
ID24HACKED formal specification 0.99.2

The creation of the ID24 standard has resulted in an expansion of the capabilities of
Dehacked patches. This specification details the additions and changes required to support
Dehacked patches under the ID24 featureset.

Minimum engine featureset

This specification applies to any ID24 supporting source port.

Baseline features

ID24HACKED is a superset of the following Dehacked features:

●​ DeHackEd/Doom 1.9
●​ Boom
●​ MUSINFO
●​ MBF
●​ DEHEXTRA
●​ MBF21
●​ DSDHACKED

It includes and supports everything defined by those ports and specifications. The above list
is also considered an order, from least features to most features with each featureset being a
superset of the prior one, for the sake of determining a featureset for the engine to run in.

Identifying an ID24HACKED patch

There are two primary methods for identifying an ID24HACKED patch:

●​ Doom version is set to 2024
●​ Encountering anything specified in this document that is not defined in the baseline

features

For the sake of convenience, a Dehacked implementation should be able to report the
highest level featureset encountered so that the engine can determine whether it should
consider the patch valid.

Dehacked patch initialisation order

While MBF stated that Dehacked patches from a command line are to be considered first,
this behaviour conflicts with the accumulation requirements specified above. The order for
Dehacked patch initialisation is now as follows:

●​ Every DEHACKED lump found in the WAD dictionary, in order from first loaded WAD
(including the IWAD) to the last loaded WAD.

●​ Any .deh files encountered on the command line in the order specified (if the port
supports loading from the command line).

This also applies retroactively to the previously stated baseline features.

DEHACKED limitation removals

It has become apparent that the requirements for id Software and/or its affiliates to add new
features to its commercial Doom and Doom II releases and taking existing community

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

standards into account would result in potentially breaking any number of user mods. The
following limitation removals are designed to sidestep this while allowing current and future
commercial releases to add new features as required without this concern hanging
overhead.

ID24HACKED builds on the DSDHACKED specification allowing (2^31 - 1) positive
indices for all supported items (frame, thing, sprite, sound). ID24HACKED extends that to
allow just as many negative indices, giving a range of (2^32 - 1) valid values for any index
(frame, thing, sprite, sound, weapon, ammo) while also allowing custom string mnemonics
starting with USER_.

The range of possible values is divided up amongst a few purposes, As well as limitations
placed on a DEHACKED patch, those purposes are illustrated in the following table:

First index Last index Create? Modify? Purpose

0x00000000 0x7FFFFFFF Y Y Original valid range.

0x80000000 0x8FFFFFFF N N Implementation defined.
Essentially a place for source ports
to define internal/port-specific
objects.

0x90000000 0xBFFFFFFF N Y Reserved for exclusive use by id
Software and its affiliates. Any
future specifications published by id
Software and/or its affiliates will use
indices within this range.

0xC0000000 0xFFFFFFFE N Y Reserved for the community. Any
future community specifications that
are published should use indices
from within this range.

0xFFFFFFFF 0xFFFFFFFF N N Invalid index.

When dealing with 16-bit values such as the thing type number found in map definitions
(specified by the ID # field in a Thing definition), the following values apply:

First index Last index Create? Modify? Purpose

0x0000 0x7FFF Y Y Original valid range.

0x8000 0x8FFF N N Implementation defined.
Essentially a place for source ports
to define internal/port-specific
objects.

0x9000 0xBFFF N Y Reserved for exclusive use by id
Software and its affiliates. Any
future specifications published by id

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Software and/or its affiliates will use
indices within this range.

0xC000 0xFFFE N Y Reserved for the community. Any
future community specifications that
are published should use indices
from within this range.

0xFFFF 0xFFFF N N Invalid index.

String mnemonics

String mnemonics starting with USER_ are to be added to the mnemonic resolution table.
There is no limitation to what these mnemonics can be called outside of the requirement to
begin with USER_.

In addition, the following mnemonics and their corresponding strings have been added:

Mnemonic String

ID24_GOTINCINERATOR You got the incinerator!

ID24_GOTCALAMITYBLADE You got the calamity blade! Hot damn!

ID24_GOTFUELCAN Picked up a fuel can.

ID24_GOTFUELTANK Picked up a fuel tank.

ID24_COLOR_GREEN Green

ID24_COLOR_INDIGO Indigo

ID24_COLOR_BROWN Brown

ID24_COLOR_RED Red

ID24_COLOR_YELLOW Yellow

ID24_COLOR_BLUE Blue

ID24_COLOR_NAVY Navy

ID24_COLOR_MAGENTA Magenta

Any unknown mnemonics encountered in a Dehacked file should be ignored.

Codepointer verification

It has always been possible to specify codepointers intended for things in a frame intended
for player sprites and vice versa. While it is not an expectation to catch this at parse time, it
is expected that code errors at runtime if it tries to execute a codepointer not intended for the
current object.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Miscellaneous values changes

Due to the expansion of Dehacked capabilities, the following values now set values in the
built-in weapon and ammo slots rather than global values:

●​ BFG Cells/Shot - updates the Ammo per shot field in the BFG weapon entry
●​ Initial Bullets - updates the Initial ammo field in the clip/bullet ammo entry

New object allocation

Note that while DSDHACKED specifies that indices allocate objects in a range from lowest
index to highest index, this requirement is removed from ID24HACKED. A Dehacked patch
contains perfect information allowing you to pre-determine exactly which indices are in use
after a patch has been parsed. Further, allowing indices in the negative range either requires
funky C array arithmetic or a very large array by reinterpreting that negative value at a
bitwise level to be a positive value.

As such, ID24HACKED parsing only allocates objects for an index when they are
encountered as a new object definition; or whenever a field that refers to those objects via
an index is encountered and it was not previously defined.

One notable exception to the allocation rule is for action pointer parameters. As each value
in a DeHackEd patch can be defined in any arbitrary order, to simplify parsing logic each
Thing, Frame, and Sound parameter is resolved after a Frame has finished parsing.

New weapons, ammo types, things, frames, sprites, and sounds

A complete table of all new additions to the internal tables can be found in <a separate file
stored with these specifications>. These tables must be compiled and constructed into a
master list - known as the in-order table - and inserted into the corresponding associative
map before allocating new things from a DeHackEd patch.

Table construction

Each in-order table has a related associative map used for resolving objects via an index.
These associative maps are to be used in place of the existing tables. Associative maps
exist for each of the following datatypes:

●​ Thing
●​ Frame
●​ Sprite
●​ Sound
●​ Weapon
●​ Ammo

An extra associative map is maintained for the ID # field of a Thing definition (referred to
as the spawn map). Spawning a thing is now resolved from the spawn map instead of
iterating through the in-order table.

The in-order tables are constructed in the following way for every data type except things:

●​ Original built-in tables in order
●​ ID24 tables in order

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Things are constructed the following way:

●​ Original built-in tables in order
●​ MUSINFO 14101-14064 entries in order
●​ ID24 tables in order

Any new entries defined by the DeHackedPatch must be placed after the entries as
described above and inserted into the associative map.

At program initialisation and after any DeHackEd patch is loaded, each associative map
must be rebuilt with the following logic:

●​ Clear every associative map
●​ For each in-order table

○​ Create a copy and sort each item in ascending order by its identifying index
■​ If the item is a Thing, sort any item with matching identifying indices

by ID #
■​ If the related associative map is the spawn map, do not sort the

in-order table at all
○​ Iterate through each item in the in-order table

■​ If this item does not exist in the related associative map, then insert
it into the associative map

New objects are to be pushed to the back of the in-order tables; and also added to the
associative map immediately in order for DeHackEd patches to correctly refer to objects
defined earlier in the patch. Note that while the order is not important during a DeHackEd
patch, it is important for the game simulation to maintain backwards compatibility with
doom1.9 (in particular, the spawn map rules are designed to work . You don’t want to skip
the associative map reconstruction step.

Accumulating Dehacked patches

While it has always been possible to load DeHackEd patches on top of one another, at best
this has always been undefined behaviour. DeHackEd as originally specified has an
expectation that it is operating on a doom1.9 set of tables. It makes no attempts to verify if
this is true.

Due to needing to avoid undefined behaviour for the sake of running on video game console
platforms, DeHackEd patches can now define a series of hash values that are calculated
from the tables before any given DeHackEd patch is applied. These hash values indicate
that a Dehacked patch has been tested and confirmed to work with previously loaded
DeHackEd patches. This is applied retroactively to every previous DeHackEd specification -
an ID24 capable port can consider and process this regardless of the feature level a mod
requests/supports and is preferred to be the default way to handle DeHackEd patches (with
it being an outright requirement in the official versions of Doom and Doom II sold in stores of
all kinds).

As this is a lengthy topic, further information on hashing is provided in a separate document.

Data types

Each data type used in the tables following this section correspond to the following:

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

●​ string - C-style null-terminated string, stored as a pointer
●​ bitfield - 32-bit integer
●​ integer - 32-bit signed integer
●​ enum - 32-bit signed integer
●​ bool - 8-bit integer
●​ fixed - 32-bit signed integer

Frame additions

A frame can now be rendered with a transparency lump. This lump applies to both thing and
player sprite states.

IDHACKED24 adds the following parameters to a Frame definition:

Name Type Default Description

Tranmap string null The name of a transparency map lump to use
when rendering the sprite associated with this
frame.
Note: While a Thing can use the built-in
transparency map with the TRANSLUCENT
flag, a frame’s Tranmap will override this.

Frame defaults

All frames defined by prior specifications are to have default values set to those defined in
the fields table; all used-defined things likewise will have those same default values.

Thing additions

Things have had a sizable expansion of functionality in IDHACKED24.

Things now have some capacity to control their behaviour when respawning monsters is
turned on (either via command line or the Nightmare! difficulty setting). They can control if
they’re allowed to respawn, as well as how long they must stay dead at a minimum and their
chances of respawning.

Projectiles can now control how much damage is applied to the mobj that launched it via the
Self damage factor field. The damage function should only apply the multiplier to the
damage value if the source or the inflictor is the same as the target, with source taking
precedence over the inflictor and retrieving the multiplier value from the chosen object’s info
structure.

Special items previously had the ability to remain in the world on collection as a hardcoded
feature of certain multiplayer modes. A thing is now able to explicitly define this behavior for
single player, cooperative, and deathmatch modes.

Dropped items are no longer hardcoded to Thing type. Any thing is able to define a thing
index representing the item to drop on death. Note that when a source port is not operating
with ID24 compatibility that doom1.9 behaviour must be retained.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Special item collection is no longer hardcoded to sprite names. As such, a full suite of values
to handle collection is exposed. When a thing does not define any of the ID24 values for item
collection with the exception of the Pickup message, the doom1.9 behaviour is retained.
Any item with a Pickup message overwrites the defined doom1.9 message regardless of
behavior.

Note that when a source port is not operating with ID24 compatibility, doom1.9 behaviour
must be retained.

IDHACKED24 adds the following fields to a Thing definition:

Name Type Default Description

ID24 Bits bitfield 0 New flags to control ID24 thing features.

Min respawn
tics

integer 420 The number of tics to wait when respawning
monsters is turned on before attempting to
respawn.

Respawn dice integer 4 The value that a RNG value (between 0 and 255)
must be greater than to allow this item to
respawn.

Dropped item integer -1 The thing ID to spawn on death.

Pickup ammo
type

integer -1 The ammo ID to pick up when collecting this
SPECIAL thing.

Pickup ammo
category

bitfield -1 The ammo category to resolve a quantity from
when collecting this SPECIAL thing.

Pickup
weapon type

integer -1 The weapon ID to pick up when collecting this
SPECIAL thing.

Pickup item
type

enum -1 The powerup to pick up when collecting this
SPECIAL thing.

Pickup bonus
count

integer 6 A value to add to the screen flash counter when
collecting this SPECIAL thing.

Pickup sound integer 0 The sound ID to play when collecting this
SPECIAL thing.

Pickup
message

string null The string mnemonic to resolve and display
when picking up this SPECIAL thing.

Translation string null The translation lump to use when rendering this
thing.

Self damage
factor

fixed 65536
(1.0)

The multiplier to use on the damage value when
a projectile damages the mobj it was launched
from.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

ID24 bits

The following values apply to the ID24 bits bitfield (with mnemonics specified in []
brackets) and are allowed to be combined with any other value:

●​ 1 [NORESPAWN] - Does not respawn when respawning monsters is turned on
●​ 2 [SPECIALSTAYSSINGLE] - Special remains in the world when collected in single

player mode
●​ 4 [SPECIALSTAYSCOOP] - Special remains in the world when collected in

cooperative multiplayer mode
●​ 8 [SPECIALSTAYSDM] - Special remains in the world when collected in deathmatch

multiplayer mode

Pickup ammo category

The following values apply to the Pickup ammo category bitfield and are exclusive to
one another:

●​ 0 - clip ammo
●​ 1 - box ammo
●​ 2 - weapon ammo
●​ 3 - backpack ammo

The following values apply to the Pickup ammo category bitfield and are allowed to be
combined with any other value:

●​ 4 - dropped
●​ 8 - deathmatch

A value of -1 in the Pickup ammo category bitfield means that there is no category and
overrides any bit set as described above.

Pickup item type

The following values apply to the Pickup item type enumeration:

●​ -1 - no item
●​ 0 - message only
●​ 1 - blue keycard
●​ 2 - yellow keycard
●​ 3 - red keycard
●​ 4 - blue skull
●​ 5 - yellow skull
●​ 6 - red skull
●​ 7 - backpack
●​ 8 - health bonus
●​ 9 - stimpack
●​ 10 - medikit
●​ 11 - soulsphere
●​ 12 - megasphere
●​ 13 - armor bonus
●​ 14 - green armor
●​ 15 - blue armor

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

●​ 16 - computer area map
●​ 17 - light amplification goggles
●​ 18 - berserk
●​ 19 - partial invisibility
●​ 20 - radiation shielding suit
●​ 21 - invulnerability

Thing defaults

All things defined by prior specifications are to have default values set to those defined in the
fields table; all used-defined things likewise will have those same default values.

However, the MF_TRANSLUCENT flag added to select things by Boom tables is to be
removed from the tables entirely. The flag must still be allowed to be set by a DeHackEd
patch, but the default tables must reflect doom1.9 Doom for all relevant values.

Some exceptional default values must be set on certain hardcoded things. These are:

Thing ID Field Value

MT_MISC4 ID24 Bits SPECIALSTAYSCOOP

MT_MISC5 ID24 Bits SPECIALSTAYSCOOP

MT_MISC6 ID24 Bits SPECIALSTAYSCOOP

MT_MISC7 ID24 Bits SPECIALSTAYSCOOP

MT_MISC8 ID24 Bits SPECIALSTAYSCOOP

MT_MISC9 ID24 Bits SPECIALSTAYSCOOP

MT_POSSESSED Dropped item MT_CLIP

MT_SHOTGUY Dropped item MT_SHOTGUN

MT_CHAINGUY Dropped item MT_CHAINGUN

MT_WOLFSS Dropped item MT_CLIP

Weapon additions

It is now allowed to define weapons not previously defined by the built-in tables.

Weapons can now define which slot they live in, as well as the priority for selection when
pressing the key for that slot. The weapon with the highest slot priority in any given slot will
be selected first when activating that slot; subsequent activations will descend down the list
of weapons for that slot in decreasing priority.

Weapons can also define their place in the autoswitch priority list. When autoswitching is
activated, the weapon with the highest priority will be considered first and will then descend
down the list of weapons in decreasing priority.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Weapons can now define whether they are in the player’s inventory on respawn, as well as
which weapon should be the first one raised. A single weapon must be declared as initial
and raised; if there are multiple initial raised weapons or no initial and raised weapons, it is
considered an error condition.

Carousel icons are an optional feature used by the official releases of Doom and Doom II,
primarily to assist with weapon selection on a control pad. It is entirely at a port’s discretion if
it implements this feature; however, a port must still parse and set all carousel fields correctly
regardless.

The original Doom disallowed selecting the fist weapon when a chainsaw was owned and a
berserk pack was not picked up in the current level. To replicate - and expand upon - this
ability, a few additional fields with the following logic have been included:

●​ You start being allowed to select this weapon if you own it
●​ If No switch with owned weapon is defined and you own that weapon, you are

disallowed from selecting this weapon
●​ If Allow switch with owned weapon is defined and you own that weapon, you

are allowed to select this weapon
●​ If you are allowed to select this weapon and if No switch with owned item is

defined and you own that item, you are disallowed to select this weapon
●​ If you are disallowed to select this weapon and if Allow switch with owned

item is defined and you own that item, you are allowed to select this weapon
●​ If you are still allowed to select this weapon, select this weapon

To resolve the above logic, the weapon index resolves via the weapon lookup table; and the
item index resolves via the table described in “Pickup item type”.

Note that wp_nochange must be redefined to -1 in code to be compliant with the above
index range definitions.

IDHACKED24 adds the following parameters to a weapon definition:

Name Type Default Description

Slot integer -1 Which slot to bind this weapon to.

Slot
Priority

integer -1 Priority value for selection in this slot.

Switch
Priority

integer -1 Priority value when autoswitching.

Initial
Owned

bool false Whether this weapon is available to the player
on respawn.

Initial
Raised

bool false Whether this weapon is the one to be raised on
respawn.

Carousel
icon

string “SMUNKN” A patch to be used as a small icon for weapon
selection wheels/carousels/etc.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Allow switch
with owned
weapon

integer -1 Allow weapon switching according to described
logic.

No switch
with owned
weapon

integer -1 Disallow weapon switching according to
described logic.

Allow switch
with owned
item

integer -1 Allow weapon switching according to described
logic.

No switch
with owned
item

integer -1 Disallow weapon switching according to
described logic.

Weapon defaults

All used-defined weapons will have defaults set corresponding to the above table in addition
to all defaults for previous specifications.

For all built-in weapons, the following values must be set in addition to all defaults for
previous specifications:

Weapon Field Value

wp_fist Slot 1

Slot Priority 0

Switch Priority 0

Initial Owned true

Initial Raised false

Carousel icon "SMFIST"

wp_pistol Slot 2

Slot Priority 0

Switch Priority 6

Initial Owned true

Initial Raised true

Carousel icon "SMPISG"

wp_shotgun Slot 3

Slot Priority 0

Switch Priority 7

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Initial Owned false

Initial Raised false

Carousel icon "SMSHOT"

wp_chaingun Slot 4

Slot Priority 0

Switch Priority 8

Initial Owned false

Initial Raised false

Carousel icon "SMMGUN"

wp_missile Slot 5

Slot Priority 0

Switch Priority 4

Initial Owned false

Initial Raised false

Carousel icon "SMLAUN"

wp_plasma Slot 6

Slot Priority 0

Switch Priority 10

Initial Owned false

Initial Raised false

Carousel icon "SMPLAS"

wp_bfg Slot 7

Slot Priority 0

Switch Priority 2

Initial Owned false

Initial Raised false

Carousel icon "SMBFGG"

wp_chainsaw Slot 1

Slot Priority 1

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Switch Priority 5

Initial Owned false

Initial Raised false

Carousel icon "SMCSAW"

wp_supershotgun Slot 3

Slot Priority 1

Switch Priority 9

Initial Owned false

Initial Raised false

Carousel icon "SMSGN2"

Ammo additions

It is now allowed to define ammo types not previously defined by the built-in tables.

Every aspect of an ammo type is now customisable, and does not rely on the doom1.9
behaviour of multiplying ammo values to determine how much ammo is in a box, a weapon,
or a backpack.

The skill multiplier values can now be defined independently for each skill, and round down
the resulting value to get a whole integer value.

Note that am_noammo must be redefined to -1 in code to be compliant with the above index
range definitions. To account for doom1.9 compatibility, ammo type 5 is considered reserved
and must be remapped to -1.

IDHACKED24 adds the following parameters to an ammo definition:

Name Type Default Description

Initial ammo integer 0 How much of this ammo the player receives on
respawn.

Max upgraded
ammo

integer 0 The value that the maximum amount of ammo is
set to on collecting a backpack.

Box ammo integer 0 How much ammo to receive when collecting a
box with this ammo type.

Backpack
ammo

integer 0 How much ammo to receive when collecting a
backpack.

Weapon ammo integer 0 How much ammo to receive when collecting a
weapon with this ammo type.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Dropped ammo integer 0 How much ammo to receive when collecting a
dropped clip with this ammo type.

Dropped box
ammo

integer 0 How much ammo to receive when collecting a
dropped box with this ammo type.

Dropped
backpack
ammo

integer 0 How much ammo to receive when collecting a
dropped backpack.

Dropped
weapon ammo

integer 0 How much ammo to receive when collecting a
dropped weapon with this ammo type.

Deathmatch
weapon ammo

integer 0 How much ammo to receive when collecting a
weapon with this ammo type in deathmatch
modes.

Skill 1
multiplier

fixed 131072
(2.0)

The multiplier to apply to all collected ammo
counts on skill 1 (I’m Too Young To Die)

Skill 2
multiplier

fixed 65536
(1.0)

The multiplier to apply to all collected ammo
counts on skill 2 (Hey, Not Too Rough)

Skill 3
multiplier

fixed 65536
(1.0)

The multiplier to apply to all collected ammo
counts on skill 3 (Hurt Me Plenty)

Skill 4
multiplier

fixed 65536
(1.0)

The multiplier to apply to all collected ammo
counts on skill 4 (Ultra-Violence)

Skill 5
multiplier

fixed 131072
(2.0)

The multiplier to apply to all collected ammo
counts on skill 5 (Nightmare!)

Per ammo and Max ammo

If the only fields set in a weapon entry are Per ammo and/or Max ammo, then a Dehacked
parser is expected to fill out the the following fields in the a manner consistent with doom1.9
ammo calculations (ie integer operations, meaning all divides are rounded down), in order:

Value New value

Max upgraded ammo Max ammo * 2

Box ammo Per ammo * 5

Backpack ammo Per ammo

Weapon ammo Per ammo * 2

Dropped ammo Per ammo / 2

Dropped box ammo Box ammo / 2

Dropped backpack ammo Backpack ammo / 2

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

Dropped weapon ammo Weapon ammo / 2

Deathmatch weapon ammo Per ammo * 5

Note that this logic also applies to accumulative Dehacked patches. Whether an ammo
definition has previously been created/modified by Dehacked (or is from an internal table) is
not considered. As such, ammo definitions that expect to be accumulative in ID24 will work
best by explicitly providing every value required.

ID24 Formal Specifications is released under CC0 1.0

https://drive.google.com/drive/folders/1Vw5fpmR0bVfFeHZ_xamVvn584xXtXp6M?usp=sharing
https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1

	ID24HACKED formal specification 0.99.2
	Minimum engine featureset
	Baseline features
	Identifying an ID24HACKED patch
	Dehacked patch initialisation order
	DEHACKED limitation removals
	String mnemonics
	Codepointer verification
	Miscellaneous values changes
	New object allocation
	New weapons, ammo types, things, frames, sprites, and sounds
	Table construction
	Accumulating Dehacked patches
	Data types
	Frame additions
	Frame defaults

	Thing additions
	ID24 bits
	Pickup ammo category
	Pickup item type
	Thing defaults

	Weapon additions
	Weapon defaults

	Ammo additions
	Per ammo and Max ammo

