
Author: Chamikara Jayalath
First proposed: 05/31/2018
Status: Stable

This document was migrated to Apache Beam Website:
https://beam.apache.org/contribute/dependencies/

This document describes a proposal for keeping Beam dependencies up to date.

Recently we have run into many issues due to Beam dependencies being significantly out of
date. For examples, see [1], [2] and [3]. Old dependencies cause user pain and can result in a
system being unusable for some users. Many users do not use Beam in isolation, and bundle
other dependencies in the same deployment. These additional dependencies might pull in
incompatible dependencies to the user’s environment which can again result in broken Beam
pipelines, sometimes with undefined behavior. To prevent this, users will have to update their
deployment environment or worse yet may end up not being able to use Beam along with some
of the other dependencies at all.

Current status
Currently, Beam Java SDK’s Gradle and Maven builds define a set of top level dependencies
and various components (runners, IO connectors, etc) can choose to include these
dependencies. Components usually use the version defined at the top level but may choose to
override the version.

If a component X chooses to override the version of a dependency D from a to b and another
component Y is incompatible with version b of D, deployment of a user that uses both
components X and Y will end up in a broken state.

A similar issue could arise if two dependencies of Beam depend on a common library but use
incompatible versions of that library.

Also, users might not use Beam in isolation, a user that depends on Beam as well as other
libraries in the same environment might run into similar issues if Beam and another library share
a dependency while using incompatible versions.

Beam Python SDK handles dependencies slightly differently, all dependencies are defined in a
single setup.py [4] file and are grouped. One of the groups describe required dependencies
while other groups are for dependencies for various optional features. All Python modules have
to use the versions of dependencies defined in setup.py file. Additionally, for most of the
dependencies, Python SDK allows automatic upgrades upto next major version. Because of this
setup, Python SDK currently does not run into component conflicts but other two forms of
dependency conflicts described above can still occur.

https://beam.apache.org/contribute/dependencies/
https://issues.apache.org/jira/browse/BEAM-3098
https://issues.apache.org/jira/browse/BEAM-3991
https://issues.apache.org/jira/browse/BEAM-4229
https://github.com/apache/beam/blob/master/sdks/python/setup.py

This picture can become more complicated during runtime. Runner specific code might be
incompatible with dependencies included by certain modules, and if these dependencies leak
into runtime, a pipeline might end up in a broken state.

The overall issue is not common to Beam and well known in the industry as the Diamond
Dependency problem (or Dependency Hell).

One common solution for the diamond dependency problem is semantic versioning [5]. The
basic idea is that dependencies will be versioned in the form x.y.z where x is the major version,
y is the minor version, and z is the patch version. A major version change may be backwards
incompatible and is expected to be rare. A minor versions may be released more regularly but
are expected to be backwards compatible. But in practice, important fixes (such as security
patches) might get released in the form of minor version updates and it will be healthy for the
Beam project to depend on recently released minor versions of dependencies.

Identifying outdated dependencies
A big part of keeping dependencies up to date involves identifying the outdated dependencies of
Beam that the community should try to upgrade.

Yifan Zou introduced a proposal [6] that achieves this purpose. The basic idea is to run a
per-SDK Jenkins job that identifies and flags outdated dependencies. I refer you to Yifan’s
proposal for details on the exact methodology.

In addition to this, Beam community members might identify other critical dependency updates
that have to be manually triggered. For example,

(1)​A minor release of a dependency due to a critical security vulnerability.
(2)​A dependency conflict that was was triggered by a minor version release of a Beam

dependency (this does not apply to Java SDK that depends on exact minor versions of
dependencies).

Upgrading identified outdated dependencies
After outdated dependencies are identified, Beam community has to act to upgrade the
dependencies regularly. I believe we have to introduce several policy modifications to properly
achieve this task. I propose following.

●​ Human readable reports on status of Beam dependencies are generated weekly by
an automated Jenkins job and shared with the Beam community through the dev
list.​
​
These reports should be concise and should highlight the cases where the community

https://semver.org/
https://docs.google.com/document/d/1rqr_8a9NYZCgeiXpTIwWLCL7X8amPAVfRXsO72BpBwA/edit#bookmark=id.rl13gopyrbku

has to act on. See [6] for more details on this.​

●​ Beam components should define dependencies and their versions at the top level.
There can be rare exceptions, but they should come with explanations. ​
​
Components include various Beam runners, IO connectors, etc. Component-level
dependency version declarations should only be performed in rare cases and should
come with a comment explaining the reasoning for overriding the dependency. For
example, dependencies specific to a runner that are unlikely to be utilized by other
components might be defined at the runner. ​

●​ A significantly outdated dependency (identified manually or through the
automated Jenkins job) should result in a JIRA that is a blocker for the next
release. Release manager may choose to push the blocker to the subsequent
release or downgrade from a blocker. ​
​
This will be a blocker for next major and minor version releases of Beam. JIRA may be
created automatically or manually. I recommend methodology defined in [6] to
automatically identify high priority dependency updates.​
For manually identified critical dependency updates, Beam community members should
create blocking JIRAs for next release. In addition to this Beam community members
may trigger patch releases for any critical dependency fixes that should be made
available to users urgently.​

●​ Dependency declarations may identify owners that are responsible for upgrading
the respective dependencies.​
​
Owner can be mentioned in a comment. Blocking JIRAs will be initially assigned to these
owners (if available). Release manager may choose to re-assign these JIRAs. A
dependency may have more than one declared owner and in this case the JIRA will be
assigned to the first owner mentioned.​

●​ Dependencies of Java SDK components that may cause issues to other
components if leaked should be vendored.​
​
This should be done on a case-by-case basis since shading can result in fat jars. See [7]
for a thread on this.

https://docs.google.com/document/d/1rqr_8a9NYZCgeiXpTIwWLCL7X8amPAVfRXsO72BpBwA/edit#bookmark=id.rl13gopyrbku
https://lists.apache.org/thread.html/758625106a6cfe9ba23d7b39625da20e050c6279b138b18b3f0013e7@%3Cdev.beam.apache.org%3E
https://lists.apache.org/thread.html/12383d2e5d70026427df43294e30d6524334e16f03d86c9a5860792f@%3Cdev.beam.apache.org%3E

Dependency updates and backwards compatibility

Beam releases adhere to semantic versioning [5]. Hence, community members should take care
when updating dependencies. Minor version updates to dependencies should be backwards
compatible in most cases. Some updates to dependencies though may result in backwards
compatible API or functionality changes to Beam. PR reviewers and committers should take
care to detect any dependency updates that could potentially introduce backwards incompatible
changes to Beam before merging and PRs that update dependencies should include a
statement regarding this verification in the form of a PR comment. Dependency updates that
result in backwards incompatible changes to non-experimental features of Beam should be held
till next major version release of Beam. Any exceptions to this policy should only occur in
extreme cases (for example, due to a security vulnerability of an existing dependency that is
only fixed in a subsequent major version) and should be discussed in the Beam dev list. Note
that backwards incompatible changes to experimental features may be introduced in a minor
version release.

[1] https://issues.apache.org/jira/browse/BEAM-3098
[2] https://issues.apache.org/jira/browse/BEAM-3991
[3] https://issues.apache.org/jira/browse/BEAM-4229
[4] https://github.com/apache/beam/blob/master/sdks/python/setup.py
[5] https://semver.org/
[6]
https://docs.google.com/document/d/1rqr_8a9NYZCgeiXpTIwWLCL7X8amPAVfRXsO72BpBwA/edit#boo
kmark=id.rl13gopyrbku
[7]
https://lists.apache.org/thread.html/12383d2e5d70026427df43294e30d6524334e16f03d86c9a5
860792f@%3Cdev.beam.apache.org%3E

https://issues.apache.org/jira/browse/BEAM-3098
https://issues.apache.org/jira/browse/BEAM-3991
https://issues.apache.org/jira/browse/BEAM-4229
https://github.com/apache/beam/blob/master/sdks/python/setup.py
https://semver.org/
https://docs.google.com/document/d/1rqr_8a9NYZCgeiXpTIwWLCL7X8amPAVfRXsO72BpBwA/edit#bookmark=id.rl13gopyrbku
https://docs.google.com/document/d/1rqr_8a9NYZCgeiXpTIwWLCL7X8amPAVfRXsO72BpBwA/edit#bookmark=id.rl13gopyrbku
https://lists.apache.org/thread.html/12383d2e5d70026427df43294e30d6524334e16f03d86c9a5860792f@%3Cdev.beam.apache.org%3E
https://lists.apache.org/thread.html/12383d2e5d70026427df43294e30d6524334e16f03d86c9a5860792f@%3Cdev.beam.apache.org%3E

	Current status
	Identifying outdated dependencies
	Upgrading identified outdated dependencies
	Dependency updates and backwards compatibility

