

1

MakerSpace Queue

Design and Planning Document

2018-2-20, version 1.1

Document Revision History

Rev. 1.1 2018-2-20: initial version

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

2

Index

I.​ System Architecture……………………………………………………………...……….3

i.​ Model……………………………………………………………………………..3

ii.​ View………………………………………………………………………...…….3

iii.​ Controller………………………………………………………………………....3

II.​ Design Details………………………………………………………………………..…...5

i.​ Class Diagram………………………………………………………………..…...5

ii.​ Front-end Design…………………………………………………………..……..6

iii.​ Security and Privacy………………………………………………………..…….9

iv.​ System Security Features………………………………………………...…...…9

III.​ Implementation Plan……………………………………………………………..…..…12

IV.​ Testing Plan……………………………………………………………………….……..14

i.​ Unit Testing………………………………………………………………..…….14

ii.​ System Testing…………………………………………………………..………15

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

3

System Architecture

We will use the Model, View, Controller architecture.

Model

We will use MongoDB to act the part of Queue and Archive of the documents associated with

the print request process. MongoDB is a NoSQL database that integrates well with Java and

unlike SQL databases, can easily store files that will later tie in with print requests. MongoDB is

also extensively documented, easy to set up, is cloud hostable through Atlas and several other

providers, and is flexible. The last point is important because the cost of schema changes is very

low as no migration is needed and schemas aren’t enforced on the document level. MongoDB

uses an extended JSON language (BSON) for queries and has its own CLI and APIs.

View

We will use a ReactJS server that renders HTML templates to serve to client browsers. The

content for these pages will be loaded asynchronously from the view at some level by making

HTTP requests to our Java server with replies with JSON content that can be parsed View-side.

Controller

We will use Java as our main backend language. A java server will handle the transfer of data

from the Model into parsable content for the View. The files that cannot be transferred over

JSON in HTTP responses can be placed into a Resources bin that the View can access and

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

https://www.draw.io/#G1hzmtnzlnALnwyWGNE7yOqmHM3m0y08qa

4

subsequently load into the page. This currently is going to be a file that the Java backend writes

to the image src file of the project. This file will be accessible by both servers, and since react

renders from the backend we will be able to rerender the page when the image gets added to

the folder. This will be important for the download or direct printing of .STL files, as well as the

splicing of those files into thumbnails for previewing in the view.

To interact with the Model, we will need the Java-MongoDB driver. We can also integrate some

open sourceware to help map domain-level objects into DBObjects and back to JSON. See

https://www.mongodb.com/blog/post/getting-started-with-mongodb-and-java-part-i for

references.

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

https://www.mongodb.com/blog/post/getting-started-with-mongodb-and-java-part-i

5

Design Details

Since MongoDB is a key-value, document-based database with denormalized data, the schema

differs from relational models most may be familiar with. Here is the schema that should

accommodate our needs:

[{

 “email”: “<string>”,
 "type": "USER",

 “firstName”: “<string>”,

 “lastName”: “<string>”,

 "privileges": "<ADMIN/STAFF/REQUESTER>",

 "requests": [

 {

 "_id": "<timestamp>",

 "comments": "<string>",

 "status": "<ORDERED/IN_PROCESS/COMPLETED>",

 "class?": "<true/false>",

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

https://www.draw.io/#G1fY0pbp-DrrdUedi2-KDqVdEY27e7puAT

6

 "requestItems": [{"file": <blob>, "qty": <int>,

“status”:<ORDERED/IN_PROCESS/COMPLETE>}]

 }

]

},

{

 "name": "<string>",

 "brand": "<string>",

 "model": "<string>",

 "status": "<string>",

 “currentFileId”: “<string>”

}]

Printer View Object:

Login Page:

Content Component Description

Email Text Field User’s Login Key

Password Password Field User’s Password

Login Button Submits users Email and
password to the back end

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

https://www.draw.io/#G1TZ1FE2nYO9FRxE2cSlCgbTgMTqZ1TfAg

7

Continue as Guest Button Redirect user to next page

Requester View:

Content Component Description

Make A Request Button Redirects person to the
requesting page

Queue View:

Content Component Description

Enqueue Button Add a project from the queue
to a printer that can be
selected

Job Tile Job Element Gets an element from the Job
Element

Job Element:

Content Component Description

Delete Button Remove Job from the queue
and moves it to the archive

Expand Button Expands all of the File
Element inside the Job

File Element:

Content Component Description

Delete Button Remove Job from the queue
and moves it to the archive

Queue Button Selects the object ready to be
qued to the printer

Printer Object:

Content Component Description

Cancel Button Remove Job from the the

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

8

printer and moves it to the
queue at position 1

Finish Button Remove Job from the the
printer and moves it to the
archive

Printer Array:

Content Component Description

Printer Button Is an iteration of the printer
object

Edit Button Adds the ability to add
another printer and remove
printers from the database

Information Bar:

Content Component Description

Login/Logged in as Button Depending on weather or not
you are logged in, if you are
then it will give option to
logout if not then brings the
user to the login page

Archive Button Brings you to the archive sub
page

Printers Button Brings you to the printer sub
page

Archive SubPage:

Content Component Description

Data Table Table Table of all of the archived
projects

Search Bar Text Field Querys the database for all of
the files that fit within the
paramaters

Full name Button Sorts the current parse of the

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

9

database with names

Date Requested Button Sorts the current parse of the
database with date requested

School Button Sortss the list on weather or
not the project is school
related

LinkToFile TextField PlaceHolder for showing the
location of file/ a link to
download the file again

 Security and Privacy:

This part of the implementation procedure includes an overview of the system security and

requirements that must be followed during implementation. During the printing process, we

may receive user’s email, their full name and the job that’s sent. It is still a personal information;

however, it is less likely that we would deal with Privacy Act.

Regarding MongoDB, we will be referencing https://docs.mongodb.com/manual/security/ on

best practices and authentication of users interacting with the database.

 System Security Features:

In this section, we will provide an overview and discussion of the security features that must be

addressed when it is implemented. It should include the determination of system sensitivity and

the actions necessary to ensure that the system meets all the criteria that would a web server

could possibly have.

➔​ Since web print allows any user with access to the 3D Maker space user web interface

the ability to upload a design for printing, it will inherently increase surface area for

several attacks on the web interface. Users could spam the form and fill up the

database— Could limit requests per day.

o Things we could do to minimize the amount of spams coming to our system would be:

➔​ Using a Human-Friendly Bot-Unfriendly Questions

➔​ Using a CAPTCHA, which is a script to block spam bots from accessing our forms while

our real users can get through

➔​ More specifically, third party applications can result in remote vulnerabilities. For

instance, in Tinkercad one can download unverified. This is because these applications

are online and are used to render print jobs on the server after the user has uploaded

their file.

●​ Ways to prevent remote vulnerabilities

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

https://docs.mongodb.com/manual/security/

10

❖​ Never using an arbitrary input data in file literal (anything that’s

interpreted as a sequence number of data. It could be integers

and float numbers)

❖​ Dynamic whitelisting would be another option, but it is not easy

to implement as this is used in some big organizations. It deals

with compliance as well.

One way to alleviate the security risk could be applying security updates to the orchestrated

application. In addition, since Xavier’s network is vulnerable to the public, we could use a

Sandbox security mechanism which uses a dedicated virtual machine that is isolated from the

rest of the print system. It is a security mechanism for separating running programs, usually in

an effort to mitigate system failures or software vulnerabilities from spreading. It can also serve

to execute untested or untrusted programs or code, possibly from unverified or untrusted third

parties, suppliers, users, or websites. Then, we can render the job using the application on the

web interface server.

Another concern is the topic of SQL injections. We will allow the admin to query the database

on some level to get proper analytics from it, but we must be cautious to prevent users from

running SQL commands inside print requests and other actions that would allow them to

escalate their own privileges or modify the DB. SQL injection attacks are also used to delete

records from the database. We could prevent that from happening by blocking URLs from our

web server. We know that it’s not possible to fully prevent SQL injection attacks, however, we

could be as minimally vulnerable to SQL injection attacks as possible. We could just try to find

some common SQL query keywords in URLs and block them from entering to our web server.

This is very possible with regular expressions to parse URLs and the forms that Requesters can

submit.

➔​ We implement a solution to encrypt our sensitive data in our database. This

might include our users’ passwords, security questions and answers, and others

information that would be a turning point for our attackers. The hope is that

even if SQL injections get into our system, encrypting our data will give us a time

to discover the breach and maybe take some other actions like enforcing the rule

of resetting passwords for our users.

➔​ Another way would be not storing our passwords and other very valuable data in

our database. That way, even if these malicious attacks get into the system, it’s

unlikely that they will access our data.

We can also utilize detailed Firewall systems on our server. Additionally, we will consider

separating our data, web application firewalls and HTTP requests when files are sent. In general,

even though these methodologies don’t guarantee the prevention of vulnerabilities and

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

11

injection attacks, they will serve to combat and minimize the amount of attacks we may

encounter.

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

12

Implementation Plan

Units - The Perceived complexity or difficulty on a scale of 1 (Easy) - 10 (Hard)

Est. Time - In hours to research, code, implement

 Iteration 1

Task Name Units Est.
Time

Responsible Dependencies

1. Database Gavin

 1.1 Refine schema details 2 1 N/A

2. Basic Web Interface Jack, Solomon

 2.1 View Queue 2 6 Database, Server

 2.2 Login page (Auth) 2 2 Server

 2.3 Basic visuals of request interactions 3 4 Server

 2.4 Dynamic content from HTTP response 5 3 Database

 2.5 Link to download files 2 2 Server

3. Server implementation Gavin, Jack

 3.1 Setup Java server 3 1 - N/A

 3.2 Setup ReactJS server 3 1 - N/A

 3.3 Connect to database 1 1 ~ Database hosting

 3.4 Find hosting (XU/local network?) 1 2 Privileges

4. Backend API Gavin, Aaron,
Haodong

 4.1 DBObject <-> JSON mapping 4 5 OM Modules,
Java-Mongo Driver

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

13

 Iteration 2

Task Name Units Est.
Time

Responsible Dependencies

1. Create Rest of Domain Objects Aaron, Gavin SpringBoot,
Database (?)

 1.1 User 1 1

 1.2 Request 1 1

 1.3 Request-Item 1 1

 1.4 File 1-5 1-4 Tool for verifying
and converting 3D
print files

2. Server Connection Gavin, Jack

 2.1 HTTP calls from V to C

 2.2 Async Calls Allowing us to keep
all different parts of
data to be called
from the front end
and not have the
webpage slowly
load

 2.3 Deal with image Displaying We need to figure
out a clever way to
display the images
from the
thumbnails of stl
files

3. Requester Queue View

 3.1 Render printers on page

 3.2 Render queue bar

 3.3 Display status and print on printer

 3.4

4.

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

14

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

15

Testing Plan

Unit Testing:

Our goal with unit testing is to be able to reliably check to see if every function inside of

our codebase does exactly what is intended and nothing more to the system. Unit

testing allows us to track if the core functionality that we implement changed potentially

making unwanted bugs or code errors that are initially unaccounted for when we change

functions.

We will also be running test driven development where our project is completely

covered by unit tests. We will also be going through test driven development.

Considering we will have all of our functions laid out in this document, our tests will be

very easy to write. The majority of tests will be for internal methods, and there will be

very few for all of the services that we write.

JUnit tests:

We are going to be using Java for our backend and MongoDB. The test

should cover the database as well as the backend. This will allow us to

check the backend for any discrepancies that arise while writing code, not

allowing for things to break without letting us know.

Jest||Moca Unit Tests:

Our front end will be written in a JavaScript module called ReactJS. We

will be unit testing all of the code and methods that we write. This should

allow us to follow what the program is doing in real time knowing that

our functions are doing what they are supposed to do. This will be mostly

the logic behind parsing json and then changing the database with all of

the data that is entered.

Integration Testing:

High Level Integration Testing will currently be done manually by testing all of the

functions capable of being called on every system used in the project. We will make

dummy objects on the front end that are capable of hitting all of the interactions where

the front end interacts with the backend. We will repeat this with dummy calls on the

backend to see what happens to the database. Through the calls we can completely test

all of the services and how they interact with everything else.

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

16

We will be testing all of the interfaces multiple times over the course of our project,

mainly when we need to put out any kind of release of the project. We will also check

this a lot throughout early development. During mid development we will only do these

tests whenever one of the interfaces ends up breaking or if we need to change one of

the interfaces.

System Testing:

This will simulate the user and allow for us to test all of the elements of the application

we are building. We will then go and test everything with using all of the buttons and

everything on the front end. This should cover all of the functions within the front and

backend and also change the database and test that

Ease of Use Testing:

Ease of use testing will let us take outside input and constructive feedback to further

develop our front end. To test this we will have people observe the mock ups for the

project early on and after some time we can test this again with getting user input form

the user interface after it is programmed.

Smoke Test:

This test will be as simple as an initial compile and run tests to make sure that there is no

further app breaking, bugs, or any other errors that will stop the functionality of the

application. After this has been completed, we will proceed to regression testing.

Regression Testing:

Based on the datas in the queue, we will check if there are any new bugs/mistakes after

modifying to protect the original version of the program. This will be done by running

the app and seeing if anything broke while the code was being written. To test, this we

will have a simple protocol to go through that will allow us to see if our application still

functions with the changes. Afterwards, we will test for the initial bug that we were

attempting to fix. If all seems fine, we will push this into the development branch.

Beta Testing:

For beta testing we will end up deploying the code to work on the Inside of the Xavier

System. This includes running the frontend and backend servers and directly interacting

with each how a normal user would. Then we will have the staff at the makerspace also

look at the webpage and give their input on the beta and see what they think about it.

Aaron Chauvette, Gavin Kyte, Haodong Jiang, Jack Monshausen, Solomon Ghberemeskel

	MakerSpace Queue
	Design and Planning Document
	2018-2-20, version 1.1
	Document Revision History
	
	System Architecture
	
	Design Details
	Implementation Plan
	
	Testing Plan

