# Arithmetic and Geometric Series - The Formulas

Sum of the first "n" terms in an arithmetic series:

Formula 1: Formula 2:

Sum of the first "n" terms in a geometric series, where  $r \neq 1$ :

## Sample:

The first three terms of an arithmetic sequence are: 23, 15, 7, ... Find  $S_{80}$ .

Find the sum of this series.

-3 1 5 9 ... 81

- **a** Write an expression for  $S_n$ , the sum of the first n terms, of the series  $64 + 60 + 56 + \cdots$
- **b** Hence, find the value of *n* for which  $S_n = 0$

## Sample:

Find the sum of the series:

$$\sum_{i=1}^{8} 6(-2)^{i-1}$$

The geometric sequence 16, 8, p, ... has common ratio 0.5.

- **a** Find the value of p. **b** Find the value of the seventh term.
- c Find the sum of the first 15 terms.

### Problem 1:

Note the pattern created by the coins at right. Row 1 is the top row and it has 1 coin. Row 2 has 2 coins, and so on.

| Row (n)                             | 1 | 2 | 3 | 4 | 5 |
|-------------------------------------|---|---|---|---|---|
| Sequence for # of coins in each row |   |   |   |   |   |
| Sequence for Sum of Coins           |   |   |   |   |   |



- a. Fill the table above.
- b. Create a general rule for the number of coins in each row.
- c. The sequence for the sum of coins is quadratic:  $S_n = 0.5n^2 + 0.5n$ 
  - i) Use this rule to find S<sub>2</sub> and S<sub>4</sub>.
     Confirm that the results match the values that you have in the table.
- ii) Using the sum of arithmetic sequence formula that we discovered at the top of this page, derive the rule given in c).

#### **Problem 2:**

Avi does chores around his house to earn money to buy his family presents for Hanukkah. On the first day of December, he earns \$0.50. On the second, he earns \$1.75 and on the third, he earns \$3. If this pattern continues for the first two weeks of December, how much money will he have in total on the first night of Hanukkah on 14 December?

#### Problem 3:

For each infinite series below, decide whether it is arithmetic or geometric, then find the sum to the given term:

**a** 
$$1+5+9+...u_8$$

**b** 
$$6 + 12 + 18 + \dots u_7$$

$$c -2 - 4 - 8 - \dots u_9$$

**d** 
$$100 + 50 + 25 + \dots u_e$$

e 
$$132 + 124 + 116 + \dots u_7$$

**d** 
$$100 + 50 + 25 + \dots u_6$$
  
**f**  $\frac{1}{8} - \frac{1}{4} + \frac{1}{2} - \dots u_{12}$ 

## Problem 4:

For each finite series below, decide whether it is arithmetic or geometric, then find the sum:

**b** 
$$\sum_{n=1}^{15} -2(3)^n$$

c 
$$\frac{5}{4} + \frac{5}{8} + \frac{5}{16} + \cdots + \frac{5}{256}$$