Conservation of energy | Name | Date | Period | |------|------|--------| | | | | #### **ENERGY SKATE PARK** ### **Learning Goals:** - Develop a model to describes how when distance changes, different amounts of potential energy are stored in a system. - Examine how kinetic and potential energy interact with each other. - Interpret graphical displays of data to describe the relationships of kinetic energy to the speed of an object - Describe how energy can be transformed and apply to real world situation. - Examine how friction affects the motion of objects Instructions: Open up the PhET simulation "Energy Skate Park Basics." Either type in " https://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-basics_en.html " or Google "PhET Energy Skate Park Basics." #### **PART A-Designing a Skate Park** - Click on the "**Playground**" tab. Explore the simulation by clicking and dragging the tracks in order to make different loops and hills. - List what variables you are able to change in the simulation: - Create a track with at least on hill and one loop. Draw your design in the space below. DO NOT start your skater on your track until you draw it! | • | • Place your skater at the top of the track. Did your skater complete the track? Explain what happened in the space below: | | | | |------|--|--|----------------|--| | | | | | | | PART | B-Potential Energy and Kineti | ic Energy | | | | | Click on the "Intro" tab. Explo change in the space below: | re the simulation. List the variables | that you can | | | | | r draw how you can change the amo
e sure that you have either the pie c | | | | | Most Potential Energy | | | | | | | | | | | | Least Potential Energy | | | | | | Using the simulation, describe o energy in the table below: | r draw how you can change the amo | unt of kinetic | | | | Most Kinetic Energy | | | | | | | | | | | | Least Kinetic Energy | | | | | In the table below, describe what happens to the potential and kinetic energy of the
skater when he is on different parts of the track (make sure that you have either the
pie chart or bar graph checked): | | | | | | |---|----------------------------|--------------------------|--|--|--| | Position of Skater | Amount of Potential Energy | Amount of Kinetic Energy | | | | | High on the track | ☐Increases☐Decreases | □Increases□Decreases | | | | | In the middle of the track | ☐ Increases ☐ Decreases | □Increases□Decreases | | | | | At the bottom of the track | ☐ Increases ☐ Decreases | □Increases□Decreases | | | | | What claim can you make about the relationship between the relationship between kinetic energy and potential energy?: | What is your evidence? | ? | | | | | | | | | | | | | | | | | | | # **SPEED, POTENTIAL ENERGY, KINETIC ENERGY** • On the diagram below, label where you think the speed of the skater will be the greatest. #### **TOTAL ENERGY** • In the space below, find ways you can change the total energy in the simulation. **Summary, Reflection:** | 1 | Scientific concepts covered in the simulation: | |---|---| | 2 | Examples of how each was used in the simulation: | | 3 | Questions I still have, interesting things I learned: |