outcome of a fair die or the next
winning lottery ticket because there’s no pattern in how these outcomes are generated12.

Similarly, it wouldn’t make sense to build a system to predict the price of a stock if you
believed the price is entirely random. However, since there are patterns in the stock
market, companies have invested billions of dollars in building ML systems to learn those
patterns.

2. Learn: it’s possible to form an objective function to guide the learning
Given a dataset, an ML algorithm might learn useful patterns or it might mistake noises
for patterns. Objective functions guide ML algorithms in learning because ML algorithms
update candidate models to minimize/maximize these functions.

For supervised learning, an objective function can be defined by the differences between
the ground truth labels and the predictions made by candidate models. The differences

12 Patterns are different from distributions. We know the distribution of the outcomes of a fair die, but there
are no patterns in the way the outcomes are generated.

11 I didn’t ask whether ML is sufficient because the answer is always no.

have to be mathematically quantified, such as mean squared error or negative
log-likelihood.

3. Complex: the patterns are complex
Consider a website like Airbnb with a lot of house listings, each listing comes with a zip
code. If you want to sort listings into the states they are located in, you wouldn’t need an
ML system. Since the pattern is simple—each zip code corresponds to a known
state—you can just use a lookup table.

However, predicting the price of each listing requires much more complex patterns. The
price of the house depends on the neighborhood, how big the lot is, how many bedrooms
the house has, the year it was built, nearby schools, nearby listings, demands for housing
in that area, risks of natural disasters, mortgage rate, the housing market, HAO fee, etc.
With good training practices, ML algorithms can learn these patterns from data and
predict the price of a new listing without you having to explicitly write out the rules.

ML has been very successful with tasks with complex patterns such as object detection
and speech recognition. Algorithmic complexity is different from complexity in human
perception. Many tasks that are hard for humans to do can be easy to express in
algorithms, e.g. raising a number of the power of 10. Vice versa, many tasks that are easy
for humans can be hard to express in algorithms, e.g. deciding whether there’s a cat in a
picture.

4. Existing data: data is available, or it’s possible to collect data
Since ML learns from data, there must be data for it to learn from. It’s amusing to think
about building a model to predict how much tax a person should pay a year, but it’s not
possible unless you have access to tax and income data of a large population13.

Existing data can be public, proprietary, or synthesized. Or, you can follow a
‘fake-it-til-you make it’ approach: launching a product that serves predictions made by
humans, instead of ML algorithms, with the hope of using the generated data to train ML
algorithms.

5. Unseen data: Unseen data shares patterns with the training data
The patterns your model learns from existing data are only useful if unseen data also
share these patterns. A model to predict whether an app will get downloaded on
Christmas 2020 won’t perform very well if it’s trained on data from 2008 when the most
popular app on the App Store was Koi Pond. What’s Koi Pond? Exactly.

13 Looking at you, IRS.

In technical terms, it means your unseen data and training data should come from similar
distributions. You might ask: “If the data is unseen, how do we know what distribution it
comes from?” We don’t, but we can make assumptions—e.g. we can assume that users’
behaviors tomorrow won’t be too different from users’ behaviors today—and hope that
our assumptions hold. If they don’t, we’ll find out soon enough.

6. Predictions: it’s a predictive problem
ML algorithms make predictions, so they can only solve problems that require
predictions. ML can be especially appealing when you can benefit from a large quantity
of cheap but approximate predictions. Semantically, “predict” means estimating
something in the future—what would the weather be like tomorrow? What would win the
Super Bowl this year? What movie would a user want to watch next?

As predictive machines (e.g. ML models) are becoming more effective, more and more
problems are being reframed as predictive problems. Whatever question you might have,
you can always frame it as: “What would the answer to this question be?”

Computing problems are one class of problems that have been very successfully reframed
as predictive. Instead of computing the exact outcome of a process, which might be even
more computationally costly and time-consuming than ML, you can frame the problem
as: “What would the outcome of this process look like?” and approximate it using an ML
algorithm. The output will be an approximation of the exact output, but often, it’s good
enough. You can see a lot of it in graphic renderings, such as image denoising14,
screen-space shading15.

Due to the way machines learn, ML solutions will especially shine if your problem has these
additional following characteristics.

7. It’s repetitive
Humans are great at few-shot learning: you can show kids a few pictures of cats and most
of them will recognize a cat the next time they see one. Despite exciting progress in
few-shots learning research, most ML algorithms still require many examples to learn a
pattern. When a task is repetitive, each pattern is repeated multiple times, which makes it
easier for machines to learn it.

8. It’s at scale

15 Deep Shading: Convolutional Neural Networks for Screen-Space Shading (Nalbach et al., 2016)

14 Kernel-predicting convolutional networks for denoising Monte Carlo renderings (Bako et al., ACM
Transactions on Graphics 2017)

https://arxiv.org/abs/1603.06078
https://studios.disneyresearch.com/wp-content/uploads/2019/03/Kernel-Predicting-Convolutional-Networks-for-Denoising-Monte-Carlo-Renderings-Paper33.pdf

ML solutions often require non-trivial upfront investment on data, compute,
infrastructure, and talent, so it’d make sense if we can use these solutions a lot.

“At scale” means different things for different tasks, but it might mean making a lot of
predictions. Examples include sorting through millions of mails a year or predicting
which departments thousands of support tickets should be sent to a day.

A problem might appear to be a singular prediction but it’s actually a series of
predictions. For example, a model that predicts who will win a US presidential election
seems like it only makes one prediction every four years, but it might actually be making
a prediction every hour or even less because that prediction has to be updated to new
information over time.

Having a problem at scale also means that there’s a lot of data for you to collect, which is
useful for training ML models.

9. The patterns are constantly changing
Cultures change. Tastes change. Technologies change. What’s trendy today might be old
news tomorrow. Consider the task of email spam classification. Today, an indication of a
spam email is a Nigerian prince but tomorrow it might be a distraught Vietnamese writer.

If your problem involves one or more constantly changing patterns, solutions that don’t
allow you to learn from changing data might get you stuck in the past.

Example use cases
ML has found increasing usage in both enterprise and end-user applications. Since the
mid-2020s, there has been an explosion of applications that leverage ML to deliver superior or
previously impossible services to the end-users. Below are some of the notable examples.

● Authentication with your face or fingerprints
● Machine translation
● Writing: autocorrection, autocompletion, predictive typing
● Photos: auto-enhancements and filters

○ E.g. Google Photos, Instagram, Snapchat
● Personal assistant: automatically scheduling, booking flight tickets, placing orders,

question answering
○ E.g. Siri, Google Assistant, Alexa

● Home security: detecting when pets leave house or intrusion when no one is home
● Elderly care: at-home health monitoring, fall detection
● Health care: skin cancer detection, diabetes diagnosis, drug-drug interaction predictions,

drug discovery

● General amusements: finding your celebrity doppelganger, converting your face into a
cartoon character, changing your voice

Even though the market for ML applications for end-users is booming, the majority of ML use
cases are still in the enterprise world. According to Algorithmia’s 2020 state of enterprise
machine learning survey, ML applications in enterprises are diverse, serving both internal use
cases (reducing costs, generating customer insights and intelligence, internal processing
automation) and external use cases (improving customer experience, retaining customers,
interacting with customers).16

2020 state of enterprise machine learning. Algorithmia 2020.

Below are some of the problems that have found a wide adoption of ML in enterprises.
● Search engine: both as a standalone search engine like Google or as part of another

service such as the search functionality for app stores, Amazon, Netflix, etc.
● Recommendation systems: recommending what content a user should consume next on

a platform (e.g. movies you might like, related products). A good recommender system
can lead to higher customer engagement, more sales, better customer satisfaction.

● Demand forecasting: to run a business, it’s important to be able to forecast customer
demand so that you can prepare a budget, stock inventory, allocate resources, and update

16 2020 state of enterprise machine learning (Algorithmia, 2020)

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf

pricing strategy. For example, if you run a grocery store, you want to stock enough so
that customers find what they’re looking for, but you don’t want to stock too much that
your groceries go bad.

● Pricing optimization: deciding how much to charge for your product or service is
probably one of the hardest business decisions, why not let ML do it for you? Price
optimization is the process of estimating a price at a certain time period to maximize a
defined objective function, e.g. the company’s margin or revenue. ML-based pricing
optimization is most suitable for cases with a large number of transactions where demand
fluctuates and consumers are willing to pay a dynamic price e.g. Internet ads, flight
tickets, accommodation bookings, ride-sharing, events.

● Customer acquisition: acquiring a new user is expensive. As of 2019, the average cost
for an app to acquire a user who’ll make an in-app purchase is $86.6117. The acquisition
cost for Lyft is estimated at $158/rider18. This cost is so much higher for enterprise
customers. Customer acquisition cost is hailed by investors as a startup killer19. Reducing
customer acquisition costs by a small amount can result in a large increase in profit. This
can be done through better identifying potential customers, showing better-targeted ads,
giving discounts at the right time, etc.—all of which are suitable tasks for ML.

● Churn prediction: after you’ve spent so much money acquiring a customer, it’d be a
shame if they leave. Churn prediction is predicting when a specific customer is about to
stop using your products or services so that you can take appropriate actions to win them
back. Churn prediction can be used not only for customers but also for employees.

● Support ticket classification: when a customer opens a support ticket or sends an email,
it usually needs to first be processed then passed around to different departments until it
arrives at the inbox of someone who can address it. This process can be automated with
an ML system to analyze the ticket content and predict where it should go, which can
shorten the response time and improve customer satisfaction. It can also be used to
classify internal IT tickets.

● Fraud detection: this is among the oldest applications of ML in the industry. If your
product or service involves transactions of any value, it’ll be susceptible to fraud. By
leveraging ML solutions for anomaly detection, you can have systems that learn from
historical fraud transactions and predict whether a future transaction is fraudulent.

● Brand monitoring: the brand is a valuable asset of a business20. It’s important to monitor
how the public and how your customers perceive your brand. You might want to know
when/where/how it’s mentioned, both explicitly (e.g. when someone mentions “Google”)
or implicitly (e.g. when someone says “the search giant”) as well as the sentiment

20 Apple, Google, Microsoft, Amazon each has a brand estimated to be worth in the order of hundreds of
millions dollars (Forbes, 2020)

19 Startup Killer: the Cost of Customer Acquisition (David Skok, 2018)
18 Valuing Lyft Requires A Deep Look Into Unit Economics (Forbes, 2019)

17 Average mobile app user acquisition costs worldwide from September 2018 to August 2019, by user
action and operating system (Statista, 2019)

https://www.forbes.com/the-worlds-most-valuable-brands
https://www.forbes.com/the-worlds-most-valuable-brands
https://www.forentrepreneurs.com/startup-killer/
https://www.forbes.com/sites/jeffhenriksen/2019/05/17/valuing-lyft-requires-a-deep-look-into-unit-economics
https://www.statista.com/statistics/185736/mobile-app-average-user-acquisition-cost/
https://www.statista.com/statistics/185736/mobile-app-average-user-acquisition-cost/

associated with it. If there’s suddenly a surge of negative sentiment in your brand
mentions, you might want to do something about it as soon as possible. Sentiment
analysis is a typical ML task.

When not to use machine learning
The list of use cases can go on and on, and it’ll grow even longer as ML adoption matures in the
industry. Even though ML can solve a subset of problems very well, it can’t solve and/or
shouldn’t be used for a lot of problems. ML shouldn’t be used if under any of the following
conditions.

1. It’s unethical.
2. Simpler solutions do the trick.
3. It’s impossible to get the right data.
4. One single prediction error can cause devastating consequences.
5. Every single decision the system makes must be explainable.
6. It’s not cost-effective.

However, even if ML can’t solve your problem, it might be possible to break your problem into
smaller components and ML can solve some of them. For example, if you can’t build a chatbot to
answer all your customers’ queries, it might be possible to build an ML model to predict whether
a query matches one of the frequently asked questions. If yes, automatically direct the customer
to the answer. If not, direct them to customer service.

I’d also want to caution against dismissing a new technology because it’s not as cost-effective as
older technologies at the moment. Most technological advances are incremental. A technology
might not be efficient now, but it might be in the future. If you wait for the technology to prove
its worth to the rest of the industry before jumping on, you might be years or decades behind
your competitors.

Four phases of machine learning adoption
Once you’ve decided to explore ML, your strategy depends on which phase of ML adoption you
are in. There are four phases of adopting ML, with solutions from each phase can be used as
baselines to evaluate the solutions from the next phase.

Phase 1: Before machine learning
If this is your first time trying to make this type of prediction from this type of data, start with
non-ML solutions. Your first stab at the problem can be the simplest heuristics. For example, to
predict what letter users are going to type next in English, you can show the top three most
common English letters, “e”, “t”, and “a”, which is correct 30% of the time.

Facebook newsfeed was introduced in 2006 without any intelligent algorithms—posts were
shown in a chronological order. It wasn’t until 2011 that Facebook started displaying news
updates you were most interested in at the top of the feed21.

Facebook newsfeed circa 2006

According to Martin Zinkevich in his magnificent Rules of Machine Learning: Best Practices for
ML Engineering:

“If you think that machine learning will give you a 100% boost, then a heuristic will get you
50% of the way there.22”

You might find out that non-ML solutions work just fine and you don’t need ML yet.

22 Rules of Machine Learning: Best Practices for ML Engineering (Martin Zinkevich, Google 2019)
21 The Evolution of Facebook News Feed (Samantha Murphy, Mashable 2013)

https://newsfeed.org/what-mark-zuckerbergs-news-feed-looked-like-in-2006/
https://developers.google.com/machine-learning/guides/rules-of-ml
https://mashable.com/2013/03/12/facebook-news-feed-evolution/

Phase 2: Simplest machine learning models
For your first ML model, you want to start with a simple algorithm, something that gives you
visibility into its working to allow you to validate the usefulness of your problem framing and
your data. Logistic regression XGBoost, K-nearest neighbors can be great for that.

They are also easier to implement and deploy which allows you to quickly build out a framework
from data management to development to deployment that you can test and trust.

Phase 3: Optimizing simple models
Once you’ve had your ML framework in place, you can focus on optimizing the simple ML
models with different objective functions, hyperparameter search, feature engineering, more
data, ensembles.

This phase will allow you to answer questions such as how quickly your model decays in
production and update your infrastructure accordingly.

Phase 4: Complex systems
Once you’ve reached the limit of your simple models and your use case demands significant
model improvement, experiment with more complex models.

5. Case studies
To learn to design ML systems, it’s helpful to read case studies to see how actual teams deal with
different deployment requirements and constraints. Many companies—Airbnb, Lyft, Uber, and
Netflix, to name a few—run excellent tech blogs where they share their experience using ML to
improve their products and/or processes.

1. Using Machine Learning to Predict Value of Homes On Airbnb (Robert Chang, Airbnb
Engineering & Data Science, 2017)
In this detailed and well-written blog post, Chang described how Airbnb used machine learning
to predict an important business metric: the value of homes on Airbnb. It walks you through the
entire workflow: feature engineering, model selection, prototyping, moving prototypes to
production. It's completed with lessons learned, tools used, and code snippets too.

2. Using Machine Learning to Improve Streaming Quality at Netflix (Chaitanya Ekanadham,
Netflix Technology Blog, 2018)
As of 2018, Netflix streams to over 117M members worldwide, half of those living outside the
US. This blog post describes some of their technical challenges and how they use machine
learning to overcome these challenges, including to predict the network quality, detect device
anomaly, and allocate resources for predictive caching.

https://medium.com/airbnb-engineering/using-machine-learning-to-predict-value-of-homes-on-airbnb-9272d3d4739d
https://medium.com/netflix-techblog/using-machine-learning-to-improve-streaming-quality-at-netflix-9651263ef09f

3. 150 Successful Machine Learning Models: 6 Lessons Learned at Booking.com (Bernardi et
al., KDD, 2019)
As of 2019, Booking.com has around 150 machine learning models in production. These models
solve a wide range of prediction problems (e.g. predicting users’ travel preferences and how
many people they travel with) and optimization problems (e.g.optimizing the background images
and reviews to show for each user). Adrian Colyer gave a good summary of the six lessons
learned here:

1. Machine learned models deliver strong business value.
2. Model performance is not the same as business performance.
3. Be clear about the problem you’re trying to solve.
4. Prediction serving latency matters.
5. Get early feedback on model quality.
6. Test the business impact of your models using randomized controlled trials.

4. How we grew from 0 to 4 million women on our fashion app, with a vertical machine learning
approach (Gabriel Aldamiz, HackerNoon, 2018)
To offer automated outfit advice, Chicisimo tried to qualify people's fashion taste using machine
learning. Due to the ambiguous nature of the task, the biggest challenges are framing the
problem and collecting the data for it, both challenges are addressed by the article. It also covers
the problem that every consumer app struggles with: user retention.

5. Machine Learning-Powered Search Ranking of Airbnb Experiences (Mihajlo Grbovic, Airbnb
Engineering & Data Science, 2019)
This article walks you step by step through a canonical example of the ranking and
recommendation problem. The four main steps are system design, personalization, online
scoring, and business aspect. The article explains which features to use, how to collect data and
label it, why they chose Gradient Boosted Decision Tree, which testing metrics to use, what
heuristics to take into account while ranking results, how to do A/B testing during deployment.
Another wonderful thing about this post is that it also covers personalization to rank results
differently for different users.

6. From shallow to deep learning in fraud (Hao Yi Ong, Lyft Engineering, 2018)
Fraud detection is one of the earliest use cases of machine learning in the industry. This article
explores the evolution of fraud detection algorithms used at Lyft. At first, an algorithm as simple
as logistic regression with engineered features was enough to catch most fraud cases. Its
simplicity allowed the team to understand the importance of different features. Later, when fraud
techniques have become too sophisticated, more complex models are required. This article
explores the tradeoff between complexity and interpretability, performance and ease of
deployment.

https://blog.acolyer.org/2019/10/07/150-successful-machine-learning-models/
https://blog.acolyer.org/2019/10/07/150-successful-machine-learning-models/
https://medium.com/hackernoon/how-we-grew-from-0-to-4-million-women-on-our-fashion-app-with-a-vertical-machine-learning-approach-f8b7fc0a89d7
https://medium.com/hackernoon/how-we-grew-from-0-to-4-million-women-on-our-fashion-app-with-a-vertical-machine-learning-approach-f8b7fc0a89d7
https://medium.com/airbnb-engineering/machine-learning-powered-search-ranking-of-airbnb-experiences-110b4b1a0789
https://eng.lyft.com/from-shallow-to-deep-learning-in-fraud-9dafcbcef743

7. Space, Time and Groceries (Jeremy Stanley, Tech at Instacart, 2017)
Instacart uses machine learning to solve the task of path optimization: how to most efficiently
assign tasks for multiple shoppers and find the optimal paths for them. The article explains the
entire process of system design, from framing the problem, collecting data, algorithm and metric
selection, topped with a tutorial for beautiful visualization.

8. Creating a Modern OCR Pipeline Using Computer Vision and Deep Learning (Brad Neuberg,
Dropbox Engineering, 2017)
An application as simple as a document scanner has two distinct components: optical character
recognition and word detector. Each requires its own production pipeline, and the end-to-end
system requires additional steps for training and tuning. This article also goes into detail the
team’s effort to collect data, which includes building their own data annotation platform.

9. Scaling Machine Learning at Uber with Michelangelo (Jeremy Hermann and Mike Del Balso,
Uber Engineering, 2019)
Uber uses extensive machine learning in their production, and this article gives an impressive
overview of their end-to-end workflow, where machine learning is being applied at Uber, and
how their teams are organized.

10. Spotify’s Discover Weekly: How machine learning finds your new music (Umesh .A Bhat,
2017)
To create Discover Weekly, there are three main types of recommendation models that Spotify
employs:

● Collaborative Filtering models (i.e. the ones that Last.fm originally used), which work
by analyzing your behavior and others’ behavior.

● Natural Language Processing (NLP) models, which work by analyzing text.
● Audio models, which work by analyzing the raw audio tracks themselves.

===
To cite this lecture note, please use:

@booklet{cs329s_lectures,
title = {CS 329S: Machine learning systems design},
author = {Chip Huyen},
url = {https://cs329s.stanford.edu},
year = {2021},
note = {Lecture notes}
}

https://tech.instacart.com/space-time-and-groceries-a315925acf3a
https://blogs.dropbox.com/tech/2017/04/creating-a-modern-ocr-pipeline-using-computer-vision-and-deep-learning/
https://eng.uber.com/scaling-michelangelo/
https://hackernoon.com/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

